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Abstract
T-type channels are low-voltage-activated calcium 
channels that contribute to a variety of cellular and 
physiological functions, including neuronal excitability, 
hormone and neurotransmitter release as well as 
developmental aspects. Several human conditions 
including epilepsy, autism spectrum disorders, 
schizophrenia, motor neuron disorders and aldosteronism 
have been traced to variations in genes encoding T-type 
channels. In this short review, we present the genetics of 
T-type channels with an emphasis on structure-function 
relationships and associated channelopathies.

Introduction
Low-voltage-activated Cav3 T-type channels are 
members of the superfamily of voltage-gated 
calcium channels.1 T-type channels are widely 
expressed throughout the nervous, the neuroen-
docrine and the cardiovascular system2 and are 
also found in several non-excitable tissues such as 
osteocytes,3 sperm cells4 and immune cells.5 6 The 
cellular and physiological processes in which T-type 
channels are implicated depend primarily on the 
tissue distribution of the channels. For instance, in 
the central and peripheral nervous systems, T-type 
channels play an essential role in shaping neuronal 
excitability,7–9 whereas they contribute to the release 
of hormones in the neuroendocrine system.10 11

The essential role of T-type channels in human 
physiology is emphasised by the existence of chan-
nelopathies which are disorders that are caused or 
enhanced by mutations in genes that encode these 
channels. Most of T-type channelopathies are trans-
mitted by recessive inheritance or appear sporadic. 
The clinical manifestations of these disorders 
depend primarily on dysfunctions of the biophys-
ical characteristics and cell surface trafficking of the 
channels and can lead to either gain-of-function or 
loss-of-function.

In this review, we present an overview of human 
T-type channelopathies and their relationship with 
the diversity, structure and function of T-type chan-
nels. This will be followed by the presentation of the 
various syndromes for which T-type channels have 
been linked to, with an emphasis on the structure-
function-pathogenicity relationship of mutant Cav3 
channels.

Diversity, structure and function of 
Cav3 channels
Although T-type currents recorded from various 
native tissues present a common feature illus-
trated by a low-threshold of activation around 
−55 mV, they also exhibit several differences in 

their electrophysiological and pharmacological 
properties. This heterogeneity is in part explained 
by the existence of three T-type channel isoforms, 
Cav3.1,12 Cav3.213 and Cav3.3,14 which in humans 
are encoded by the genes CACNA1G, CACNA1H 
and CACNA1I, respectively (figure 1A). This diver-
sity is further enriched by the existence of several 
channel splice variants. Indeed, alternative splicing 
of Cav3.1,15–19 Cav3.220–24 and Cav3.325 26 contrib-
utes to increase the functional diversity of T-type 
channels and may also have important pathophysi-
ological implications.

T-type channels consist on a single Cav3 pore-
forming subunit that contains all the structural 
determinants of channel gating and ion selectivity 
and permeability (for review see.27 The Cav3 subunit 
is a relatively large plasma membrane protein of 
about 260 kDa organised into four hydrophobic 
domains (DI to DIV), each of them made of six 
transmembrane helices (S1 to S6) (figure 1B). The 
voltage-sensing module of the channel is formed 
by the positively charged arginine/lysine-rich S4 
segments,28 while the ion conductivity and selec-
tivity lie on the re-entrant extracellular linkers 
connecting S5 and S6 segments of each domain, 
so-called pore-forming loop (P loop).2 The four 
transmembrane domains are linked together 
by several intracellular loops connecting the S6 
segment of the upstream domain to the S1 segment 
of the downstream domain, which in combination 
with the amino and carboxy termini provide hubs 
for channel regulation by a variety of signalling 
molecules and other molecular partners including 
the G-protein βγ-dimer,29 30 CaMKII,31 32 kelch-
like 1,33 calcineurin,34 syntaxin-1A,35 stac1,36 
CACHD1,37 38 spectrin α/β and ankyrin B39 as well 
as several ion channels.40 41 In addition, T-type 
channels undergo several post-translational modifi-
cations such as phosphorylation,42 ubiquitination43 
and glycosylation,44–49 which contribute to the 
expression and activity of the channel.

