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Abstract: Drug absorption is one of the critical factors that should be taken into account in the
process of drug discovery and development. The human colon carcinoma cell layer (Caco-2) model
has been frequently used as a surrogate to preliminarily investigate the intestinal absorption. In
this study, a quantitative structure–activity relationship (QSAR) model was generated using the
innovative machine learning-based hierarchical support vector regression (HSVR) scheme to depict
the exceedingly confounding passive diffusion and transporter-mediated active transport. The HSVR
model displayed good agreement with the experimental values of the training samples, test samples,
and outlier samples. The predictivity of HSVR was further validated by a mock test and verified by
various stringent statistical criteria. Consequently, this HSVR model can be employed to forecast the
Caco-2 permeability to assist drug discovery and development.

Keywords: intestinal absorption; intestinal permeability; human colon carcinoma cell layer (Caco-2);
hierarchical support vector regression (HSVR)

1. Introduction

Clinically, the majority of drugs are orally administered [1]. Prior to reaching the blood
circulation system, the administered pharmaceutical agents have to pass through the in-
testinal barrier via passive diffusion, active uptake, and/or efflux transport processes [2–4],
as illustrated by Figure 10.2 of Proctor et al. [2]. In passive diffusion, drug molecules
can permeate the epithelial cell layers through the transcellular pathway, in which they
penetrate through the cell membrane, or the paracellular pathway, in which they can cross
the epithelial cell layer through the tight junction between cells [5]. The significance of
active transporters on intestinal absorption has been detailed elsewhere [6]. Principally,
active transport can be modulated by the efflux transporters of the ATP-binding cassette
(ABC) family as well the influx transporters of the solute carrier (SLC) family [6], of which
the efflux transporters can pump the administrated drugs out of enterocytes, leading to
the reduction of the accumulated concentration, whereas the influx can enhance the in-
testinal uptake, resulting in the increased drug accumulation [7]. Of various active influx
and efflux transporters, P-glycoprotein (P-gp), also termed multidrug resistance 1 protein
(MDR1/encoded by ABCB1 gene), breast cancer resistance protein (BCRP/ABCG2), or-
ganic anion transporting polypeptide 2B1 (OATP2B1/SLCO2B1), and peptide transporter 1
(PEPT1/SLC15A1) play predominant roles in intestinal absorption [8].

Passive diffusion depends on a number of physicochemical properties, whereas active
transport relies on the characteristics of specific binding sites on the transport proteins [9].
The uncharged and modest hydrophobic drugs such as testosterone [10] can permeate
through the membrane. Conversely, it is very difficult for highly hydrophobic molecules
to get across cells, since they can be adhered to the membrane [5]. On the other hand,

Pharmaceutics 2021, 13, 174. https://doi.org/10.3390/pharmaceutics13020174 https://www.mdpi.com/journal/pharmaceutics

https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-9747-8697
https://orcid.org/0000-0002-6927-1517
https://doi.org/10.3390/pharmaceutics13020174
https://doi.org/10.3390/pharmaceutics13020174
https://doi.org/10.3390/pharmaceutics13020174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pharmaceutics13020174
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/1999-4923/13/2/174?type=check_update&version=2


Pharmaceutics 2021, 13, 174 2 of 26

hydrophilic drugs such as mannitol predominantly pass through the paracellular path-
way [10].

Of various drug absorption, distribution, metabolism, elimination, and toxicity
(ADME/Tox) properties, drug absorption plays a pivotal role in drug discovery, since
they substantially contribute to the earlier preclinical go/no-go decisions for the drug
candidates [10,11] to achieve the “fail fast, fail early” paradigm [12]. As such, numerous
in vivo and in situ assays have been developed to evaluate the intestinal absorption [13,14].
For instance, the in situ single-pass intestinal perfusion (SPIP) model measures the appear-
ance of the drug in plasma after intravenous and intraintestinal drug administration [13,15].
The drug is orally administrated or directly given into the intestine or stomach in some
animal species in in vivo assay [13,14,16].

In addition to in vivo and in situ assays, various in vitro assays have been devised,
since they have more advantages such as low cost and time efficiency as compared with
their in situ and in vivo counterparts [15]. Of various in vitro assays to evaluate intestinal
absorption, human colon carcinoma monolayer cells (Caco-2) [3], parallel artificial mem-
brane permeability (PAMPA) [17,18], and Madin–Darby canine kidney cells (MDCK) [19]
are most frequently used. In fact, a comprehensive drug absorption profile should include
the Caco-2, MDCK, and PAMPA permeability data to explore drug solubility and bioavail-
ability [20]. Moreover, Caco-2, which can be adopted to evaluate the drug permeability
through the cytoplasm (transcellular uptake) or between cells (paracellular uptake) and
active transport [6], has become the golden standard for predicting intestinal drug perme-
ability and absorption because of its similarity in morphology and function with human
enterocytes [21–23]. The Caco-2 protocol has been clearly described in detail by Hubatsch
et al. As compared with the biological membrane, the Caco-2 system still suffers from a
range of disadvantages such as high technical complexity, the limitations related to the
differences between cell monolayers and intestinal membrane structurally and function-
ally [24], in addition to its long culture periods (21-24 days) with the significantly extensive
costs, contributing to the major concerns in practical applications [21,25].

The Caco-2 permeability is normally expressed by the apparent permeability co-
efficient (Papp), in which the drug solution is added to the apical side, viz. the donor
compartment, and the Papp value in the basolateral side, viz. the receiver compartment, is
measured [23]

Papp =
dQ
dt
× 1

(A× C0)
(1)

where dQ/dt is the linear appearance rate of mass in the receiver solution transported
during sink conditions, A is the membrane surface area, and C0 is the initial concentration at
the donor compartment [26]. However, it is not uncommon to observe in vitro permeability
variations among different from research groups, because the cultured cells can vary based
on culture conditions, passage number, monolayer age, seeding density, and stage of
differentiation [27,28], as exemplified by those compounds listed in Table 3 of Lee et al. [29].
Furthermore, Yamashita et al. have found that the different pH values of apical medium
and the different solvents can produce different drug absorption values [30]. For instance,
the Papp values of alprenolol are (6.06 ± 0.18) × 10-6 cm/s and (30.0 ± 1.8) × 10-6 cm/s at
pH 6.0 and pH 7.4, respectively. More examples of Papp variations at different pH values
can be found in Table 1 of Yamashita et al. [30].

