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ABSTRACT Population genetic and comparative analyses in diverse taxa have shown that numerous genes
involved in reproduction are adaptively evolving. Two genes involved in germline stem cell regulation, bag
of marbles (bam) and benign gonial cell neoplasm (bgcn), have been shown previously to experience
recurrent, adaptive evolution in bothDrosophila melanogaster andD. simulans. Here we report a population
genetic survey on eight additional genes involved in germline stem cell regulation in D. melanogaster and
D. simulans that reveals all eight of these genes reject a neutral model of evolution in at least one test and
one species after correction for multiple testing using a false-discovery rate of 0.05. These genes play
diverse roles in the regulation of germline stem cells, suggesting that positive selection in response to
several evolutionary pressures may be acting to drive the adaptive evolution of these genes.
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Reproduction and fertility are among the most important traits for
organismal fitness. Manymodels and theoretical studies have proposed
that germline and fertility-related genes will be targeted for selection,
and empirical evidence has documented rapid evolution and in many
cases positive selection on numerous genes known or proposed to be
involved in male fertility (Tsaur et al. 1998; Begun et al. 2000; Swanson
et al. 2001b, 2004; Clark and Swanson 2005; Haerty et al. 2007),
female reproductive tract function (Lawniczak and Begun 2007;
Prokupek et al. 2008; Kelleher and Markow 2009), host defense against
segregation distorters (Presgraves 2007; Phadnis and Orr 2009), and
sperm-egg interactions (Swanson and Vacquier 1995; Swanson et al.
2001a; Aagaard et al. 2010). Most of these genes are expressed at the

latter stages of gametogenesis and often are associated with meiosis
or interactions between gametes. However, Civetta et al. (2006) and
Bauer DuMont et al. (2007) independently discovered that two genes
expressed in the earliest stages of gametogenesis, specifically germline
stem cell (GSC) regulation, also show evidence of adaptive evolution.
One of these genes, bag of marbles (bam), is under intensely strong
positive selection with an astonishing 59 nonsynonymous substitutions
among 442 codons between two closely related fruit fly species, Dro-
sophila melanogaster and D. simulans (Civetta et al. 2006; Bauer Du-
Mont et al. 2007). A second gene, benign gonial cell neoplasm (bgcn),
which acts together with bam as a key “switch” to initiate GSC differ-
entiation, is also evolving under positive selection in these two species
(Bauer DuMont et al. 2007). These discoveries raise a fundamental
question: what is the selective pressure(s) driving these adaptive
changes at early gametogenesis loci?

There have been several genome-wide, next-generation sequencing
surveys of variation in D. melanogaster and D. simulans that have
reported departures from an equilibrium neutral model in directions
consistent with natural selection for GSC-related gene ontology cate-
gories or at/near several GSC genes (Begun et al. 2007; Langley et al.
2012; Pool et al. 2012). It remains informative to examine specific
genes, particularly using parallel assays on population data from both
D. melanogaster and D. simulans. Here, we report high-quality Sanger
resequencing from population samples of both species for eight genes
involved in GSC regulation (cyclin A,mei-P26, nanos, P-element induced
wimpy testis (aka piwi), pumilio, stonewall, fs(1)Yb, and zero population
growth), test for evidence of selection using polymorphism-based
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methods and reanalyze longer-term sequence evolution at these
genes using phylogenetic analysis by maximum likelihood (PAML).
These eight genes include those whose products genetically and/or
physically interact with bam and/or bgcn and are likely to have shared
functions, and those that appear to have non-bam/bgcn-related roles in
GSC regulation. Figure 1 illustrates the roles of these loci within the
female germline, wherein the functions and interactions of these genes
are more thoroughly understood. We note that several of these genes
function somewhat differently in the male germline (Fuller and
Spradling 2007; Gilboa and Lehmann 2004; Gonczy et al. 1997;
Insco et al. 2009; Kawase et al. 2004; Song et al. 2004).

GSCs produce the cells that will develop to form either eggs or
sperm throughout a fly’s life. GSCs are maintained in a microenviron-
ment called the stem cell niche that is located in the proximal end of
the Drosophila ovary or the apical end of the testis (Figure 1). bam acts,
together with bgcn, as a switch to allow for female GSC differentiation,
and therefore its expression is repressed in the GSCs (McKearin and
Ohlstein 1995; Lavoie et al. 1999; Ohlstein et al. 2000) by extrinsic
signals from the stem cell niche (Song et al. 2004). However, this
signaling quickly dissipates and thus repression only occurs in cells
that are in physical contact with the stem cell niche (Wong et al. 2005;
Xia et al. 2010). To receive these extrinsic signals, GSCs remain phys-
ically attached to the niche through adherens junctions (Song et al.
2002). The gap junction protein Zero population growth (Zpg) is
present in the cytoplasmic membrane of both GSCs and niche cells

and is required for the maintenance of GSCs through the sharing of
small molecules and signals between the niche and GSC (Tazuke et al.
2002; Gilboa et al. 2003). Repression of bam expression in the GSC is
also controlled by the genes female-sterile(1)Yb (also abbreviated as Yb)
and P-element induced wimpy testis (piwi) (King et al. 2001; Szakmary
et al. 2005).