The contribution of T-type channels in particular 
cellular processes is partly inherent to their unique 
electrophysiological properties. Voltage-dependent 
opening of T-type channels occurs at comparatively 
negative membrane potentials where calcium influx 
contributes to the depolarisation of the plasma 
membrane, therefore increasing the opening prob-
ability of voltage-gated sodium channels and the 
propensity of cells to fire action potentials. This 
aspect is especially relevant in several central 
neurons including thalamic and hippocampal cells 
where T-type channels are particularly abundant 
in dendrites to enhance subthreshold postsynaptic 
potentials and facilitate the propagation of the 
electrical signal to the cell body.50 Another way 
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Figure 1  Chromosomal location of human Cav3 channels and their membrane topology. (A) Chromosomal location of human CACNA1G, CACNA1H and 
CACNA1I genes encoding Cav3.1, Cav3.2 and Cav3.3 channels, respectively. (B) Secondary membrane topology of Cav3 depicting the main structural channel 
gating determinants.

by which T-type channels contribute to neuronal excitability is 
by forming functional complexes with several types of voltage-
activated and calcium-activated potassium channels that allow 
these channels to operate at subthreshold membrane poten-
tials.51–55 In addition, their fast recovery from inactivation allows 
T-type channels to generate calcium spikes on brief periods of 
hyperpolarisation, which leads to the firing of rebound burst of 
action potentials that support various forms of neuronal rhyth-
mogenesis.56–59 Although a significant fraction of T-type chan-
nels is inactivated at most resting membrane potentials of nerve 
cells, a small fraction remains open to support the passive influx 
of calcium (termed window current due to the ‘window’ created 
by the overlap between the activation and inactivation curves of 
the channels). In nerve cells, this window current has been impli-
cated in the generation of low frequency oscillations observed 
during sleep patterns60 and is likely to play additional functions 
especially in non-excitable cells. T-type channels also contribute 
to several forms of synaptic plasticity.61 Finally, T-type channels 
are implicated in the low-threshold release of neurotransmitters 
and hormones, possibly by virtue of their functional coupling 
with the vesicular release machinery.10 11 Genetic knockout in 
mice also provided insightful information on the physiolog-
ical importance of T-type channels. For instance, knockout of 
Cacna1g has highlighted the role of Cav3.1 in the generation of 
sinoatrial node pacemaker activity and atrioventricular conduc-
tion62 and also their implication in the development of trigeminal 
neuropathic pain63 and peripheral pain,64 as well as endothelial 

dysfunction associated with ageing.65 Mice lacking Cacna1h 
display abnormal coronary function,66 67 decreased suscepti-
bility to cardiac hypertrophy68 and absence seizure,69 decreased 
peripheral pain signalling70 as well as several neurological symp-
toms including elevated anxiety and impaired memory.71 72 Mice 
lacking Cacna1I have provided important information on the 
implication of Cav3.3 channels in sleep rhythmogenesis.73 74 
Finally, several studies from genetic knock out have uncovered a 
role for T-type channels in the control of myogenic tone.75

Considering that the cellular and physiological functions in 
which T-type channels are implicated are directly dependent on 
their electrophysiological properties, it is anticipated that alter-
ation of channel gating caused by mutations will have deleterious 
consequences. In the next section, we will cover the current 
state of knowledge of T-type channelopathies and illustrate the 
links between the structure-function of mutant channels and the 
pathophysiological features of the associated human syndromes.

CACNA1H (Cav3.2) channelopathies
Idiopathic generalised epilepsy
It is well established that T-type channels play an essential 
role in the functioning of the thalamocortical circuitry and 
underlie spike-and-wave discharges that occur during absence 
seizures.7 69 76–82 This notion is further supported by the observa-
tion that thalamic T-type currents are enhanced in several rodent 
models of absence epilepsy83–85 and genetic overexpression of 
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Figure 2  Location of CACNA1H mutations within the secondary 
structure of Cav3.2 along with their associated syndromes. Only mutations 
that have been functionally characterised are indicated. Protein reference: 
UniProt O95180. ASD, autism spectrum disorder; CP, chronic pain; GAERS, 
genetic absence epilepsy rat from Strasburg; IGE, idiopathic generalised 
epilepsy; NMD, neuromuscular disorder; PA, primary aldosteronism.