In silico technologies have become an essential component in drug discovery and
development according to the fact that they can provide guidance in the early stages in
the drug discovery process such as the activity classification (high/moderate/poor) or
quantitative predictions [31,32]. As such, a great number of in silico models have been
established to predict the ADME/Tox properties [33]. The relationship between biological
activity and chemical characteristics can be established by quantitative structure–activity
or structure–property relationships (QSAR and QSPR) [34]. Numerous QSAR models have
been generated to predict Caco-2 permeability based on a variety of physicochemical and
physiological descriptors [35–51]. Nevertheless, the difficulties in developing sound in
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silico models to predict the intestinal permeability still remain unanswered mainly due to
the fact that Caco-2 permeability is a dramatically perplexing process that can take place
through numerous non-linear routes (vide supra).

More specifically, the ABC transporters, which are efflux transporters, can reduce
the drug absorption, whereas the SLC transporters, which are influx transporters, can
enhance the drug uptake, leading to the decrease and/or increase of drug absorption,
respectively. In fact, such controversy can establish a paramount barrier in model devel-
opment. For instance, the number of aromatic rings (nAr) can enhance the compound
hydrophobicity [52] and facilitate the passive diffusion consequently. Conversely, nAr is
also an important feature for P-gp substrate recognition and modulates the compound
efflux correspondingly [53]. Thus, nAr can simultaneously affect the active efflux and
passive diffusion.

It is exceedingly difficult, if not nearly impossible, to derive a robust in silico model,
which can properly render the complex relationships between the selected descriptors and
Caco-2 permeability. However, the hierarchical support vector regression (HSVR) scheme,
which is an innovative machine learning-based scheme initially developed by Leong
et al. [54], can properly address the complicated and varied dependencies of descriptors
that, in turn, can be greatly contributed to its advantageous features of both a local model
and a global model, namely wider coverage of applicability domain (AD) and a higher
capability of prediction, respectively. When comparing with most theoretical models, which
are vulnerable to the outliers that represent mathematic extrapolations, HSVR can still
show consistent performance, as demonstrated elsewhere [1,54–57]. Herein, the objective
of this study was to develop an in silico model based on the HSVR scheme to predict Caco-2
permeability in conjunction with previously published PAMPA permeability, intestinal
absorption, and MDCK efflux in silico models [1,55,57] to facilitate drug discovery and
development, since medicinal chemists can employ these models to predict the drug
absorption of (virtual) hit compounds as well as drug metabolism and pharmacokinetics
(DM/PK) scientists can adopt these models to prioritize the lead compounds.

2. Materials and Methods
2.1. Data Collection

The Papp values were collected from the various sources after a comprehensive litera-
ture search [22,23,58–66]. Assay systems were carefully scrutinized to ensure data consis-
tency, since various assay conditions such as pH value and solvent system, for example, can
affect the Caco-2 permeability [30]. Only Papp values, which were measured in the Hank’s
balanced salt solution (HBSS) buffer and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES) including ca. 1% dimethylsulfoxide (DMSO) at pH 7.4 were chosen in
this study. The average Papp value was selected to warrant better consistency in case
there was more than one Papp value for a given compound within a near range. Finally,
144 compounds were chosen in this study and their corresponding logarithm Papp values,
simplified molecular input line entry system (SMILES) strings, Chemical Abstracts Service
(CAS) registry numbers, and references to the literature are listed in Table S1.

2.2. Molecular Descriptors

The density functional theory (DFT), Becke 3-parameter Lee–Yang–Parr (B3LYP)
method was employed to do full geometry optimization by the Gaussian package (Gaus-
sian, Wallingford, CT, USA) for all recruited samples with the selection of basis set 6-31G
(d,p). The solvent system was taken into consideration by the polarizable continuum model
(PCM) [67,68]. The atomic charges, upon which the dipole moments depend, were cal-
culated by the molecular electrostatic potential (MEP) [69]. The frontier orbitals energies,
namely the highest occupied molecular orbital energy (EHOMO) and the lowest unoccupied
molecular orbital energy (ELUMO), molecular dipole (µ), as well as the maximum absolute
component of µ (|µ|max) were also recovered from the optimization calculations.
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In total, more than 100 descriptors, which feature one-, two-, and three-dimensional
ones and can be categorized into a variety of classes consisting of topological descriptors,
electronic descriptors, thermodynamic descriptors, structure descriptors, spatial descrip-
tors, and E-state indices, were enumerated by Discovery Studio (BIOVIA, San Diego, CA,
USA) and E-Dragon (available at the website http://www.vcclab.org/lab/edragon/). The
logarithm of the n-octanol–water partition coefficient at pH 7.4 (log P) was calculated by
XLOGP3 of SwissADME (available at the website http://www.swissadme.ch/index.php).
Furthermore, the cross-sectional area (CSA), which has been implicated in membrane
permeability [70,71], was calculated using the method modified by Muehlbacher et al. [72].
The collected compounds were divided into 4 ion classes [73], namely zwitterion, base,
acid, and neutral ions according to their pKa values. The neutral ions only have one pKa
value, the zwitterion ions are those whose strongest acidic pKa values are larger than 7 and
the strongest basic ones are smaller than 7, the acidic ions have all their pKa values smaller
than 7, whereas the basic ions have all their pKa values larger than 7.

2.3. Descriptor Selection

Descriptor selection was initially executed by removing those descriptors missing
more than one molecule or displaying little or no distinction among all molecules. Further-
more, the Spearman’s matrix between calculated descriptors was constructed to minimize
the chance of spurious correlations, and those descriptors with intercorrelation values of
r2 > 0.80 were discarded, since the threshold was proposed by Topliss and Edwards [74].
In this study, a more conservative value of r2 ≥ 0.64 was taken to further ensure the quality
of derived models.

Descriptor values can span a wide range due to their diverse nature (vide supra). It is
of necessity to transfer descriptors into a more consistent range to decrease the chance of
descriptors with broader ranges overriding those with narrower ranges [75]. Accordingly,
descriptors were subjected to normalization by centering and scaling

x̂ij =
xij −

〈
xj
〉

√
∑n

i=1
(
xij −

〈
xj
〉)2/(n− 1)

(2)

where xij and x̂ij symbolize the jth original and normalized descriptors of the ith molecule,
respectively;

〈
xj
〉

is the average value of the original jth descriptor; and n is the number
of molecules.

The descriptor selection is of pivotal importance in the performance of QSAR mod-
els [76]. Thus, genetic function approximation (GFA) bundled in the QSAR module of
Discovery Studio was used for the initial descriptor because of its effectiveness and effi-
ciency [77]. The recursive feature elimination (RFE) scheme was adopted for additional
selection, in which the model was repeatedly generated by all but one descriptor. The
descriptor, which had the less contribution in predictive performance, was removed after
ranking their contributions [78].