Intrinsic mechanisms within the GSC play an important role in its
maintenance as well, at the levels of transcription and translation. The
chromatin-associated protein Stonewall (Stwl) represses genes that
promote differentiation (Maines et al. 2007), whereas Mei-P26 antag-
onizes the miRNA pathway and represses transcripts that will pro-
mote differentiation in the cystoblast (Neumuller et al. 2008; Li et al.
2012). At the translational level, Nanos (Nos) and Pumilio (Pum) bind
to mRNAs that promote differentiation and inhibit their translation
(Lin and Spradling 1997; Wang and Lin 2004). zpg is also required to
promote cystoblast differentiation (Tazuke et al. 2002; Gilboa et al.
2003). So depending on the context, zpg and mei-P26 both inhibit and
promote GSC differentiation. Finally, the cystoblast will undergo four
mitotic divisions. bam is thought to regulate the number of mitotic
divisions, and genetic interaction assays have suggested that bam
interacts with the cell cycle factor, cyclin A (cycA) in this process (Lilly
et al. 2000).

We report here that all eight genes show a statistically significant
departure from an equilibrium neutral model for at least one
polymorphism-based statistical test. Additionally, Yb and stwl also

Figure 1 Schematic of the Drosophila ovarian germline stem cell (GSC) niche with genes analyzed. Adapted from Wong et al. (2005). The GSC
(light blue cell) is present in a niche environment (green cells are somatic cap and terminal filament cells, yellow cells are escort stem cells)
required to maintain its stem cell state. Bam is repressed in the GSC. Only when the GSC moves away from the niche is Bam expressed and this
cell starts to differentiate (tan cell). Yb is involved in the maintenance of GSCs and regulating their division. Piwi acts cell nonautonomously to help
in the repression of Bam in the GSC. Zpg is an adherens junction protein that functions in cell signaling. Nos and Pum act as translational
repressors of genes that will promote differentiation. Mei-p26 acts in concert with the miRNA machinery (miRISC in the figure) to also repress
transcripts (indicated by red squiggly lines), some of which are shared with Nos and Pum. Bgcn is required for Bam to cause GSCs to differentiate.
Bam and Bgcn antagonize the Nos/Pum complex. Stwl represses Bam-independent differentiation pathways and thus maintains GSC self-renewal.
The cystoblast (tan cell) will undergo four mitotic divisions. CycA participates in the regulation of these mitotic divisions but is not shown in this
diagram.
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reject neutrality by the McDonald-Kreitman (MK) test, suggesting an
excess of nonsynonymous fixations between species consistent with
positive selection. These eight genes together with bam and bgcn have
various molecular functions and are expressed in a range of cell types
including GSCs, cysts, and surrounding somatic cells suggesting that
multiple evolutionary forces are acting throughout the early germline
to drive the adaptive evolution of these genes.

MATERIALS AND METHODS

Fly stocks
When possible, African populations of Drosophila melanogaster and
D. simulans were used to minimize the effects of demography in our
ability to detect selection (Begun and Aquadro 1993). In some cases,
different populations were used for different genes because of the
availability of stocks with extracted chromosomes, which allowed us
to sequence homozygous lines in D. melanogaster for the X, second, or
third chromosomes. For D. simulans populations, inbred lines were
used. For stwl, zpg, piwi, and pum a D. melanogaster population from
Uganda, Africa (Pool and Aquadro 2006) and a D. simulans popula-
tion from Lake Kariba, Zimbabwe, Africa (Pool and Aquadro 2006)
were used. For Yb and mei-P26, a D. melanogaster population col-
lected from Sengua Wildlife Research Institute in Zimbabwe, Africa
(Begun and Aquadro 1994) and a D. simulans population from Lake
Kariba, Zimbabwe (Pool and Aquadro 2006) were used. For cyclin A
and nanos, a D. melanogaster population sample collected from Lake
Kariba, Zimbabwe, Africa (Pool and Aquadro 2006) and an inbred
D. simulans population sample from North Carolina (Aquadro et al.
1988) were used.