Table 1  Summary of the gating properties of T-type channel variants

Gene Mutation Disease Biophysical effect Settings Reference

CACNA1G
(Cav3.1)

A570V IGE None HEK293, 2Ca 144

A961T CA Gain-of-function HEK293T, 2Ca 142

A1089S IGE None HEK293, 2Ca 144

M1531V CA Gain-of-function HEK293T, 2Ca 142

R1715H CA Loss-of-function HEK293T 138

CACNA1H
(Cav3.2)

F161L IGE Gain-of-function tsA-201, 5Ba 99

S196L PA Gain-of-function tsA-201, 2Ca 134

R212C ASD Loss-of-function HEK293T, 2Ca 110

E282K IGE Gain-of-function tsA-201, 5Ba 99

C456S IGE None tsA-201, 5Ba 99

C456S IGE Gain-of-function Hippo, 1.8Ca 105

A480T IGE None tsA-201, 5Ba 100

G499S IGE None tsA-201, 5Ca 102

P618L IGE Gain-of-function tsA-201, 5Ba 100

P648L IGE None tsA-201, 5Ca 102

V681L NMD Loss-of-function tsA-201, 5Ba 123

R744Q IGE None tsA-201, 5Ca 102

A748V IGE None tsA-201, 5Ca 102

G755D IGE Gain-of-function tsA-201, 5Ba 100

P769L CP None tsA-201, 10Ba 130

G773D IGE None tsA-201, 5Ca 102

G784S IGE None tsA-201, 5Ca 102

R788C IGE Gain-of-function HEK293, 5Ca 101

V831M IGE Gain-of-function tsA-201, 5Ba 99

G848S IGE Gain-of-function tsA-201, 5Ca 102

A876T IGE Gain-of-function tsA-201, 2Ca 95

R902W ASD Loss-of-function HEK293T, 2Ca 110

W962C ASD Loss-of-function HEK293T, 2Ca 110

G983S IGE Loss-of-function tsA-201, 2Ca 95

A1059S IGE+CP Loss-of-function tsA-201, 2-
10Ca

95 130

E1170K IGE None tsA-201, 2Ca 95

D1233H NMD Loss-of-function tsA-201, 5Ba 123

Q1264H IGE None tsA-201, 2Ca 95

D1463N IGE None tsA-201, 5Ba 99

M1549V PA Gain-of-function HEK293T, 5Ca 132

M1549I PA Mix effect tsA-201, 2Ca 134

T1606M IGE Gain-of-function tsA-201, 2Ca 95

V1689M NMD Loss-of-function tsA-201, 5Ba 118

A1705T IGE+NMD Gain-of-function tsA-201, 2Ca 95

A1705T IGE+NMD Loss-of-function tsA-201, 5Ba 118

T1733A IGE Gain-of-function tsA-201, 2Ca 95

R1871Q ASD Gain-of-function HEK293T, 2Ca 110

A1874V ASD ND HEK293T, 2Ca 110

R1892H IGE Gain-of-function tsA-201, 2Ca 95

V1951G PA Gain-of-function tsA-201, 2Ca 134

R2005C IGE Gain-of-function tsA-201, 2Ca 95

P2083L PA Gain-of-function tsA-201, 2Ca 134

CACNA1I
(Cav3.3)

T797M SCZ None HEK293, 2Ca 149

R1346H SCZ Loss-of-function HEK293, 2Ca 149

The biophysical effects produced by each mutation is summarised as None (blue), Gain-of-
function (green) and Loss-of-function (red). Recording conditions are also indicated (cell 
type, nature and concentration of the permeating cation).
Green colour: gain-of-function mutation; red colour: loss-of-function mutation; blue colour: 
no biophysical change.
ASD, autism spectrum disorder; CA, cerebellar ataxia; CP, chronic pain; Hippo, hippocampal 
neuron; IGE, idiopathic generalised epilepsy; NMD, neuromuscular disorder; PA, primary 
aldosteronism; SCZ, schizophrenia.

Cav3.1 channels produces pure epilepsy in rodents.86 Conversely, 
pharmacological inhibition of T-type currents using pan T-type 
channel blockers reduces thalamic burst firing and suppresses 
seizures.87–89 In addition, several pan T-type channel blockers are 
effective in the treatment of absence seizures in humans90–92 (for 
recent review see Ref. 81).