2.4. Dataset Selection

It is not uncommon to identify the outliers and remove them from data collection
for model development [79]. As such, outliers were recognized by inspecting molecular
distribution in the chemical space [80], which was created by principal components (PCs)
using the Diverse Molecules/Principal Component Analysis embedded in Discovery
Studio, followed by discovering the outliers.

The remaining molecules were arbitrarily allocated into the training set and test set
with an about 4:1 portion as recommended [81] to generate and verify the built model,
respectively, using the Diverse Molecules/Library Analysis function within Discovery
Studio. Golbraikh et al. have postulated that a sound model can be resulted only when
both samples in the training set and test set can show high levels of chemical and biological

http://www.vcclab.org/lab/edragon/
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similarity [82]. Thus, the data distributions in the training and test set were carefully
checked to ensure the high similarity degrees biologically and chemically in both datasets.

2.5. Hierarchical Support Vector Regression

Leong et al. originally invented HSVR [54] which was evolved from support vector
machine (SVM) proposed by Vapnik et al. [83]. Initially, SVM was designed for classifi-
cation only and the regression function, termed as support vector regression (SVR), was
introduced later [84]. HSVR has a higher level of predictivity and broader applicability
domain (AD) as compared with SVR, since it can seamlessly combine the advantages of the
local model and global model [56]. More significantly, the superiority of HSVR has been
revealed by some studies [1,54–57].

The theory and fulfillment of HSVR have been delineated in detail elsewhere, and
the schematic presentation of HSVR can be depicted by Figure 1 of Leong et al. [54].
Basically, an SVR ensemble (SVRE) is used to build an HSVR model, and SVR models
in the ensemble are generated from different descriptor combinations and function as
local models with their own ADs. Briefly, the svm-train module in LIBSVM (software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/) was employed to build various
SVR models using those samples in the training set with different descriptor combinations
and SVR run conditions. The module svm-predict in LIBSVM was adopted to validate
the produced SVR models using the samples in the test set. Radial basis function (RBF)
was the designated kernel function due to its simplicity and better functionality [85]. Both
ε-SVR and ν-SVR regression functions were tested. The SVR runtime conditions including
ε-SVR and ν-SVR, their associated ε and ν, the kernel width γ, and cost C were tuned by
the grid-search technique.
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bution of the data samples in the training set (solid circle), test set (gray square), and outlier set
(open triangle).

According to the principle of Occam’s razor, i.e., the principle of parsimony, the
number of descriptors selected to build SVR models should be minimized as much as
possible. This principle was also applied to the construction of SVRE, which demanded
the minimum number of ensemble members [86]. Initially, the combinations of two SVR
models were adopted to generate the HSVR model; this process was repeated until the
production of a predictive HSVR. Otherwise, the combinations of three- or even four-
member SVRE were used to develop the HSVR models if the two-SVR ensembles failed to
perform well.

Figure 1. The chemical space spanned by three principle components (PCs) displays the distri-
bution of the data samples in the training set (solid circle), test set (gray square), and outlier set
(open triangle).

According to the principle of Occam’s razor, i.e., the principle of parsimony, the
number of descriptors selected to build SVR models should be minimized as much as
possible. This principle was also applied to the construction of SVRE, which demanded
the minimum number of ensemble members [86]. Initially, the combinations of two SVR
models were adopted to generate the HSVR model; this process was repeated until the
production of a predictive HSVR. Otherwise, the combinations of three- or even four-
member SVRE were used to develop the HSVR models if the two-SVR ensembles failed to
perform well.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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2.6. Predictive Evaluation

The residual yielded by the difference between the observed value (yi) and the
predicted value (ŷi) for the ith molecule was computed based on the following equation:

∆i = yi − ŷi (3)

In addition, standard deviation (s), maximum residual (∆Max), root mean square error
(RMSE), and mean absolute error (MAE) in a dataset with n samples were evaluated.

RMSE =

√
n

∑
i=1
42

i /n (4)

MAE =
1
n

n

∑
i=1

∣∣∣∣∣∆i

∣∣∣∣∣ (5)

Various statistic metrics were adopted to evaluate the produced models. The squared
correlation coefficients including r2 and q2 in the training set and external set, respectively,
were computed by the following equation.

r2, q2 = 1−
n

∑
i=1

(ŷi − yi)
2/

n

∑
i=1

(yi − 〈ŷ〉)2 (6)

where 〈ŷi〉 represents the average predicted value, and n is the number of samples in
the dataset. The derived models were subjected to the 10-fold cross-validation using the
function embedded in LIBSVM to give rise to the squared correlation coefficient of 10-fold
cross-validation q2

CV. Another internal validation was carried out by the Y-scrambling
test [87], in which the log Papp values were randomly permuted and then reapplied to the
previous developed model without altering the descriptors. This process was repeated
25 times as suggested [87] to generate the average squared correlation coefficient

〈
r2

s
〉
.

The external dataset was evaluated predictivity by the squared correlation coeffi-
cients q2

F1, q2
F2, and q2

F3, and the concordance correlation coefficient (CCC) [88–93] using
QSARINS [94,95].

q2
F1 = 1−

nEXT

∑
i=1

(yi − ŷi)
2/

nEXT

∑
i=1

(yi − 〈yTR〉)2 (7)

q2
F2 = 1−

nEXT

∑
i=1

(yi − ŷi)
2/

nEXT

∑
i=1

(yi − 〈yEXT〉)2 (8)

q2
F3 = 1−

[
nEXT

∑
i=1

(yi − ŷi)
2/nEXT

]
/

[
nEXT

∑
i=1

(yi − 〈yTR〉)2/nTR

]
(9)

CCC =

2
nEXT
∑

i=1
(yi − 〈yEXT〉)(ŷi − 〈ŷEXT〉)

nEXT
∑

i=1
(yi − 〈yEXT〉)2 +

nEXT
∑

i=1
(ŷi − 〈ŷEXT〉)2 + nEXT(〈yEXT〉 − 〈ŷEXT〉)2

(10)

where 〈yTR〉 is the averaged observed values in the training set, 〈yEXT〉 and 〈ŷEXT〉 are the
averaged observed and predicted values in the external set, respectively; nTR and nEXT
stand for the numbers of samples in the training set and external set, respectively.