Sequencing
Genomic DNA was extracted from approximately 20 adult flies using
Puregene Core Kit A DNA isolation kits (QIAGEN). Polymerase
chain reaction and sequencing primer sequences for each gene are
listed in Supporting Information, Table S1. Sanger sequencing (both
strands) was performed by the Cornell University Genomics Core
DNA Sequencing Facility (http://cores.lifesciences.cornell.edu/
brcinfo/?f=1) using ABI chemistry and 3730XL DNA Analyzers.
Sequences were assembled and edited using Sequencher 4.9 (Gene
Codes) and aligned using MEGA 4 (Tamura et al. 2007) using default
settings, and checked manually to assure the reading frame was
retained. Sequences have been deposited in GenBank under accession
numbers JX647382-JX647689. For piwi, a single 4.8-kb sequence that
includes all exons was amplified. This large fragment was problematic
for direct sequencing, so it was cloned into the pCR-BluntII-TOPO
plasmid (Invitrogen). Two clones of each sample were sequenced to
control for PCR errors. If there was ambiguity between the two clones,
a third was sequenced and the majority nucleotide was used. The pum
locus spans over 160 kb, so four separate products were sequenced
that include most of the exons (Figure S1A). The stwl locus was
amplified in two separate products that included both exons (Figure
S1B). The cycA locus also amplified in two separate products that
include two groups of exons in the 59 and 39 region of the gene (Figure
S1C). For mei-P26, only exons 326 were amplified. Our results based
on this region are consistent with other reports that mei-P26 has not
been subject to recurrent, positive selection (Anderson et al. 2009).

Polymorphism analysis
DnaSP (Librado and Rozas 2009) was used to estimate basic summary
statistics of variation within and between species. To detect signatures
of recent selection from polymorphism data we applied two quite

different tests: OmegaPlus (Pavlidis et al. 2010a), which focuses on
the linkage disequilibrium signature of selective sweeps, and SweeD
(Pavlidis et al. 2013), which assesses the fit of the site frequency
spectrum to a particular neutral model (it is a faster extension of
the widely used SweepFinder method; Nielsen et al. 2005).

Statistical significance of OmegaPlus (dependent on linkage
disequilibrium) and SweeD (dependent on SFS) test results was
determined using neutral simulations with or without demography.
We considered a region to be a significant outlier if it fell within the
5% quantile of the simulated datasets. These simulations were done
using the program msABC (Pavlidis et al. 2010b). We surveyed var-
iation from an African population of D. melanogaster which is within
this species’ presumed ancestral range. There is mounting evidence
that even African populations of this species have experienced changes
in effective population size over time (Glinka et al. 2003; Haddrill et al.
2008; Hutter et al. 2007; Li and Stephan. 2006; Duchen et al. 2013;
Singh et al. 2013) and/or migration (Pool et al. 2012). Because in-
ferring demographic parameters is challenging, we simulated three
different scenarios: standard neutral model with constant population
size, standard neutral model with exponential growth as estimated by
Hutter et al. (2007), or standard neutral model with a 3-phase (“3
epoch”) bottleneck as estimated by Duchen et al. (2013). We supplied
msABC with uniform prior distributions for theta and all demo-
graphic parameters. The theta prior distribution for D. melanogaster
was obtained from Pool et al. (2012) and ranged between 0.006
and 0.009 per site. Figure S2 shows the basic model of the demographic
scenarios we considered and the demographic priors used in the
simulations. To date, there are no comparable estimates of demo-
graphic parameters available for D. simulans. Given that the ancestral
range of both of these species is in Africa and they are sympatric, we
used the D. melanogaster demographic parameters as an approxima-
tion for D. simulans. For D. simulans, we used the theta range we
observed across the eight GSC loci in this study, which ranged between
0.003 and 0.04 per site.

The MK test (McDonald and Kreitman 1991) was used to test for
recurrent, historical positive selection by contrasting pooled polymor-
phism for D. melanogaster and D. simulans to fixed differences be-
tween species using D. yakuba as an outgroup. We used the program
DoFE (http://www.sussex.ac.uk/lifesci/eyre-walkerlab/resources) from
Eyre-Walker and Keightley (2009) to calculate the proportion of
amino acid fixations predicted to be due to positive selection (a). This
method uses the site frequency spectrum to jointly estimate the selec-
tive effects of new deleterious mutations and the number of adaptive
substitution for a selected class of mutations while also incorporating
a generalized model of effective population size. For our analysis, we
used the site frequency spectrum of fourfold (neutral class) and 0-fold
(selected class) codon positions for both D. melanogaster and D. sim-
ulans. The sample size for each locus in our analysis varied for each
species. We randomly selected nine and six alleles in D. melanogaster
and D. simulans, respectively. These values correspond to the smallest
sample size in each species.

Divergence analysis
The Drosophila 12 Genomes Consortium (2007) has previously
reported tests of long-term recurrent positive selection using PAML
(Yang 1997, 2007) for nos, pum, zpg, cycA, and mei-P26 and found
none departed from a neutral model. Three genes (stwl, piwi, and Yb),
had not been included in this previous study due to their strict criteria
that ruled out genes with alignment ambiguities. We generated new
multiple-sequence alignments using PRANK alignment software
(Löytynoja and Goldman 2005) from single sequences of
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D. melanogaster, D. simulans, D. sechellia, D. yakuba, D. erecta, and
D. ananassae downloaded from FlyBase. We did not use more divergent
species due to the problems of saturation of synonymous site diver-
gence (The Drosophila 12 Genomes Consortium et al. 2007). Yb from
D. ananassae has a large number of indels relative to the other five
species (and has a much larger coding sequence and an additional
intron). Therefore, we analyzed these Yb alignments with PAML in
two ways: 1) excluding any region with an indel, and 2) excluding any
region with an indel as well as with one codon on either side (to
reduce the chance calling of “false” substitutions associated with align-
ment problems). For Yb, we also used the recently published improved
reference genome sequence of D. simulans from Hu et al. (2013). The
models M0 vs. M3, M7 vs. M8, and M8 vs. M8a were compared.
Consistent with the analyses from the Drosophila 12 Genomes Con-
sortium (2007), each run was performed using three tree topologies:
Tree 1, D. yakuba and D. erecta as sister species; Tree 2, D. yakuba as
an outgroup and Tree 3, D. erecta as an outgroup. Each model com-
parison was run under three different initial v values to assure that
convergence was to a global and not local maximum.

