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Abstract: The concept of a metric dimension was proposed to model robot navigation where the
places of navigating agents can change among nodes. The metric dimension md(G) of a graph G
is the smallest number k for which G contains a vertex set W, such that |W| = k and every pair of
vertices of G possess different distances to at least one vertex in W. In this paper, we demonstrate
that md(HDN1(n)) = 4 for n ≥ 2. This indicates that in these types of hex derived sensor networks,
the least number of nodes needed for locating any other node is four.
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1. Introduction

A task in robot navigation is to obtain the position immediately, whenever we want to know it.
Suppose that a robot navigating in a sensor network is able to automatically obtain the distances to
a collection of landmarks, then we can find a subset of nodes in the network such that the robot’s
position in the network is uniquely identified. In order to achieve this, the concept of “landmarks in a
graph” was developed [1], and later was extended to the “metric dimension”, in which one considers
networks in the graph-structure framework.

Let Rk be a k-dimensional Euclidean space and Z be the integer set. Assume Zk =

{(x1, x2, · · · , xk) ∈ Rk|xi ∈ Z, 1 ≤ i ≤ k}. Every graph we consider is simple and connected and
contains neither multiple edges nor loops. For two vertices v1, v2 ∈ V(G) of a graph G = (V(G), E(G)),
we denote by dG(v1, v2) (or simply by d(v1, v2)) the distance between v1 and v2, i.e., the number of
edges in the shortest path from v1 to v2. For a positive integer t ≥ 1, we call u a t-neighbor of
v if d(u, v) = t. We call the set Nt(v) = {s ∈ V(G)|d(v, s) = t} the t-neighbourhood of v, and let
N−t (v) = {s ∈ V(G)|d(v, s) ≤ t} and N+

t (v) = {s ∈ V(G)|d(v, s) ≥ t}. In particular, N1(v) is
called the open neighborhood of v and simply denoted by N(v), and N[v] = N(v) ∪ {v} is the closed
neighborhood of v. The degree of a vertex v is the cardinality of N(v) and denoted by deg(v).

Given a positive integer k and an ordered set S = {s1, s2, · · · , sk} ⊆ V(G), for a vertex t ∈ V(G),
we regard the k-vector ξ(t|S) = (d(t, s1), d(t, s2), · · · , d(t, sk)) as the metric representation of v with respect
to S. If any two distinct vertices of G do not have the identical representation with respect to S, then we
call S a resolving set (RS) of G. The metric basis of G is the RS of G with the smallest cardinality. A metric
basis of cardinality k is also called a k-metric basis. The metric dimension of G, denoted by md(G),
is defined as the cardinality of a metric basis.
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For convenience, we summarize the symbols we use in Table 1.

Table 1. The symbols used in this paper.

Symbol Definition

Rk k-dimensional Euclidean space
Z the set of all integers
Zk Zk = {(x1, x2, · · · , xk) ∈ Rk|xi ∈ Z, 1 ≤ i ≤ k}
d(v1, v2) the edge number of the shortest path from v1 to v2
Nt(v) the t-neighbourhood of v, i.e., Nt(v) = {s ∈ V(G)|d(v, s) = t}
N(v) the open neighborhood of v, i.e., N(v) = N1(v)
N[v] the closed neighborhood of v, i.e., N[v] = N(v) ∪ {v}
deg(v) the degree of v
ξ(t|S) = (d(t, s1), d(t, s2), · · · , d(t, sk)) the metric representation of v with respect to S,

where S = {s1, s2, · · · , sk} ⊆ V(G) is an ordered set
RS resolving set
md(G) the metric dimension of G

Due to their important applications and theoretical studies, various versions of metric generators
have been proposed, which contribute deep insights into the mathematical properties of the metric
dimension involving distances in graphs. Many authors have introduced different variations of
metric generators—such as independent resolving sets [2], local metric sets [3], resolving dominating
sets [4], strong resolving sets [5], k-metric generators [6], and a mixed metric dimension [7]—and their
properties have been studied.