Genetic association studies have identified more than 200 
missense variants in the human CACNA1H gene that segregate 
in patients presenting a range of epilepsy syndromes including 
childhood absence, juvenile absence, juvenile myoclonic and 
myoclonic astatic epilepsies as well as febrile seizures and 
temporal lobe epilepsy that fall under the umbrella term of idio-
pathic generalised epilepsies (IGE).93–98 It is worth noting that 
most of these variants have been reported in the Exome Aggre-
gation Consortium (ExAC) suggesting that their contribution to 
human epilepsies may be rather low or might be dependent on 
additional genetic and/or environmental factors. Electrophys-
iological analysis of several of these variants (figure  2) using 
exogenous expression of mutated Cav3.2 channels in human 
embryonic kidney cells (HEK293) revealed that these mutations 
generally produce mild biophysical changes and in some cases 
do not alter the gating of the channel at all (table 1). This is not 
completely surprising since the variants examined so far do not 
concentrate in specific loci that are known to be essential for the 
gating of the channel, but are rather scattered across the entire 
channel sequence. However, an interesting study by Zhong and 
colleagues21 revealed that some of the mutations in Cav3.2 may 
affect alternative splicing of the channel, which in turn may 
affect the behaviour of native T-type currents.

Among the mutations that do affect channel gating, the alter-
ations observed are in general consistent with a gain-of-function 
of the channel, although in rare exceptions a loss-of-function 
was observed.99–103 In addition, cell surface expression of the 
channels may be affected by a subset of mutations within the 
domain I-II linker region of the channel.104 Intuitively, gain-of-
function mutations would increase the propensity of neurons 
to fire action potentials. This notion is in part supported by 
computer simulations predicting that several of these mutations 
would increase neuronal firing and induce neuronal oscillations 
at similar frequencies as observed during absence seizures.101 In 
addition, cultured hippocampal neurons expressing the gain-
of-function C456S mutation indeed showed increased firing.105 
However, studies investigating the influence of Cav3.2 variants 
in native conditions are too rare to draw a general conclusion on 
the impact of CACNA1H variants on neuronal excitability.

Despite evident functional effects on Cav3.2 gating which in 
general are expected to increase neuronal excitability and to 
potentially drive seizures, only few of the CACNA1H variants 
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identified so far segregate with specific epilepsy phenotypes 
within families.95 A clear causal mutation linking Cav3.2 to 
genetic epilepsies was found in the genetic absence epilepsy rat 
from Strasburg (GAERS) (figure 2).106 This mutation segregates 
with the occurrence of seizures and causes a gain-of-function of 
Cav3.2, on the one hand by enhancing the recovery from inac-
tion of the channel23 and on the other hand by enhancing expres-
sion of Cav3.2 at the cell surface due to altered association with 
calnexin.107 Interestingly, biophysical gain of function effects of 
this mutation selectively manifested themselves in a Cav3.2 splice 
variant that contained exon 25 which is expressed at high levels 
in thalamic tissue.23 This may account for the observation that 
GAERS rats exhibit seizures but do not have other physiolog-
ical dysfunctions that would be expected from increased T-type 
channel activity.

Altogether, it remains unclear to which extent CACNA1H 
variants contribute to human epilepsies. It is likely that these 
variants only represent a low-risk factor for genetic epilepsies 
and may only contribute to the disease in combination with 
other genetic or environmental factors.

Autism spectrum disorder
Autism spectrum disorders (ASD) are neurodevelopmental 
conditions characterised by impaired social interaction, commu-
nication and unusual behaviour. Despite an exceptionally diverse 
genetic aetiology with hundreds of risk genes identified,108 
a subset of high-risk mutations is recurrently found in about 
5% of individuals with ASD.109 Several missense mutations in 
CACNA1H were identified in patients with ASD (figure 2) and 
were functionally characterised using heterologous expression 
of mutated Cav3.2 channels.110 Although all these mutations 
produced several alterations of the channel gating consistent 
with a loss-of-channel function (table 1), the severity of these 
alterations appears to be correlated with the location of the 
mutations in the channel protein. Indeed, and consistent with 
the observation that the R212C and R920W mutations are 
located within the voltage sensing region of the channel and 
neutralise an arginine residue, they produced a depolarising shift 
of the voltage-dependence of activation of the channel, along 
with a decreased T-type current. In contrast, the W962C muta-
tion located within the pore-forming loop of the channel did not 
affect the voltage sensitivity but produced a dramatic decrease 
of the T-type current, which likely resulted from an alteration 
of the ionic permeability of the channel. Finally, the R1871Q 
and A1874V mutations are located in the proximal region of 
the carboxy terminal region of the channel, a region that is not 
particularly known to contribute to the gating of the channel and 
produced only a mild decrease of the T-type current.