Adjusting for multiple testing: We adjusted our criteria for statistical
significance by estimating the appropriate P-value threshold assuming
an experiment-wide Benjamini and Hochberg (1995) false-discovery
rate (FDR) of 0.05 using the p.adjust function in the R Project (www.
r-project.org). The P-values of SweeD and MK tests were combined for
correction for each species separately as both tests use the frequency
or counts of each polymorphism. OmegaPlus only uses patterns of
linkage disequilibrium across sites, and thus those P-values were cor-
rected separately (again for each species alone).

RESULTS

Polymorphism-based analyses
Gene function and sample size data from African populations of
D. melanogaster and either African or North American D. simulans
are reported in Table 1, and standard summary statistics for each gene

in Table 2. We find that D. simulans levels of nucleotide variability are
generally higher than those seen in D. melanogaster, consistent with
previous results (Aquadro et al. 1988).

Analysis of the polymorphism site frequency data using SweeD
reveals significant departures from neutrality at 15 of 16 gene/species
comparisons after multiple-testing correction (Table 3). For this tab-
ulation, we consider a gene to be showing a significant departure from
neutrality if at least one of the gene regions analyzed shows a signif-
icant departure (after multiple test correction) for all three demo-
graphic scenarios (standard neutral, exponential growth, and 3-epoch
bottleneck). Only piwi in D. simulans fits a neutral model under all
three demographic scenarios.

OmegaPlus rejected the standard neutral model only for Yb in
D. melanogaster after multiple test correction at the 0.05 FDR level
(Table 3). The generally short size of the regions analyzed may have
limited the statistical power of the OmegaPlus method, which relies on
a unique structure of linkage disequilibrium generated by recent se-
lective sweeps.

Polymorphism and divergence-based tests
The McDonald-Kreitman (MK) test rejected neutrality for both Yb
and stwl after correction for multiple testing (Table 4). The method of
Bauer DuMont et al. (2004) suggests that these MK test rejections are
not due to selection on synonymous sites for either gene. High dN/dS
ratios between species (0.627 for Yb, and 0.502 for stwl) compared
with the genome-wide average of 0.0125 (Larracuente et al. 2008), yet
normal levels of dS for both genes (0.132 and 0.119, respectively),
suggests that the MK test rejections are due to excesses of fixed non-
synonymous differences between species consistent with positive
selection.

Using the DoFE program of Eyre-Walker and Keightley (2009), we
estimated, in both D. melanogaster and D. simulans, the overall pro-
portion of amino acid substitutions fixed due to positive selection (a),
and the 95% credibility interval around this estimate (supplemental
method presented in Eyre-Walker and Keightley 2009). This analysis
uses the site frequency spectrum across the eight GSC loci to estimate

n Table 1 Genes surveyed and sample sizes

Gene Function
Number of Alleles Sampled

D. melanogaster D. simulans

cyc Aa Regulation of cyst mitotic divisions
Segment 1 9 10
Segment 2 9 10

Yb GSC maintenance and cytoblast
differentiation

19 9

mei-P26a GSC maintenance 19 10
nosa GSC maintenance 9 10
puma GSC maintenance
Segment 1 17 9
Segment 2 11 10
Segment 3 19 9
Segment 4 18 7

piwi GSC maintenance 10 6
stwl Chromatin factor, GSC maintenance
Segment 1 18 8
Segment 2 15 9

zpga GSC adherens junction and cystoblast
differentiation

18 10

a
Indicates that gene has a genetic and/or physical interaction reported with bam. For pumilio, four separate regions
were amplified and analyzed, labeled as 1-4. For stonewall and cycA two separate regions were amplified, labeled as 1
and 2. GSC, germline stem cell.
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the distribution of fitness effects acting on new deleterious mutations,
while incorporating a general model of effective population size
change. The distribution of fitness effects is then used to determine
the proportion of amino acid fixations that are due to positive selec-
tion. For the eight loci in our study, we estimate a to be 0.814 (95%
credibility interval: 0.69820.896) and 0.790 (95% credibility interval:
0.68120.881) for D. melanogaster and D. simulans, respectively. We
also analyzed the X and autosomal loci separately. For D. melanogaster
we observe a a of 0.934 (95% credibility interval: 0.85220.979) for the X
chromosome and 0.672 (95% credibility interval: 0.41320.836) for the
autosomes. For D. simulans we observe a a of 0.856 (95% credibility
interval: 0.69520.957) for the X chromosome and 0.743 (95%
credibility interval: 0.57920.876) for the autosomes. The autosomal
95% credibility interval estimated for a from our D. melanogaster data
encompasses the a estimate obtained from sequence data from 419
autosomal loci chosen randomly (0.52; Keightley and Eyre-Walker
2012). To date, this method to estimate a has not been applied to
another D. simulans dataset. However, a has been calculated by other
methods for D. simulans and estimates have ranged from 0.43 to 0.94
(reviewed in Eyre-Walker 2006), which is similar to the estimates we
present here.