In addition, some modified squared correlation coefficients r2 were estimated [96,97]

r2
m = r2

(
1−

√
|r2 − r2

o |
)

(11)

r′2m = r2

(
1−

√∣∣∣r2 − r′2o
∣∣∣
)

(12)



Pharmaceutics 2021, 13, 174 7 of 26

〈
r2

m

〉
=
(

r2
m + r′2m

)
/2 (13)

∆r2
m =

∣∣∣r2
m − r′2m

∣∣∣ (14)
(

r2 − r2
o

)
/r2 < 0.10 and 0.85 ≤ k ≤ 1.15. (15)

To externally evaluate the predictivity of the generated models, the most stringent crite-
ria validation values jointly proposed by Golbraikh et al. [82], Ojha et al. [96], Roy et al. [98],
and Chirico and Gramatica [89] were adopted

r2, q2
CV, q2, q2

Fn ≥ 0.70 (16)
∣∣∣r2 − q2

CV

∣∣∣ < 0.10 (17)
∣∣∣r2

0 − r′20
∣∣∣ < 0.30 (18)

r2
m ≥ 0.65 (19)

〈
r2

m

〉
≥ 0.65 and ∆r2

m < 0.20 (20)

CCC ≥ 0.85 (21)

where r2 in Equations (15) and (18)-(20) symbolize r2 and q2 in the training set and external
set, respectively. The q2

Fn in Equation (16) stands for q2
F1, q2

F2, and q2
F3.

3. Results
3.1. Dataset Selection

Of all the molecules enrolled in this study, 104 and 26 molecules were randomly
selected as the training set and test set, respectively, giving rise to a ca. 4:1 ratio as
suggested [81]. The chemical space with the projection of all molecules is displayed in
Figure 1. Three principle components (PCs), which accounted for 97.94% of the variance in
the original data, were used to create the chemical space. This figure shows that samples
in the training set and test set had similar distribution in the chemical space. The high
levels of the biological and chemical similarity between both datasets can be illustrated by
the histograms of log Papp, molecular weight (MW), surface area (SA), polar surface area
(PSA), number of hydrogen bond acceptor (HBA), number of hydrogen bond donor (HBD),
and n-octanol-water partition coefficient (log P) in the density form (Figure S1). Thus, it is
plausible to assert that the substantial bias did not appear in the data partition.

It is of great significance to characterize the AD of the predictive model and to ex-
clude the outliers from data collection [94]. Various methods to detect outliers have been
proposed [99]. The scheme based on the chemical similarity/dissimilarity using principle
component analysis (PCA) was adopted in this study [94]. Accordingly, 14 molecules were
specified as outliers, which are substantially dissimilar to those ones in both the training
and test sets, as shown in the chemical space (Figure 1), from which it can be observed that
they are located far from the others. The distinction between the outliers and the others
can be actually recognized by the fact that they contain more than nine rings or more than
12 HBAs as compared with the other molecules.

3.2. SVR Models

Numerous SVR models were generated using different descriptor combinations and
runtime conditions. Three SVR models, coined as SVR A, SVR B, and SVR C, were
assembled to establish the SVR ensemble, which was successively utilized to generate the
HSVR model by another SVR. The optimal runtime conditions of SVR A, SVR B, SVR C,
and HSVR are listed in Table S2.

SVR A, SVR B, and SVR C adopted five, five, and seven descriptors, respectively,
with different combinations (Table 1). These SVR models in the ensemble were assembled
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according to their performances on the molecules and statistical assessments in the training
set and test set. Their runtime conditions and their predicted log Papp values are listed in
Tables S1 and S2, respectively. Tables 2 and 3 record their associated statistical evaluations
in the training set and test set, respectively.

Table 1. The list of ensemble support vector regression (SVR) models and their descriptors, the correlation coefficient (r)
with Papp, and their descriptions.

Descriptor SVR A SVR B SVR C r Description

log P X † X 0.15 Logarithm of the n-octanol-water partition coefficient
nAr X −0.07 Number of aromatic rings
PSA X X −0.56 Polar surface area

µ X −0.27 Dipole moment
|µ|max X X −0.08 The maximum dipole component

α X −0.34 Sum of atomic polarizabilities over all the molecule atoms
nRing X −0.31 Number of rings
Vm X −0.35 Molecular volume
nRot X −0.21 Number of rotatable bonds in a molecule
HBD X X −0.40 Number of hydrogen-bond donors

pKa(Max) X X −0.13 The maximum pKa for a molecule
ion class X N/A‡ Four classes are separated by the pKa of molecules

† Selected. ‡ Not applicable.

Table 2. Statistic metrics including r2, ∆Max, mean absolute error (MEA), s, root mean square error
(RMSE), q2

CV, and
〈
r2

s
〉

assessed by support vector regression (SVR) A, SVR B, SVR C, and hierarchical
support vector regression (HSVR) in the training set.

Statistic Metrics SVR A SVR B SVR C HSVR

r2 0.69 0.77 0.76 0.91
∆Max 1.31 1.19 1.66 0.98
MAE 0.28 0.17 0.17 0.1

s 0.25 0.28 0.29 0.18
RMSE 0.38 0.32 0.33 0.2

q2
CV 0.16 0.19 0.21 0.81〈
r2

s
〉

0.05 0.03 0.03 0.03

Table 3. Statistic metrics including q2, q2
F1, q2

F2, q2
F3 CCC, ∆Max, MAE, s, and RMSE assessed by SVR

A, SVR B, SVR C, and HSVE in the test set.

Statistic Metrics SVR A SVR B SVR C HSVR

q2 0.50 0.58 0.60 0.75
q2

F1 0.42 0.58 0.59 0.71
q2

F2 0.41 0.57 0.59 0.71
q2

F3 0.30 0.50 0.50 0.70
CCC 0.62 0.74 0.77 0.85
∆Max 1.27 1.06 0.88 0.72
MAE 0.42 0.35 0.39 0.33

s 0.35 0.31 0.23 0.20
RMSE 0.54 0.46 0.45 0.38

The observed versus the predicted log Papp values by SVR A, SVR B, SVR C, and
HSVR are displayed by the scatter plot in Figure 2, from which it can be observed that SVR
A, SVR B, and SVR C predicted the observed values well for the majority of the molecules
in the training set, producing small MAE and s values consequently (Table 2). Moreover,
it can be found from Figure 2 that the points predicted by SVR B are generally closer to
the regression line than SVR A and SVR C. SVR B, consequently, gave rise to the lowest
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∆Max (1.19), MAE (0.17), and RMSE (0.32), and the largest r2 (0.77), suggesting that SVR B
performed marginally better than SVR A and SVR C in the training set.
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when subjected in Y-scrambling. These near zero values suggest that there is an almost
zero chance correlation associated with those SVR models [87].

The predicted values by SVR A, SVR B, and SVR C are in moderate agreement with
the observed values for those test molecules depicted by Figure 3, which shows the scatter
plot of observed versus the log Papp predictions by SVR A, SVR B, SVR C, and HSVR for
those samples in the test set. The MAE values generated by SVR A, SVR B, and SVR C
increase from 0.28, 0.17, and 0.17 in the training set to 0.42, 0.35, and 0.39 in the test set,
respectively (Table 3). RMSE along with the other statistic values also reveal deteriorating
performances of these models in SVRE from the training set to the test set (Tables 2 and 3).
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Figure 2. Observed log Papp versus the log Papp predicted by SVR A (gray circle), SVR B (gray triangle), SVR C (open
diamond), and HSVR (solid square) for the training samples. The solid, dashed, and dotted lines represent to the
HSVR regression of the data, 95% confidence intervals for the HSVR regression, and 95% confidence intervals for the
prediction, respectively.