The subject of determining md(G) of a graph G was initially studied by Harary, et al. [8],
and Slater [9] independently proved that determining md(G) of a graph G is an NP-complete
problem [10]. The metric dimension has been extensively studied not merely for the computational
intractability, but also for its applications in many fields, such as robot navigation [1], telecommunication,
chemistry [2,11], and combinatorial optimization [4,12–17], among many others.

Honeycomb networks are a variant of meshes and tori that play an essential role in the areas of
image processing, cellular phone base stations, computer graphics, and mathematical chemistry [18–20],
because they have more attractive structural properties with respect to their diameter, degree, the total
number of edges, the bisection width, and cost. Stojmenovic [20] and Parhami [21] analyzed
the topological descriptors of honeycomb networks and presented an united formulation for the
honeycomb. In Reference [18], based on honeycomb and hexagonal meshes, Manuel et al. introduced
two new hexagonal networks, which have more interesting properties and features over certain
honeycomb networks and meshes. Manuel et al. [18] posed an interesting open question to determine
whether the metric dimensions of these kinds of hex-derived networks (HDNs) are between three and
five. Xu and Fan [22] gave a proof and showed that the metric dimensions of the hex-derived networks
HDN1(n) and HDN2(n) are either three or four. However until now, the exact metric dimension of
these networks is still unknown. In this paper, we solve this problem for HDN1 networks by showing
that md(HDN1(n)) = 4 for n ≥ 2.

The main contributions of this paper are listed as follows:

• We propose a vector coloring scheme to study properties of some networks with metric
dimension three. By applying this approach we succeed to process hex-derived networks.
Therefore, the proposed approach is a promising approach to determine if a network has metric
dimension three.

• The hexagonal networks are popular mesh-derived parallel architectures, which are also a kind of
sensor network and widely used in computer graphics and cellular phone base stations. Inspired
by the important applications of hex-derived network, Manuel et al. started to study the metric
dimension of hex-derived networks. They proposed an open problem to determine whether
the metric dimension of a kind of hex-derived networks lies between three and five. Xu and
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Fan showed that it is less than five. In this paper, we apply our approach to completely solve
this problem.

2. HDN1 Networks

In this section, we describe the definition of HDN1 networks. We follow the presentation in
Reference [22]. The concept of a hexagonal mesh was introduced by Chen et al. [19]. Recall that a planar
graph is a graph that can be drawn such that no edges cross each other. An n-dimensional hexagonal
mesh for n ≥ 2, denoted by HX(n), is a planar graph which consists of a collection of triangles as shown
in Figure 1. The 2D hexagonal mesh HX(2) is made up of 6 triangles (see Figure 1(1)). The 3D hexagonal
mesh HX(3) is constructed from HX(2) by including additional triangles around the boundary of HX(2)
(see Figure 1(2)). Similarly, HX(n) is established by including additional triangles around the boundary
of HX(n−1).

Figure 1. Schematics of n-dimensional hexagonal meshes, HX(n): (1) HX(2), (2) HX(3), and (3) all of the
faces in HX(2).

In a planar graph, there are many faces of G. If two faces p and q share at least one edge, they are
said to be adjacent, or p is a neighbor of q. If a planar graph contains exactly one unbounded face,
it is called the outer face of the graph. For example Figure 1(3) shows that HX(2) has seven faces
p0, p1, . . . , p6, for which p1 is adjacent to p0, p2 and p6; and p0 is an outer face. These definitions can be
found in Reference [22].

Given a graph HX(n), we use F(HX(n)) to denote the set of non-outer faces of HX(n). Now,
for each p ∈ F, we add a new vertex p∗ which is located in the face p and connects p∗ with the three
vertices of p. The resulting graph is HDN1(n). As an example, HDN1(3) can be found in Figure 2,
where the gray vertices are the additional vertices based on HX(3).

Figure 2. Hex-derived network, HDN1(3).