Divergence-based analyses
No evidence of recurrent, adaptive evolution at the same subset of
codons across D. melanogaster, D. simulans, D. sechellia, D. yakuba, D.
erecta, and D. ananassae was detected using PAML (Yang 1997, 2007)
for seven of the eight genes cycA, mei-P26, nos, piwi, pum, stwl, zpg
(our analyses and those presented in The Drosophila 12 Genomes
Consortium 2007). However, we do find evidence of recurrent, pos-
itive selection at specific codons for Yb. Using both models M7 vs.M8,

and M8 vs. M8a, we find that the data fit a model of selection signif-
icantly better than a neutral null model (likelihood ratio test statistics
of 16.068 with P , 0.0003, and 6.321 with P , 0.01, respectively).
This result is robust to alignment with this highly diverged protein,
including reanalysis removing all codons adjacent to predicted
INDELS. 19 of the aligned codons at Yb are predicted by Bayes
Empirical Bayes analysis to be in the selective class with an average
codon-specific dN/dS (= v) of 1.88. However, only two codons in this
class have predicted posterior probabilities greater than 0.90, and they
do not fall in areas of known domains.

DISCUSSION
Previous genome-wide next-generation sequencing studies using both
site frequency-based and MK tests of neutrality have reported an
enrichment of putative adaptive evolution in Gene Ontology catego-
ries such as germ-cell development, cystoblast division, and germarium-
derived oocyte fate determination (Begun et al. 2007; Langley et al.
2012; Mackay et al. 2012). In this study, we performed high-
quality Sanger sequencing of population samples from both D.
melanogaster and D. simulans and found that all eight genes involved
in GSC regulation studied here reject a neutral model of evolution in at
least one test and species (Tables 3 and 4). Most of these rejections are
due to the polymorphism-based SweeD analysis for which every locus,
except piwi, rejects the neutral model in both D. melanogaster and
D. simulans. The piwi locus only rejects neutrality by the SweeD test in
D. melanogaster. Rejecting the neutral model with SweeD is suggestive
of positive selection, but it could also be due to demographic history
(Pavlidis et al. 2010a). We attempted to take the demographic history
of these species into account by using simulated replicates of estimates
of D. melanogaster African population dynamics (Hutter et al. 2007;

n Table 2 Nucleotide polymorphism estimates for GSC genes

Gene Species S u pTot pSyn pNon

cycA 1 D. melanogaster 14 0.0051 0.0046 0.0025 0.0054
D. simulans 10 0.0035 0.0044 0.0277 0.0000

cycA 2 D. melanogaster 15 0.0085 0.0074 0.0157 0.0010
D. simulans 11 0.0056 0.0061 0.0164 0.0000

mei-P26 D. melanogaster 26 0.0062 0.0061 0.0181 0.0000
D. simulans 21 0.0055 0.0031 0.0110 0.0000

nos D. melanogaster 21 0.0044 0.0045 0.0090 0.0009
D. simulans 35 0.0097 0.0093 0.0150 0.0042

piwi D. melanogaster 103 0.0079 0.0074 0.0196 0.0024
D. simulans 196 0.0222 0.0204 0.0368 0.0025

pumilio 1 D. melanogaster 26 0.0040 0.0046 0.0033 0.0012
D. simulans 103 0.0202 0.0169 0.0142 0.0003

pumilio 2 D. melanogaster 10 0.0052 0.0040 0.0072 0.0000
D. simulans 33 0.0142 0.0144 0.0346 0.0005

pumilio 3 D. melanogaster 10 0.0040 0.0046 0.0172 0.0020
D. simulans 72 0.0400 0.0388 0.0685 0.0014

pumilio 4 D. melanogaster 13 0.0021 0.0020 0.0070 0.000
D. simulans 50 0.0095 0.0089 0.0207 0.0011

stwl 1 D. melanogaster 21 0.0092 0.0058 0.0000 0.0001
D. simulans 17 0.0088 0.0064 0.0119 0.0000

stwl 2 D. melanogaster 49 0.0051 0.0048 0.0123 0.0025
D. simulans 43 0.0053 0.0050 0.0097 0.0033

Yb D. melanogaster 88 0.0079 0.0060 0.0129 0.0028
D. simulans 111 0.0128 0.0128 0.0259 0.0085

zpg D. melanogaster 41 0.0095 0.0113 0.0413 0.0001
D. simulans 60 0.0164 0.0148 0.0286 0.0015

Each amplified region of cycA, pumilio, and stwl was analyzed separately; see the section Materials and Methods and
Figure S1 for locations of each amplicon. S, segregating sites; u, nucleotide diversity; pTot, total diversity; psyn, synon-
ymous diversity; pnon, nonsynonymous diversity. GSC, germline stem cell.
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Duchen et al. 2013) to determine our significant SweeD cutoff points.
However, the true demographic history of these species is unknown.
So, we stress that our SweeD rejections are restricted to the demo-
graphic scenarios we considered.