Furthermore, the difference between r2 and q2
CV evaluated by SVR B was 0.58 when

subjected to the leave-one-out cross-validation, indicating that SVR B was over-trained
which, in turn, can severely limit its application. Over-training was also associated with
SVR A and SVR C as manifested by their extremely low q2

CV values. The
〈
r2

s
〉

values
produced by SVR A, SVR B, and SVR C were 0.05, 0.03, and 0.03 (Table 2), respectively,
when subjected in Y-scrambling. These near zero values suggest that there is an almost
zero chance correlation associated with those SVR models [87].

The predicted values by SVR A, SVR B, and SVR C are in moderate agreement with
the observed values for those test molecules depicted by Figure 3, which shows the scatter
plot of observed versus the log Papp predictions by SVR A, SVR B, SVR C, and HSVR for
those samples in the test set. The MAE values generated by SVR A, SVR B, and SVR C
increase from 0.28, 0.17, and 0.17 in the training set to 0.42, 0.35, and 0.39 in the test set,
respectively (Table 3). RMSE along with the other statistic values also reveal deteriorating
performances of these models in SVRE from the training set to the test set (Tables 2 and 3).
Moreover, the q2 values produced by SVR A, SVR B, and SVR C were 0.50, 0.58, and 0.60 in
the test set, respectively, which are much less than their r2 counterparts in the training set.
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The prediction performances of those SVR models in the SVRE were significantly
decreased when applied to those samples in the outlier set as suggested by the statistical
metrics listed in Table 4. For example, SVR A, SVR B, and SVR C yielded the q2
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of −0.18, −0.41, and 0.16, respectively, which are substantially smaller than the r2 values
in the training set and the q2

F2 values in the test set (Tables 2 and 3). Furthermore, the
distances between the points and the regression line in the outlier set were much greater
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Table 4. Statistic metrics including q2, q2
F1, q2

F2, q2
F3, CCC, ∆Max, MAE, s, and RMSE assessed by SVR

A, SVR B, SVR C, and HSVE in the outlier set.

Statistic Metrics SVR A SVR B SVR C HSVR

q2 0.45 0.36 0.40 0.76
q2

F1 0.75 0.70 0.82 0.95
q2

F2 −0.18 −0.41 0.16 0.76
q2

F3 0.39 0.27 0.56 0.87
CCC 0.49 0.56 0.58 0.87
∆Max 1.58 0.91 0.82 0.49
MAE 0.35 0.47 0.16 0.17

s 0.41 0.34 0.56 0.17
RMSE 0.52 0.57 0.58 0.24

Figure 3. Observed log Papp versus the log Papp predicted by SVR A (gray circle), SVR B (gray triangle), SVR C (open
diamond), and HSVR (solid square) for the test samples. The solid, dashed, and dotted lines represent the HSVR regression
of the data, 95% confidence intervals for the HSVR regression, and 95% confidence intervals for the prediction, respectively.

The prediction performances of those SVR models in the SVRE were significantly
decreased when applied to those samples in the outlier set as suggested by the statistical
metrics listed in Table 4. For example, SVR A, SVR B, and SVR C yielded the q2

F2 values
of −0.18, −0.41, and 0.16, respectively, which are substantially smaller than the r2 values
in the training set and the q2

F2 values in the test set (Tables 2 and 3). Furthermore, the
distances between the points and the regression line in the outlier set were much greater
than those in the training set shown in Figure 4. As such, it can be asserted that those three
models in the SVRE are vulnerable to the outliers that, actually, are not uncommon for
most predictive models [100].

Table 4. Statistic metrics including q2, q2
F1, q2

F2, q2
F3, CCC, ∆Max, MAE, s, and RMSE assessed by SVR

A, SVR B, SVR C, and HSVE in the outlier set.

Statistic Metrics SVR A SVR B SVR C HSVR

q2 0.45 0.36 0.40 0.76
q2

F1 0.75 0.70 0.82 0.95
q2

F2 −0.18 −0.41 0.16 0.76
q2

F3 0.39 0.27 0.56 0.87
CCC 0.49 0.56 0.58 0.87
∆Max 1.58 0.91 0.82 0.49
MAE 0.35 0.47 0.16 0.17

s 0.41 0.34 0.56 0.17
RMSE 0.52 0.57 0.58 0.24
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3.3. HSVR Model

The HSVR model was generated by the regression of SVRE according to the predictions
of all molecules and statistical assessments in the training set (Table S1 and Table 2), and
its runtime parameters are recorded in Table S2. HSVR commonly predicted better than
SVR A, SVR B, and SVR C for the samples in the training set, as demonstrated by Figure 2,
from which it can be noticed that most of predictions by HSVR lie in the range between the
largest and the smallest ones predicted by those models in the SVRE. HSVR can improve the
predictions in some cases. For instance, the prediction of compound 101 (omeprazole) by
HSVR yielded an absolute residual of 0.02, whereas SVR A, SVR B, and SVR C produced the
absolute errors of 0.34, 1.10, and 0.18, respectively (Table S1). In addition, HSVR produced
the highest r2 (0.91) and q2

CV(0.81) and the lowest ∆Max (0.98), MAE (0.10), s (MAE), and
RMSE (0.20) values when compared with those models in the SVRE, suggesting that HSVR
statistically performed better SVR A, SVR B, and SVR C in the training set. Furthermore,
HSVR gave rise to a

〈
r2

s
〉

value of 0.03, indicating that it is least possible that HSVR was
created by chance correlation [87].