Suppose that pi is a neighbor of p for each i = 1, 2, · · · , k and p∗1 , p∗2 , . . . , p∗k have a one-to-one
mapping to p1, p2, . . . , pk, respectively. If the vertices of p and p∗1 , p∗2 , . . . , p∗k are joined with p∗, then we
obtain HDN2(n). It is clear that HDN2(n) contains HDN1(n) as a subgraph. For n ≥ 2, we also view
HDN1(n) and HDN2(n) collectively as HDN(n).
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The central vertex of HDN(n) is denoted by u0 = (0, 0, 0). For an integer i, we adopt the
following notations:

Vi = {x ∈ V(G)|d(x, u0) = i},
Di = {x ∈ V(G)|deg(x) = i},
Ui = Vi ∩ D3.

In order to understand the idea clearly, we take the network described in Figure 3a as an
example, which has the nodes {wi, A, B, C, D, E, F, H, I, J, K, L, M}. Assume we use S = {A, M, B, H}
as landmarks, then a robot, which knows the distances from each element in S, can obtain its own
location in this network at any time. For instance, if the distance vector from (A, M, B, H) is (1, 1, 2, 3),
then it is located at the position C because the distance vectors from (A, M, B, H) are pairwise distinct.

3. Navigation in Certain Hex-Derived Sensor Networks

P. Manuel et al. [18] studied the navigation of certain hex-derived networks and proposed an
open problem as follows.

Open Problem. Let G be HDN1 or HDN2, then is it true that 3 ≤ md(G) ≤ 5?
D. Xu [22] et al. have provide a proof to show that md(HDN(n)) is either 3 or 4, as shown in

Theorems 1 and 2.

Theorem 1. [22] If n ≥ 2, then we have md(HDN1(n)) ∈ {3, 4}.

Theorem 2. [22] If n ≥ 2, then we have md(HDN2(n)) ∈ {3, 4}.

Note that the least number of nodes needed for locating any other node in such a network is
unknown, we will solve this problem in this paper.

Let G be a graph and W be an ordered subset of V(G) with W = {w1, w2, · · · , wk}. Assume
v0 ∈ V(G) and ϕ(u, v0) = ξ(u|W)− ξ(v0|W) = (g1, g2, · · · , gk) for any u ∈ V(G).

Lemma 1. For any e = xy ∈ E(G), we have |gi(x, v0)− gi(y, v0)| ≤ 1, i = 1, 2, · · · , k.

Proof. Since ϕ(x, v0) = ξ(x|W)− ξ(v0|W) and ϕ(y, v0) = ξ(y|W)− ξ(v0|W), we have

|gi(x, v0)− gi(y, v0)| = |(d(x, wi)− d(v0, wi))− (d(y, wi)− d(v0, wi))| = |d(x, wi)− d(y, wi)| ≤ 1.

Lemma 2. Let t be a positive integer and v ∈ V(G). If x, y ∈ Nt(v) and W is an RS of G, then ξ(x|W) 6=
ξ(y|W).

Definition 1. Let md(G) = k and v ∈ V(G). A function h : V(G) → Zk−1 is said to be a (k− 1)-vector
coloring scheme on G with respect to v, if the following conditions are fulfilled:

(i) For e = xy ∈ E(G) with α = (α1, α2, · · · , αk−1) = h(x) and β = (β1, β2, · · · , βk−1) = h(y),
we have |αi − βi| ≤ 1, i = 1, 2, · · · , k− 1.

(ii) Let t > 0. If x, y ∈ Nt(v), we have h(x) 6= h(y).
(iii) h(v) = (0, 0, · · · , 0).