The detection of outliers of a test statistic’s genomic distribution is
another method used to determine statistical significance. Recently
Pool et al. (2012) applied SweeD (labeled SweepFinder in their man-
uscript) genome-wide for an African population of D. melanogaster
and they list regions containing genomic outliers, assumed to be due
to positive selection. As an attempt to determine if our SweeD rejec-
tions are more likely due to demography vs. selection, we checked to
see if the eight GSC loci we analyzed fell within or near the Pool et al.
(2012) outliers. The protein coding regions (CDS) for three GSC loci
(Yb, piwi andmei-P26) are within an outlier region, suggesting that for
these loci our SweeD rejections are due to positive selection. The CDS

for two other GSC loci (zpg and nano) are within 50 kb of an outlier
region. Simulations have shown that SweeD’s ability to pinpoint the
target of selection is compromised if both selection and demographic
perturbations have occurred (Pavlidis et al. 2010a) with the predicted
target being tens of kilobases away from the actual location of selec-
tion. To determine if by chance one would expect to observe three of
eight loci within an outlier regions, or five of eight loci 50 kb from an
outlier region, we randomly picked eight loci from the D. melanogaster
genome. The loci were picked such that we obtained a random sample
with the same distribution across the X, 2nd, or 3rd chromosomes as
observed across the GSC loci. For both cases our observation is signif-
icant with only 36 of 1000 bootstrapped samples having 3 and greater
or 5 and greater loci within or 50 Kb from an outlier region, respec-
tively (thus P-value = 0.036 for our observation). Therefore, for 5 of the
8 GSC loci we analyzed, two different datasets (using two different

n Table 3 Site frequency tests of departures from neutral models for eight GSC genes in D. melanogaster and D. simulans