When applied to the test molecules, marginal performance deteriorations can be
found for HSVR. For example, s increased from 0.18 in the training set to 0.20 in the
test set (Tables 2 and 3). However, ∆Max dropped from 0.98 in the training set to 0.72 in
the test set. HSVR still executed better than SVR A, SVR B, and SVR C in the test set
as shown in Figure 3. The other statistical parameters listed in Table 3 also assert the
performance dominance of HSVR. For instance, the q2 values were 0.50, 0.58, 0.60, and
0.75 generated by SVR A, SVR B, SVR C, and HSVR, respectively. Similarly, HSVR also
produced smaller absolute deviations than its counterparts in the SVRE in the test set. For
example, the absolute residuals of compound 36 (clozapine) were 0.35, 0.54, 0.35, and 0.03
yielded by SVR A, SVR B, SVR C, and HSVR, respectively (Table S1). HSVR generally
produced consistent and small deviations in both training and test sets as asserted by those
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3.3. HSVR Model

The HSVR model was generated by the regression of SVRE according to the predictions
of all molecules and statistical assessments in the training set (Table S1 and Table 2), and
its runtime parameters are recorded in Table S2. HSVR commonly predicted better than
SVR A, SVR B, and SVR C for the samples in the training set, as demonstrated by Figure 2,
from which it can be noticed that most of predictions by HSVR lie in the range between the
largest and the smallest ones predicted by those models in the SVRE. HSVR can improve the
predictions in some cases. For instance, the prediction of compound 101 (omeprazole) by
HSVR yielded an absolute residual of 0.02, whereas SVR A, SVR B, and SVR C produced the
absolute errors of 0.34, 1.10, and 0.18, respectively (Table S1). In addition, HSVR produced
the highest r2 (0.91) and q2

CV(0.81) and the lowest ∆Max (0.98), MAE (0.10), s (MAE), and
RMSE (0.20) values when compared with those models in the SVRE, suggesting that HSVR
statistically performed better SVR A, SVR B, and SVR C in the training set. Furthermore,
HSVR gave rise to a

〈
r2

s
〉

value of 0.03, indicating that it is least possible that HSVR was
created by chance correlation [87].

When applied to the test molecules, marginal performance deteriorations can be
found for HSVR. For example, s increased from 0.18 in the training set to 0.20 in the
test set (Tables 2 and 3). However, ∆Max dropped from 0.98 in the training set to 0.72 in
the test set. HSVR still executed better than SVR A, SVR B, and SVR C in the test set
as shown in Figure 3. The other statistical parameters listed in Table 3 also assert the
performance dominance of HSVR. For instance, the q2 values were 0.50, 0.58, 0.60, and
0.75 generated by SVR A, SVR B, SVR C, and HSVR, respectively. Similarly, HSVR also
produced smaller absolute deviations than its counterparts in the SVRE in the test set. For
example, the absolute residuals of compound 36 (clozapine) were 0.35, 0.54, 0.35, and 0.03
yielded by SVR A, SVR B, SVR C, and HSVR, respectively (Table S1). HSVR generally
produced consistent and small deviations in both training and test sets as asserted by those
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parameters listed in Tables 2 and 3 in comparison with its counterparts in the SVRE. More
importantly, the HSVR model generated the largest q2 (0.75) in the test set and the smallest
difference between r2 and q2

CV (0.10), suggesting that it is less likely that HSVR model was
over-trained or over-fitted.

HSVR even displayed better performance than the SVR models in the ensemble in the
outlier set as depicted by those statistical assessments listed in Table 4. The HSVR model
generated the largest q2 value (0.76) and yet SVR A, SVR B, and SVR C yielded 0.45, 0.36,
and 0.40, respectively. The superiority of HSVR in the outlier set can also be assured by
the other statistical parameters, which is mainly due to the broader application domain of
HSVR when compared with its counterparts in the ensemble. That robust HSVR feature
makes it more utilizable in practical applications [101].

3.4. Predictive Evaluations

The scatter plot of residual versus the log Papp prediction by HSVR for the training,
test, and outlier samples is shown in Figure 5, from which it can be found that the residuals
are commonly situated on both sides of x-axis along with the prediction range in those
three datasets, suggesting that it is least likely that systematic error is associated with
HSVR. Additionally, the training set, test set, and outlier set had the average residuals of
0.02, −0.13, and 0.06, respectively (Table S1), denoting that there is no biased prediction
by HSVR.
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Table 5 lists the results when the developed HSVR model was further subjected to
the most stringent validation criteria collectively recommended by Golbraikh et al. [82],
Ojha et al. [96], Roy et al. [98], and Chirico and Gramatica [89] in the three datasets
(Equations (15)–(21)). It can be observed that HSVR completely met those proposed
validation requirements in addition to the fact that HSVR exhibited a similar degrees of
performance in the training set, test set, and outlier set. As such, it can be asserted that
HSVR is an extremely accurate and predictive theoretical model.

Table 5. Validation verification of HSVR based on prediction performance of the training, test, and
outlier samples.

Validation
Verification Training Set Test Set Outlier Set

r2
0 0.91 0.75 0.75
k 1.01 0.86 0.93

r′20 0.91 0.68 0.71
r2

m 0.84 0.71 0.68
r′2m 0.91 0.75 0.76〈
r2

m
〉

0.87 0.73 0.72
∆r2

m 0.06 0.04 0.08
r2 ≥ 0.70 X † X X

Equation (15) X X X
Equation (16) X N/A N/A
Equation (17) X X X
Equation (18) X X X
Equation (19) X X X
Equation (20) X X X
Equation (21) N/A ‡ X X

† Fulfilled; ‡ Not applicable.

3.5. Mock test

To verify the practical applicability of the generated HSVR model, this model was
applied to those drugs measured by Yamashita et al. [30]. There were eight compounds
commonly adopted by this study and Yamashita et al., furnishing a sound way to calibrate
the challenging system. However, Yamashita et al. assayed the Papp values at pH 6.0,
instead of pH 7.4 used by those compounds collected in this study, suggesting that some
Papp variations can be resulted from both systems (vide supra). These discrepancies make
those drugs assayed by Yamashita et al. not appropriate as the second external dataset or
the test set because those validation criteria listed in Table 5 cannot be applied to those
drugs. The relationship between both different experimental conditions was initially
constructed for those eight common compounds, and the resulting scatter plot is exhibited
in Figure 6, from which it can be found that both assay systems were reasonably correlated
with each other with an r value of 0.86), suggesting that this HSVR can be adopted to
predict those novel compounds measured by Yamashita et al.

Figure 7 shows the predicted results of seven novel drugs in the mock test. The
correlation coefficient r value between the predicted log Papp (pH 7.4) and observed
log Papp (pH 6.0) was 0.86, suggesting that the HSVR model can nearly reproduce the
experimental results. In addition, the produced p-value was <0.05. This mock test ensured
the predictive ability of generated HSVR when applied to the novel compounds with
different experimental conditions.
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3.6. Classification

It is of interest to verify the qualitative predictivity of HSVR, since a number of
qualitative models have been published [25,102]. Accordingly, compounds enlisted in this
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study were classified as Caco-2 permeable (Caco-2+) and Caco-2 impermeable (Caco-2-)
based on the threshold value of Papp (8 × 10 -6 cm/s) as suggested [25,102]. Initially,
the confusion matrix was constructed (Table S3), and the Cooper statistics and Kubat’s G-
mean [103] (Table S4) were employed to qualitatively evaluate the predictivity of HSVR. The
results were also compared with predictions made by admetSAR [104] (available at website:
http://lmmd.ecust.edu.cn/admetsar2/), since admetSAR has been adopted by DrugBank
(available at: https://go.drugbank.com/) to qualitatively predict Caco-2 permeability.
The results are listed in Table 6, from which it can be asserted that HSVR outperformed
admetSAR in every aspect. For instance, the parameter accuracy was 93.1% produced by
HSVR, which is substantially higher than that generated by admetSAR (50.7%). The metric
MCC is the most distinction between HSVR and admetSAR (85.0% vs. −8.0%). Thus, it can
be asserted that HSVR is also an accurate and predictive qualitative predictive model.