Lemma 3. If there exists a subgraph G′ of G and v ∈ V(G′) such that dG′(v, u) = dG(v, u) for any u ∈ V(G′),
and there exists no (k− 1)-vector coloring scheme on G′ with respect to vertex v, then v is not in any k-metric
basis of G.
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Proof. Suppose that W is a k-metric basis of G with v ∈ W. Let W = {w1, w2, · · · , wk−1, v} be
an ordered set. For any u ∈ V(G), ϕ(u, v) = ξ(u|W) − ξ(v|W) = (ϕ1, ϕ2, · · · , ϕk). Let h(u) =

(ϕ1, ϕ2, · · · , ϕk−1). By Lemmas 1 and 2, we have that h satisfies the three conditions of Definition 1,
which yields a contradiction.

Corollary 1. Let W be a k-metric basis of G. If G′ is a subgraph of G and v ∈ V(G′) ∩W such that
dG′(v, u) = dG(v, u) for any u ∈ V(G′), then there must exist a (k− 1)-vector coloring scheme on G′ with
respect to vertex v.

Now, we will present the basic properties of hex-derived networks.

Lemma 4. Let n ≥ 7. Suppose that md(HDN1(n)) = 3 and W = {w1, w2, w3} is an RS of HDN1(n),
then we have wi /∈ N−n−1(u0), for any i ∈ {1, 2, 3}.

Proof. Suppose that there exists a wi ∈ N−n−1(u0) for some i, then the following two cases are studied.

Case 1. wi ∈ HX(n) (See Figure 3a).

Let S = N[wi] and G′ = G[S]. By Corollary 1, there exists a 2-vector coloring scheme h on
G′ with respect to vertex wi. Let h = (h1, h2). For any u ∈ N1(wi), by Definition 1, we have
|h1(u)| ≤ 1 and |h2(u)| ≤ 1. That is to say, h1(u), h2(u) ∈ {0,±1}. Consequently, h(u) must be one
of nine possible vectors for any u ∈ N1(wi). Since |N1(wi)| = 12, then there must exist two vertices
u1, u2 ∈ N1(wi) with h(u1) = h(u2), which is a contradiction with the definition of k-vector coloring
scheme (Definition 1).

wi

v3

v1

v2wi

y1

y2

AB CD

E

FH I

JK

L

M

(a) (b)

Figure 3. (a) HDN1(2) and (b) some vertices in HDN1(3).

Case 2. wi ∈ D3 ∩ HDN1(n)) (See Figure 3b).

Let S′ = N2[wi] and G′ = G[S′]. Let N1(wi) = {v1, v2, v3}. For any u ∈ N−1 (v1)− {wi}, similarly,
it can be proved that h(u) must be one of nine possible vectors. We have Claim 1 as follows.

Claim 1. There exists no three vertices u1, u2, u3 ∈ N−1 (v1)− {wi} with h(u1) = h(u2) = h(u3).

Proof of Claim 1: Suppose the statement does not hold. Since N−1 (v1)− {wi} ⊂ N1(wi) ∪ N2(wi),
then u1, u2, u3 ∈ N1(wi) ∪ N2(wi). Consequently, there must exist two vertices, say u1, u2 ∈ N1(wi) or
u1, u2 ∈ N2(wi), which is a contradiction with Definition 1.

Since |N−1 (v1)− {wi}| = 12 and there are nine possibilities for h, then there must exist three
pairs of vertices whose h values are equivalent. Note that (N−1 (v1)− {wi}) ∩ N1(wi) = {v1, v2, v3}.
From Definition 1, we know that the h values in Nt(wi) are distinct for positive integer t = 1, 2.
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Therefore it can be assumed that the three pairs of vertices are (v1, x1), (v2, x2), and (v3, x3) with
v1, x1, v2, x2, v3, x3 ∈ N−1 (v1)− {wi} and that h(vi) = h(xi), for i = 1, 2, 3.

Similarly, there are three pairs of vertices (v1, x′1), (v2, x′2) and (v3, x′3) with v1, x′1, v2, x′2, v3, x′3 ∈
N−1 (v2)− {wi} and with h(vi) = h(x′i), for i = 1, 2, 3.

From h(xi) = h(vi) = h(x′i), for i = 1, 2, 3, we have xi = x′i . However, |(N−1 (v1) − {wi}) ∩
(N−1 (v2)− {wi}) ∩ N2(wi)| = |{y1, y2}| = 2, which yields a contradiction.