Test Details

SweeD Test of Recent Selection OmegaPlus Test of Recent Selection

D. melanogaster D. simulans D. melanogaster D. simulans

Orig
P-value

FDR adj
P-Value

Orig
P-Value

FDR adj
P-Value

Orig
P-Value

FDR adj
P-Value

Orig
P-Value

FDR adj
P-Value

CycA1.SN 0.0007 0.0023 0.0015 0.0032 0.367 0.4037 0.4756 0.4756
CycA1.Ex 0.0007 0.0023 0.0009 0.0023 0.4323 0.4390 0.4049 0.4711
CycA1.3Ep 0.0007 0.0023 0.0012 0.0027 0.439 0.4390 0.4094 0.4711
CycA2.SN 0.6203 0.7030 0.9933 0.9933 0.3726 0.4037 0.2594 0.4214
CycA2.Ex 0.3460 0.4334 0.7363 0.8024 0.2809 0.3894 0.2622 0.4214
CycA2.3Ep 0.3467 0.4334 0.7863 0.8460 0.2866 0.3894 0.2595 0.4214
meiP26.SN 0.0010 0.0023 0.0009 0.0023 0.1894 0.3894 0.0333 0.4214
meiP26.Ex 0.0008 0.0023 0.0010 0.0023 0.2081 0.3894 0.0999 0.4214
meiP26.3Ep 0.0008 0.0023 0.0006 0.0023 0.2108 0.3894 0.0648 0.4214
nano.SN 0.0090 0.0150 0.0008 0.0023 0.4055 0.4274 0.2278 0.4214
nano.Ex 0.0020 0.0040 0.0010 0.0023 0.2560 0.3894 0.2329 0.4214
nano.3Ep 0.0050 0.0092 0.0009 0.0023 0.3403 0.4037 0.2204 0.4214
piwi.SN 0.0009 0.0023 0.9680 0.9795 0.1267 0.3894 0.1899 0.4214
piwi.Ex 0.0070 0.0124 0.9370 0.9713 0.1096 0.3894 0.3899 0.4711
piwi.3Ep 0.0010 0.0023 0.9500 0.9729 0.1030 0.3894 0.3909 0.4711
pum1.SN 0.0008 0.0023 0.4174 0.4997 0.2302 0.3894 0.2198 0.4214
pum1.Ex 0.0009 0.0023 0.1640 0.2213 0.2537 0.3894 0.2126 0.4214
pum1.3Ep 0.0009 0.0023 0.1736 0.2306 0.2532 0.3894 0.2293 0.4214
pum2.SN 0.0008 0.0023 0.0919 0.1281 0.3631 0.4037 0.2649 0.4214
pum2.Ex 0.0009 0.0023 0.0278 0.0407 0.3630 0.4037 0.2599 0.4214
pum2.3Ep 0.0008 0.0023 0.0227 0.0339 0.3389 0.4037 0.2605 0.4214
pum3.SN 0.2073 0.2711 0.0153 0.0245 0.1728 0.3894 0.1664 0.4214
pum3.Ex 0.1633 0.2213 0.0010 0.0023 0.0612 0.3894 0.2701 0.4214
pum3.3Ep 0.0800 0.1133 0.0019 0.0039 0.0800 0.3894 0.2131 0.4214
pum4.SN 0.0186 0.0287 0.8249 0.8765 0.2995 0.3894 0.4296 0.4711
pum4.Ex 0.0067 0.0121 0.7174 0.7919 0.2694 0.3894 0.3909 0.4711
pum4.3Ep 0.0080 0.0139 0.6710 0.7505 0.2690 0.3894 0.3414 0.4711
stwlReg1.SN 0.0159 0.0250 0.0219 0.0332 0.0885 0.3894 0.0444 0.4214
stwlReg1.Ex 0.0009 0.0023 0.0021 0.0042 0.0630 0.3894 0.1062 0.4214
stwlReg1.3Ep 0.0043 0.0081 0.0010 0.0023 0.0516 0.3894 0.0827 0.4214
stwlReg2.SN 0.0010 0.0023 0.8780 0.9214 0.2987 0.3894 0.4099 0.4711
stwlReg2.Ex 0.0006 0.0023 0.4943 0.5756 0.2851 0.3894 0.4637 0.4756
stwlReg2.3Ep 0.0007 0.0023 0.4688 0.5534 0.2869 0.3894 0.4349 0.4711
yb.SN 0.0009 0.0023 0.0014 0.0031 0.0009 0.0351 0.4469 0.4711
yb.Ex 0.0006 0.0023 0.0040 0.0077 0.0059 0.0767 0.4212 0.4711
yb.3Ep 0.0008 0.0023 0.0007 0.0023 0.0033 0.0644 0.3702 0.4711
zpg.SN 0.0008 0.0023 0.0009 0.0023 0.2129 0.3894 0.2093 0.4214
zpg.Ex 0.0090 0.0150 0.0006 0.0023 0.2991 0.3894 0.1461 0.4214
zpg.3Ep 0.0010 0.0023 0.0009 0.0023 0.2807 0.3894 0.1692 0.4214

Simulations to establish P-values were from the standard neutral model (SN), exponential growth model (Ex), or a 3-epoch model (3Ep; large, small, large population
size) as described in the section Materials and Methods. FDR-adjusted P-values were determined as described in text. Significant results (P , 0.05) are in bold. FDR,
false-discovery rate.
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methods for determining the significant cutoffs) suggest that their
frequency spectra do not match the neutral model in D. melanogaster.
For D. simulans, making a distinction between demography and selec-
tion is more tenuous, especially given that there are no comparable
estimates of the demographic history within Africa for this species.

Yb is the only gene to show significant departures from neutrality
consistent with natural selection for the site frequency test SweeD as
well as for both the MK and PAML tests that can detect recurrent
historical selection. This combination of test results suggests that the
recent sweeps at Yb detected by SweeD are just the latest of many
selective fixations of nonsynonymous substitutions that have occurred
among these six species.

Using the method of Eyre-Walker and Keightley (2009), we esti-
mate that 81% of the amino acid differences fixed in these eight genes
in the D. melanogaster lineage and 79% of the amino acid differences
fixed in D. simulans lineage have been driven by positive selection.
Estimates for X-linked genes were slightly, although not significantly,
larger than those for autosomes. This proportion is on the upper end
of that estimated for other groups of genes in these species.

The pattern of evidence for recent or recurrent positive selection
that we observe and the diverse functions and expression patterns of
these genes suggest that there are likely multiple selective pressures
driving the adaptive evolution in genes important in GSC regulation.
For example, three of the eight genes examined that reject the neutral
model have no known interaction or dependence on bam function
(stwl, piwi, and Yb: Chen and McKearin 2005; Li et al. 2009). Yb is
expressed in the stem cell niche (King and Lin 1999; King et al. 2001),
whereas stwl binds chromatin (Clark and McKearin 1996; Maines
et al. 2007), making it less likely that the same specific selective pres-
sures act on both.

The hypothesis of sexual selection and sexual conflict (Swanson
and Vacquier 2002) cannot be formally rejected but seem implausible
for genes functioning in GSCs. For example, most theories of sexual
selection predict strong effects on premating traits, which are highly
unlikely to be influenced by the genes we have examined. Likewise,
sexual conflict, whereby one sex manipulates the reproductive fitness
of the other sex, is much more likely to occur for molecules that are
transmitted between males and females, a function that is implausible
for any of the GSC regulatory genes in this study.