Table 6. Statistical parameters of qualitative predictions by HSVR and admetSAR.

Statistical Parameters HSVR admetSAR

Se 90.0% 32.0%
Sp 94.7% 60.6%

Acc 93.1% 50.7%
PP 90.0% 30.2%
NP 94.7% 62.6%

MCC 85.0% −8.0%
G-mean 92.3% 44.1%

F-measure 90.0% 31.1%
κ 85.0% −8.0%

4. Discussion

Caco-2 has been commonly adopted to predict the intestinal permeability in the
process of drug discovery because of its morphological and functional similarity with
human enterocytes [105]. The mechanism of Caco-2 permeation is rather complex, since
it can take place through passive diffusion, which can go through the paracellular and
transcellular routes and active transport. The passive diffusion is predominately governed
by the concentration gradient, and most hydrophilic drugs prefer to penetrate between
cells in a paracellular fashion, whereas hydrophobic drugs are inclined to get across the
cells via the transcellular route. Drugs that can permeate the Caco-2 cells by the active
transport can interact with the influx and/or efflux transporters expressed on the cell
surface [106]. As such, Caco-2 permeability is affected by some physicochemical and
physiological properties [106].

Hydrophobicity or lipophilicity plays an important role in passive diffusion through
membranes as well as the drug–receptor interactions [17,107,108]. In addition, hydropho-
bicity, which can represent by the n-octanol-water partition coefficient, viz. log P, is also
an important factor affecting the interaction between the molecules and the target protein,
since more lipophilic molecules tend to have stronger interactions with both target protein
and biological membrane. Therefore, the very lipophilic molecules have poor oral absorp-
tion from the stomach [107,109]. Polar and hydrophobic drug must penetrate through the
Caco-2 cell membrane [17,110]. In addition, it has been observed that log P, hydrogen
bond propensity, weight, and volume are closely related with Papp [43]. As such, log P
was adopted in this study (Table 1), which is consistent with the fact that numerous pub-
lished in silico models to predict intestinal absorption, PAMPA permeability [1,111], and
Caco-2 permeability also have employed this descriptor [40,112–114]. It can be observed
from Figure 8, which displays the average log Papp for each histogram bin of log P for all
molecules included in this investigation, that log Papp increased with log P value initially
and then decreased afterward, leading to a seemingly bilinear relationship between log
Papp and log P. This perplexing dependency can be realized by the fact that the more
hydrophobic solutes can easier approach the lipid bilayer to penetrate the membrane. The

http://lmmd.ecust.edu.cn/admetsar2/
https://go.drugbank.com/
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opposite relationship between hydrophobicity and permeability will be resulted when
the solutes are too hydrophobic due to stronger attractions between solutes and the mem-
brane as well as stronger repulsive forces from the solvent molecules upon the entrance
to the solvent environment that can be illustrated by the PAMPA permeability [1,115,116].
Complexity can be even profound when taking into account the fact that P-gp and BCRP,
which are efflux transporters in Caco-2 (vide supra), can interact with substrates by hy-
drophobicity [117], subsequently leading to a low correlation between log Papp and log P
(r = 0.15).
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and SVR B included log P (Table 1). In addition, the aromatic ring is a non-polar group,
which can enhance the hydrophobicity [52] and increase the passive diffusion [119,120].
In addition, aromatic ring moieties have been implicated in P-gp substrate recognition
and efflux modulation [53], leading to the fact that nAr can be an important factor in P-
gp modulation action [121] and BCRP-substrate interactions [122]. As such, nAr plays a
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It has been observed that the number of aromatic rings (nAr) has a positive correlation
with log P with an r value of 0.67 [118], suggesting that a predictive model can be over-
trained once both log P and nAr are adopted simultaneously. However, this issue was
not concerned in this study, since only SVR C adopted this descriptor, whereas SVR A
and SVR B included log P (Table 1). In addition, the aromatic ring is a non-polar group,
which can enhance the hydrophobicity [52] and increase the passive diffusion [119,120].
In addition, aromatic ring moieties have been implicated in P-gp substrate recognition
and efflux modulation [53], leading to the fact that nAr can be an important factor in P-
gp modulation action [121] and BCRP-substrate interactions [122]. As such, nAr plays a
complex role in both passive diffusion and active transport in Caco-2 permeability.

It has been recognized that both PSA and µ are associated with passive diffusion [37,123–125].
In addition, these descriptors have been adopted by published in silico Caco-2 permeability
models [37,45–49,126–128]. It has been reported in the PAMPA permeability study that
larger PSA, µ, and polarity can enhance the solute-solute and solute-solvent interactions,
which, in turn, require more desolvation energy when the solutes penetrate through the
lipophilic membrane to the donor compartment [123,129–132], and conversely decrease the
passive diffusion [1], consequently, making permeability less favorable. Therefore, it has
been shown that PSA has a negative impact in the permeation rate [133,134]. In addition,
Joung et al. have indicated that PSA shows an important role in distinguishing the P-gp
substrate from the non-substrates [135]. Accordingly, PSA and µ were adopted in this study
due to their pivotal roles in Caco-2 permeability.
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It is seemingly unusual to include the descriptor |µ|max, which is the absolute maxi-
mum component of the molecular dipole, in this study, since it has never been employed
by any published model before. This inconsistency actually can be manifested by Figure 9,
which displays the average |µ|max for each histogram bin of µ, that the larger µ, the larger
|µ|max, suggesting that they were positively correlated with each other. In addition, µ was
recruited by SVR A and SVR C, whereas |µ|max was enlisted by SVR B only, suggesting
that it is less likely to produce an over-trained HSVR, since no single model adopted
both two descriptors simultaneously. More importantly, the empirical observation has
revealed that HSVR including these selections executed better than the others (data not
shown) plausibly because of the descriptor-descriptor interaction [1]. Any other traditional
linear or machine learning-based QSAR schemes, conversely, cannot properly render such
contradictory descriptor selections.
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It has been reported that the molecular size of the solute molecule is of critical im-
portance in the diffusivity of the biological membrane [37,125,136], and the intestinal
absorption can decrease with the increase of molecular size [137]. Furthermore, the molec-
ular size also affects passive diffusion through membranes [138,139] and active transport
through the P-gp-substrate interactions [121,138]. Molecular size can be represented by a
number of descriptors such α, nRing, Vm, and nrot [140–142], which were adopted in the
investigation and negatively associated with log Papp (Table 1). Conversely, Fujiwara et al.
adopted the descriptor molecule weight (MW) to develop a theoretical Caco-2 permeability
model [37], whereas MW was not included in this study. This discrepancy can be realized
by the fact that α was highly correlated with MW with an r value of 0.98 for all molecules
enlisted in this study, suggesting that it is plausible to replace MW by α in order not to
produce an over-trained model. In addition, it has been observed that α is positively
correlated to log P [143] and is highly associated with absorption [50].