As for CACNA1H variants associated with epilepsy syndromes, 
variants associated with ASD do not segregate with the ASD 
phenotype, but instead may modify the phenotypic expression. 
In contrast, several rare de novo gain-of-function mutations 
with high penetrance were recently identified in CACNA1D and 
are considered as high-risk factor for ASD and more generally 
neurodevelopmental conditions.111–114

Neuromuscular disorder
Neuromuscular disorders encompass a wide range of conditions 
characterised by progressive muscle degeneration and weakness 
that primarily or secondary impair skeletal muscles and their 
innervation. For instance, amyotrophic lateral sclerosis (ALS), 
also known as Lou Gehrig’s disease, is a neurodegenerative 
disorder characterised by the progressive loss of cortical, brain 

stem and spinal motor neurons, eventually leading to muscle 
weakness and paralysis. ALS is regarded as a complex genetic 
disorder with a Mendelian pattern of inheritance in approxi-
mately 5%–10% of familial cases,115 but most patients have no 
discernable family history of the disease which is then referred to 
being ‘sporadic’ or ‘isolated’ in nature (sALS). However, several 
genes and loci in apparent sALS cases have been proposed to 
be associated with an increased risk of the disease or to modify 
the onset or progression of the disease, which highlights the 
importance of genetic risk factors.116 Recently, whole exome 
sequence analysis of case-unaffected-parent trios identified 
two compound heterozygous recessive missense mutations 
in CACNA1H (figure  2).117 Functional analysis revealed that 
these mutations cause a mild alteration of Cav3.2 activity that 
is consistent with a loss-of-function of the channel (table 1).118 
In addition, computer simulations suggested decreased neuronal 
activity of nerve cells expressing the channel variants.

Although recent studies have reported the expression of 
T-type channels in motor neurons,119 120 the functional implica-
tion of T-type channels in these neurons has yet to be analysed. 
Increased neuronal excitability has been reported as a hallmark 
in ALS, where an increase of the sodium conductance and a 
decrease of axonal potassium currents is observed.121 Consid-
ering the role of T-type channels in the control of calcium-
activated potassium channels, it is a possibility that decrease of 
T-type channel activity caused by ALS-associated mutations may 
contribute to the alteration of potassium currents. In addition, 
a recent finding demonstrated the role of T-type channels in the 
maintenance of neuronal progenitor cell viability.122 This aspect 
will deserve particular attention, especially in the context on 
neurodegenerative disorders such as ALS. Additionally, a recent 
study reported the case of a patient with severe infantile onset 
amyotrophy carrying two inherited heterozygous CACNA1H 
mutations.123 Functional analysis of Cav3.2 variants were consis-
tent with a loss-of-channel function particularly evidenced by 
a decreased window current, therefore expending the possible 
association of CACNA1H with motor neuron diseases.

Chronic pain
It is well established that T-type channels play an essential role in 
the processing of peripheral nociception and altered expression 
and altered expression of Cav3.2 has been documented in several 
chronic pain conditions. For instance, increased activity of 
Cav3.2 channels in primary afferent fibres is observed in diabetic 
neuropathy,124 nerve injury,125 irritable bowel syndrome126 and 
peripheral inflammation43 and is believed to be causally related 
to the development and maintenance of chronic pain. These 
gain of function effects in Cav3.2 calcium channels are not 
linked to mutations in the channel sequence, but instead medi-
ated by altered post-translational modification by deubiquti-
nation43 127–129 and glycosylation processes.45 Recently, two 
heterozygous missense mutations in the CACNA1H gene were 
identified in a patient presenting with paediatric chronic pain 
(figure 2).130 Functional characterisation of these variants using 
heterologous expression of mutant Cav3.2 channels provided 
inconclusive results as to the impact of these mutations on the 
functioning of the channel, mainly due to the observation that 
the phenotypic manifestations appeared to be dependent on the 
experimental conditions.