Several other mechanistic and evolutionary hypotheses have been
proposed to explain the evolutionary causes of positive selection
inferred for bam and bgcn. Some of these selective pressures also may
drive the adaptive evolution of other genes involved in GSC regula-
tion. Civetta et al. (2006) proposed that species-specific changes in
rates of proteolysis could drive protein sequence divergence. This
proposal was supported by the observation that bam’s expression is
transient and by previous studies in C. elegans that have shown that

transiently expressed genes have elevated rates of protein evolution
(Cutter and Ward 2005). Although this could influence the molecular
evolution of bam, and potentially bgcn which is also transiently
expressed (Ohlstein et al. 2000), it is unlikely to explain all selection
acting on GSC gene evolution since piwi, Yb, stwl, and nanos have
much broader patterns and timings of expression (Clark and
McKearin 1996; Forbes and Lehmann 1998; Cox et al. 2000; Szakmary
et al. 2009).

We had previously hypothesized that coevolution with external
pathogens infecting the germline could underlie the elevated non-
synonymous divergence in bam and bgcn along the D. melanogaster
and D. simulans lineages (Bauer DuMont et al. 2007). Two maternal-
ly-inherited bacterial endosymbionts (Wolbachia and Spiroplasma)
have been detected in some but not all species of Drosophila (Mateos
et al. 2006; Watts et al. 2009). Infection by Wolbachia can have
beneficial effects in some species by increasing resistance to viral
infections, which may explain their widespread presence (Chrostek
et al. 2013; Hedges et al. 2008; Teixeira et al. 2008). However,
Wolbachia infection can also reduce fecundity due to cytoplasmic in-
compatibilities in crosses between infected and uninfected individuals
(Fry et al. 2004). Overreplication of Wolbachia also has been linked to
shortening life-span and rupture of host cells (Min and Benzer
1997). There is likely to be a delicate balance in controlling endosym-
biont proliferation within a cell so that the host can receive benefits
from the endosymbiont but minimize any deleterious effects
(Chrostek et al. 2013). Maintaining such a balance could contribute
to an “arms race” between GSC regulatory genes and endosymbionts
(e.g., Werren 2005; Bauer DuMont et al. 2007).

The expression patterns and known pleiotropic functions of Yb,
piwi, stwl (Aravin et al. 2007; Brennecke et al. 2008; Clark and
McKearin. 1996; Maines et al. 2007) suggest that other pressures
may be acting on them. One possible selective pressure is intracellular
parasites such as transposons. Transposons are selfish genetic ele-
ments that can propagate throughout the genome, resulting in dele-
terious effects on their host. Recent studies demonstrated that many
taxa, including Drosophila, have a small RNA silencing pathway,
termed the piRNA pathway, that is active in the germline and pro-
vides an adaptive defense against transposons (Aravin et al. 2007).
Many piRNA pathway genes also have been shown to adaptively
evolve (Obbard et al. 2009; Kolaczkowski et al. 2011). piwi and Yb
are required for the proper silencing of transposons (Aravin et al.
2007; Olivieri et al. 2010; Saito et al. 2010). Therefore, the adaptive
evolution seen in these two proteins may reflect their involvement in
silencing transposons as previously suggested for piwi (Obbard et al.
2009; Kolaczkowski et al. 2011).

Additionally, it is possible that selective pressure to repress
transposons may be driving the adaptive evolution of stwl since some

n Table 4 MK tests of departures from a neutral model for eight GSC genes using polymorphism
within both D. melanogaster and D. simulans and fixed differences between species

Gene Synon Poly Synon Div Nonsyn Poly Nonsyn Div P-Value FDR adj P-Value

cyc A 17 14 4 6 0.414 0.4997
mei-P26 24 44 0 0 NA NA
nos 11 11 7 23 0.046 0.0663
piwi 84 54 26 22 0.416 0.4997
pum 77 51 11 5 0.506 0.5812
stwl 45 62 48 124 0.015 0.0245
Yb 86 62 80 149 0.00001 0.0010
zpg 53 14 6 4 0.230 0.2962

FDR adjusted P-values were determined as described in text. Significant results after FDR (P , 0.05) are in bold. MK,
McDonald-Kreitman; GSC, germline stem cell; FDR, false-discovery rate.
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other chromatin-associated proteins are involved in transposon silenc-
ing (Klattenhoff et al. 2009; Rangan et al. 2011). Species-specific
changes in life history and the timing of reproduction could also pose
changing selective pressures on the germline (Schmidt and Paaby
2008), though our limited knowledge of the ages of reproduction
for natural populations of Drosophila limits our ability to test this
hypothesis.

In the future, it will be important to test whether these positively
selected GSC genes function in the specific biological processes that
we hypothesize are driving their adaptive evolution. For example, do
bam or bgcn play a role in regulating the transmission of bacterial
endosymbionts, or does stonewall act in the repression of transposons?
Additional insight may come from sampling these genes from addi-
tional Drosophila species to determine whether they have experienced
a long-term selective pressure across many Drosophila or whether it is
specific to D. melanogaster and D. simulans.
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