The descriptor nRing, which is reportedly related to molecular size [136,141], has never
been adopted by any published Caco-2 permeability predictive model and yet was selected
by SVR C (Table 1). This disagreement can be recognized by the fact that nRing was greatly
correlated with α with an r value of 0.78 for all molecules recruited in this study. As such,
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it is plausible to expect that both nRing and α play similar roles in Caco-2 permeability. The
relationship among log Papp, nRing, and log P can be further perplexing as illustrated by
Figure 10, which shows the 3D plot of log Papp, nRing, and log P. The relationship between
nRing and log P has been detailed by Pham-The et al. [125].
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It has been observed that Vm plays an important role in passive absorption [9,144,145]
and it is adopted by a published Caco-2 permeability model [146] as well as in this study. It
has been observed in the rat that fewer rotatable bonds, viz. smaller nrot, can lead to better
oral bioavailability, and nrot can also exert a positive effect on the permeation rate [133,143],
since more rigid molecules will have smaller nrot values that, in turn, can enhance per-
meability [125]. Furthermore, nrot is of importance in intestinal absorption [147], since
increased nrot can reduce the permeability [133]. Furthermore, a number of published
membrane permeability models have also employed the descriptor CSA, which is another
feature associated with molecular size and also plays a pivotal role in membrane perme-
ability [70,71]. However, nrot was greatly associated with CSA with an r value of 0.80
for all molecules enrolled in this investigation, suggesting that using nrot in lieu of CSA
without producing the over-trained model is plausible. Li et al. also have found that nrot is
another feature to discriminate P-gp substrates from non-substrates [148]. As such, it is of
necessity to recruit nrot in model development to properly render Caco-2 permeability as
suggested [71,72].

Hydrogen bonding potential, which can be expressed by HBD and HBA, is another
important factor in determining the solute–solvent interactions [37], and it is the main
contributor for the passive diffusion [143]. It has been observed that Caco-2 permeability
is a function of HBD and/or HBA, since more permeable solutes tend to have smaller
HBD and/or HBA [130,131,149]. Between HBD and HBA, HBD seemingly shows a more
profound effect on Caco-2 permeability as compared with HBA [150] as manifested by
the fact that several published in silico models have selected HBD to predict Caco-2
permeability instead of HBA [35,42]. Mechanistically, HBD is one of the features associated
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with P-gp-substrate interactions [148,151]. In addition to efflux transport, HDB is one of
the features linked to substrate binding with OATP2B1 [7] as well as PepT1 [152]. Thus, it
is of necessity to include in Caco-2 predictive models to take into consideration the passive
diffusion as well as the active influx/efflux transport.

The descriptor pKa(Max) was selected in this study due to the fact that higher pKa(Max)
can lead to the lower ionized form of drugs in the donor compartment, which, in turn,
can increase the penetration through hydrophobic membrane [153]. Furthermore, it has
been recognized that neutral compounds can have higher membrane permeability than
the other ion classes [154]. Accordingly, all molecules included in this investigation were
categorized into different ion classes based on their pKa values. In addition, ABC and/or
SLC substrates were also identified based on the drug information retrieved from Drug-
Bank to understand if the dependence of ion class can be varied by their ion classes. It
can be found from Figure 11, which displays the histograms of median log Papp versus all
molecules, ABC substrates, SLC substrates, as well as ABC and SLC substrates for four
different ion classes, that the median log Papp values of neutral compounds are substan-
tially larger than the others, suggesting that neutral compounds exhibit higher Caco-2
permeability regardless of active transporter substrate classes, viz. influx transporter or
efflux transporter. This observation actually is very similar to the PAMPA permeability,
since the ionized compounds will demand larger desolvation energies, which, in turn, can
hinder their penetration [134].
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Initially, numerous efforts were made in attempting to build assorted 2-QSAR models
by employing the partial least square (PLS) scheme, and yet no productive models were
produced (data not shown) [1]. This challenge can be realized by the fact that the correla-
tions between the designated descriptors and log Papp for all molecules included in this
investigation were small, and the largest absolute maximum r was only 0.56 between PSA
and log Papp (Table 1), signifying the high non-linearity between them. More significantly,
the substantial difference in 2-QSAR development between the passive diffusion, viz. the
PAMPA system, and Caco-2 permeability can be greatly attributed to the complex active
(influx and efflux) transport. Thus, it is extremely difficult, if not absolutely impossible, to
derive a linear Cacao-2 permeability QSAR model. Conversely, the accurate and predictive
HSVR model can properly render such non-linear dependence of log Papp on descriptors.
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5. Conclusions

Intestinal permeability is one of the important ADME/Tox metrics that should be
addressed in the process of drug discovery and development. The Caco-2 system has
been frequently used as a surrogate to preliminarily investigate the intestinal absorption.
An in silico model can be a useful approach to predict Caco-2 permeability in assisting
drug discovery and development. However, Caco-2 permeability can occur through
passive diffusion and active transport, leading to a complex process. Therefore, it is of
necessity to include different descriptor combinations and diverse relationships to address
these variations in distinct mechanisms. The innovative machine learning-based HSVR
scheme, which possesses the superior features of a local model (greater predictivity) and
a global model (larger coverage of the application domain), was employed in this study
to construct a theoretical model to predict the Caco-2 permeability. The generated HSVR
models unveiled great prediction accuracy for the training, test, and outlier samples.
When challenged by a group of drugs assayed at different experimental conditions, the
developed HSVR model also executed equivalently well. In addition, HSVR showed
excellent qualitative performance in recognizing Caco-2 permeable and impermeable
compounds, and the selected descriptors can completely justify the diverse mechanisms
related to the passive diffusion and active transport. Thus, it can be assured that this HSVR
model can be useful to accurately and swiftly predict the Caco-2 permeability of novel
compounds in order to assist drug discovery and development.
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