Primary aldosteronism
Primary aldosteronism (PA) is the most common form of 
secondary hypertension. T-type calcium channels have been 
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Figure 3  Location of CACNA1G mutations within the secondary 
structure of Cav3.1 along with their associated syndromes. Only mutations 
that have been functionally characterised are indicated. Protein reference: 
UniProt O43497. CA, cerebellar ataxia; IDCN, deep cerebellar nuclei; GE, 
idiopathic generalised epilepsy; TRN, thalamic reticular nucleus.

implicated in the secretion of aldosterone secretion from the 
adrenal zona glomerulosa and in situ hybridisation studies 
combined functional and pharmacological analysis have revealed 
that Cav3.2 is the main channel isoform generating the T-type 
current.131 Whole exome sequencing of patients with PA has 
identified several germline mutations in CACNA1H. Despite an 
incomplete penetrance, these variants often segregate with the 
disease132–134 (figure 2). Heterologous expression of the mutated 
Cav3.2 channels in HEK-293 cells revealed several alterations 
of the gating of the channel generally consistent with a gain-of-
channel function (table 1). In addition, potassium-induced aldo-
sterone secretion is enhanced in several aldosterone-producing 
adrenocortical cell lines expressing Cav3.2 variants.133 134 This 
effect may be attributed to a direct potentiation of aldoste-
rone release and/or to an augmented aldosterone production 
since an increased expression of genes encoding for enzymes 
involved in the metabolism of aldosterone was also observed 
in cells expressing Cav3.2 variants. It is important to note that 
in contrast to CACNA1D mutations that are often associated 
with severe neurodevelopmental and endocrine disorders,135 136 
PA-associated CACNA1H mutations are typically not accompa-
nied with other conditions.

CACNA1G (Cav3.1) channelopathies
CACNA1G has been associated with both cerebellar ataxia and 
epilepsy. Cerebellar ataxias are clinically heterogenous disor-
ders affecting the cerebellum and cerebellar pathways resulting 
in impaired coordination. While non-genetic ataxias are caused 
by acquired conditions or sporadic neurodegenerative disorders, 
several genes have been associated with hereditary cerebellar 
ataxias where ion channels are largely represented.137 Among 
these genes, CACNA1G encoding for the Cav3.1 T-type channel 
has emerged as a potential contributor and whole exosome 
sequencing identified a common R1715H variant that segre-
gates in several families with autosomal dominant cerebellar 
ataxia.138–141 This mutation is located in the IVS4 voltage sensing 
region of Cav3.1 (figure 3). Consistent with the notion that posi-
tively charged residues within the voltage sensing region of the 
channel are essential for the gating, electrophysiological anal-
ysis of the mutant Cav3.1 channel in HEK-293 cells revealed a 
variety of alterations consistent with a loss-of-channel function 
(table 1), which is corroborated by computer simulations in deep 
cerebellar nuclei neurons that suggest a decreased neuronal excit-
ability. Importantly, altered T-type currents were also confirmed 
in iPSC-derived Purkinje cells from patient carrying the R1715H 
variant.139 Gain-of-function mutations in CACNA1G have also 
been identified in patients with childhood-onset cerebellar 
atrophy.142 Three subjects showed an A961T variant, and one 

patient had an M1531V substitution. Both of these mutations 
induced gains-of-function by impairing the inactivation of the 
channel. A recent case report has implicated CACNA1G muta-
tions in spinocerebellar ataxia type 42. An M1574L mutation 
was found in three patients from a Chinese family. In addition 
to ataxia, the clinical phenotype included cerebellar atrophy and 
brainstem defects.143

Mutations in Cav3.1 have been associated with the devel-
opment of epilepsy. In a cohort of 123 patients with IGEs, 13 
CACNA1G variants were identified, including five that led to 
amino acid substitutions.144 In this study, an A570V substitution 
was found in a sporadic case of juvenile myoclonic epilepsy, as 
was an A1089S substitution that was detected in three family 
members. A biophysical analysis of the biophysical consequences 
of these mutations did not identify statistically significant effects. 
Interestingly, it has recently been reported that the CACNA1G 
gene can act as a modifier of Dravet syndrome induced by defects 
in the sodium channel Nav1.2,145 146 suggesting that previously 
identified CACNA1G mutations may also interact phenotypi-
cally with other genes, rather than being pathogenic per se.