In the following, we discuss the vertices in Nn(u0) of HDN1(n): Let

A = {v ∈ Nn(u0) ∩ D3 : |N(v) ∩Vn−1| = 2} (1)

and
B = {v ∈ Nn(u0) ∩ D3 : |N(v) ∩Vn−1| = 1}. (2)

Analogous to the proof of Case 2 in Lemma 4, we have:

Lemma 5. Let n ≥ 7. Suppose that md(HDN1(n)) = 3 and W = {w1, w2, w3} is a resolving set of
HDN1(n), then we have wi /∈ A.

Lemma 6. Let n ≥ 7. Suppose that md(HDN1(n)) = 3, W = {w1, w2, w3} is a resolving set of HDN1(n)
and C = Nn(u0)− (A ∪ B), then W ∩ C = ∅.

Proof. Assume v ∈ D3 and N1(v) = {u1, u2, u3}. Let h : V(G) → Z2 be a function. Let h(v) = (α, β)

and h(ui) = (αi, βi), for 1 ≤ i ≤ 3. We list seven properties Qj, 1 ≤ j ≤ 7 as follows (If Qj holds, we say
that (h, v) satisfies Qj):

(Q1) If ui ∈ N(v), for 1 ≤ i ≤ 3, then α ≥ αi and β ≥ βi.
(Q2) αi = α + 1, for i = 1, 2, 3.
(Q3) βi = β + 1, for i = 1, 2, 3.
(Q4) There are at most two vertices s1, s2 ∈ Nn(u0) ∩ D3 such that neither (h, s1) nor (h, s2)

satisfy Q1.
(Q5) If v ∈ Nn(u0) ∩ D3 does not satisfy Q1, then v satisfies either Q2 or Q3.
(Q6) For any v ∈ Nn(u0) ∩ D3, it is impossible for v to satisfy both Q2 and Q3.
(Q7) Given any v ∈ N−n−1(u0) ∩ D3, then v satisfies Q1.

See Figure 4a.

Figure 4. Left: HDN1(7) (a); Right: Some vertices of HDN1(7) (b–e).
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We have Claim 2 as follows:

Claim 2. Let T = W ∩ V(G′) ∩ C. For any subgraph G′ of HDN1(n) with T 6= ∅, we assume without
loss of generality that w3 ∈ T. If dG′(u, w3) = dG(u, w3) for any u ∈ V(G′), then there exists a two-vector
coloring scheme on G′ with respect to vertex w3 such that (h, w3) satisfies Q4–Q7.

Proof of Claim 2: Assume ϕ(u, w3) = ξ(u|W)− ξ(w3|W) = (ϕ1, ϕ2, ϕ3) for any vertex u in HDN1(n).
Define a function h : V(G)→ Z2 with h(u) = (ϕ1, ϕ2) for any vertex u in HDN1(n). By the proof of
Corollary 1, we know that h(u) satisfies properties (i)–(iii) with k = 3 in Definition 1. Therefore the
function h is a two-vector coloring scheme on G′. Now we will show that (h, w3) satisfies Q4–Q7 in
the following.

It can be seen that a vertex v ∈ D3 such that (h, v) does not satisfy Q1 if and only if v ∈ W.
Since w3 ∈ W ∩ C and |W| = 3, then there are at most two vertices s1, s2 ∈ Nn(u0) ∩ D3 such that
neither (h, s1) nor (h, s2) satisfy Q1. Therefore, we have (h, w3) satisfies Q4.

Assume v ∈ D3 and v does not satisfy Q1, i.e., v ∈ {w1, w2, w3}. It is clear that v ∈ {w1, w2}.
Note that h(u) = (d(u, w1)− d(w3, w1), d(u, w2)− d(w3, w2)) for any vertex u in HDN1(n). If v = w1,
then h(v) = (−d(w3, w1), d(w1, w2) − d(w3, w2)) and h(ui) = (1− d(w3, w1), d(ui, w2) − d(w3, w2))

for 1 ≤ i ≤ 3. Therefore we have αi = α + 1, for i = 1, 2, 3, i.e., (h, w3) satisfies Q2. If v = w2,
then h(v) = (d(w2, w1) − d(w3, w1),−d(w3, w2)) and h(ui) = (d(ui, w1) − d(w3, w1), 1− d(w3, w2))

for 1 ≤ i ≤ 3. Therefore we have βi = β + 1, i = 1, 2, 3, i.e., (h, w3) satisfies Q3. Consequently, we have
(h, w3) satisfies Q5.

Suppose (h, w3) does not satisfy Q6. Then there exists v ∈ Nn(u0) ∩ D3 for which (h, v) satisfies
Q2 and Q3. Since αi = α + 1 for i = 1, 2, 3, we have v = w1. By βi = β + 1 for i = 1, 2, 3, we have
v = w2. Therefore, we have w1 = w2, a contradiction.

By Lemma 4, we have that (h, w3) satisfies Q7 and the proof of Claim 2 is complete.
If n ≥ 7, as shown in Figure 4b–e, it can be seen that there are only four distinct cases of N−3 (w)

for w ∈ C in HDN1(n). By means of computer search, we have that there exists no two-vector coloring
scheme h on subgraph N−3 (w) in HDN1(n), for which (h, w) satisfies Q4–Q7. By Claim 2, we have
Lemma 6 holds.

Lemma 7. Let n ≥ 7. Suppose that md(HDN1(n)) = 3 and W = {w1, w2, w3} is an RS of HDN1(n),
then we have wi /∈ B.

Proof. The proof is by induction on n. The statement holds for HDN1(7), which can be confirmed by
computer search. Let n ≥ 8 and let the statement hold for all HDN1(m) with m ≤ n−1. Suppose the
statement does not hold for HDN1(n). By Lemmas 4–6, all vertices of any basis W are in B. On the
other hand, for any ordered set W = {w1, w2, w3} and any vertex v in HDN1(n), let ξ(v|W) be a
metric representation of v with respect to W. For any vi ∈ B, since |N(vi) ∩ N(Vn−1)| = 1, we assume
N(vi) ∩ N(Vn−1) = ui. (See Figure 5).

Then for wi ∈W ∩ B ,without loss of generality we have d(v, w) = d(v, vi) = d(v, ui) + 1 and ui
is in HDN1(n− 1) for i = 1, 2, 3. Therefore we can obtain a vertex ui with respect to each vertex wi
for 1 ≤ i ≤ 3. If u1, u2, u3 are distinct, for any u ∈ N−n−1(u0), we have (d(u, w1), d(u, w2), d(u, w3)) 6=
(d(t, w1), d(t, w2), d(t, w3)) for t ∈ V(HDN1(n− 1)) with t 6= u. Consequently, S is also a basis of
HDN1(n-1), which yields a contradiction. If u1, u2, u3 are not distinct, then md(HDN1(n-1)) ≤ 2,
which yields a contradiction with md(HDN1(n− 1)) = 3.

Now, we have

Theorem 3. If n ≥ 2, then md(HDN1(n)) = 4.
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Proof. For the case n ≤ 6, the results can be verified by solving the instances constructed from
an integer linear program introduced in Reference [2]. Suppose the statement does not hold for
n ≥ 7, and we assume that W = {w1, w2, w3} is a base of HDN1(n). By Lemmas 4–7, we have
W

⋂
V(HDN1(n)) = ∅, a contradiction. This completes the proof.

Figure 5. HDN1(n) for wi /∈ B.

4. Conclusions

In this paper, we provide a proof to show that md(HDN1(n)) = 4 for n ≥ 2, this indicates that in
this type of hex-derived sensor network, the least number of nodes needed to locate any other node is
four. This solves an interesting open problem proposed in References [18,22].
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