CACNA1I (Cav3.3) channelopathies
As for CACNA1G, the channelopathies associated with CACNA1I 
are yet limited and only recently two de novo missense variations 
were identified in individual with schizophrenia,147 a psychiatric 
disorder for which the genetic includes a variety of common and 
rare variants.148 Both mutations are located in the pore-forming 
region of Cav3.3 (figure  4). While these two variants had no 
biophysical effect, the A1346H mutation caused a significant 
decrease of the expression of the channel, possibly by altering 
glycosylation of Cav3.3.149 In contrast, the T797M variant had 
no impact on the channel (table  1). Computer simulations in 
thalamic reticular nucleus neurons also support a decreased 
neuronal excitability caused by schizophrenia-associated 
R1346H mutation. In contrast with Cav3.1 and Cav3.2, muta-
tions in Cav3.3 have so far not been associated with epilepsy.150

Functional prediction of Cav3 mutations
Although the effect of several Cav3 mutations on the functioning 
of the channel has already been characterised, hundreds of addi-
tional variants have yet to be analysed. The question then arises as 
to whether we could predict their functional impact. Therefore, 
we collected all functional data currently available for Cav3.2 
in order to attribute a functional score for each mutation. The 
functional score was established as follow: score 1 for mutations 
producing less than a 2 mV alteration of the voltage-dependence 
of activation or inactivation or less than a 20% alteration of 
the kinetics (activation, inaction, recovery from inactivation) or 
current density compared with the wild type channel; score 2 for 
mutations producing a between 2 mV and 5 mV alteration of the 
voltage-dependence or a between 20% and 50% alteration of 
the kinetics or current density; score 3 for mutations producing 
more than a 5 mV alteration of the voltage-dependence or 
more than a 50% alteration of the kinetics or current density. 
Because functional analyses are often performed using different 
experimental conditions such as the concentration and nature 
of the permeating cation which directly affect the gating prop-
erties of the channel, the functional score attributed for each 
mutation is based on the relative biophysical effect of the 
mutation compared with the gating properties of the wild type 
channel recorded in the same experimental settings. In parallel, 
each mutation was probed using PolyPhen-2 algorithm151 that 
predicts the possible impact of an amino acid substitution on 
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Figure 4  Location of CACNA1I mutations within the secondary structure 
of Cav3.3 along with their associated syndromes. Only mutations that have 
been functionally characterised are indicated. Protein reference: UniProt 
Q9P0×4. SCZ, schizophrenia.

Figure 5  Prediction of CACNA1H variants on Cav3.2 channel gating. (A) Summary of PolyPhen-2 qualitative prediction and functional experimental score 
for each Cav3.2 mutations characterised experimentally. (B) Chart representing the proportion of Cav3.2 variants according to Polyphen-2 prediction as a 
function of their functional score. (C) Plot of the mean functional score as a function of Polyphen-2 prediction.

the structure and function of a human protein, providing a qual-
itative score 1 for benign, 2 for possibly damaging and 3 for 
probably damaging) (figure 5A). Qualitatively, we observed that 
higher PolyPhen scores tend to associated with higher functional 
scores, although a small fraction of mutations predicted to be 
damaging are not associated with functional alteration and vice 

versa (figure 5B). When plotting the average functional scores 
against Polyphen predicted scores, we observed a very strong 
correlation (R=0.9663), suggesting that in average it may be 
possible to predict to which extent a mutation might alter the 
functioning of the channel with a relative degree of certainty 
(figure 5C).

Conclusion and perspectives
A number of genetic association studies have identified varia-
tions in the genes encoding different T-type channels and asso-
ciated with several neuronal, neuroendocrine and psychiatric 
syndromes. However, because of the absence of traditional 
segregation patterns in families in part due to reduced pene-
trance in adults with the absence of large multiplex families, de 
novo mutations and/or variable expressivity, many Mendelian 
traits are likely overlooked. In addition, functional analysis of 
Cav3 mutants indicate that these mutations generally produce 
mild alterations of the channel activity, which may be inter-
preted as a weak evidence of the implication of the channel in 
the disease. However, several considerations need to be made. 
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First, functional studies are largely predominated by the use of 
heterologous expression systems that may not entirely reflect 
the extent to which the mutations affect the functioning of the 
channel. For instance, although the cellular and physiological 
aspects controlled by T-type channels are largely dependent 
on their intrinsic gating properties, recent studies have shown 
that T-type channels are far more complex than anticipated in 
terms of their regulation and association with other signalling 
molecules. The impact of the mutations on these aspects is likely 
to be overlooked in heterologous expression systems. Second, 
several Cav3 splice variants have been documented. Therefore, 
it is worth considering the possibility that the functional expres-
sion of the mutations may vary depending on the channel splice 
variant in which it is reintroduced. For instance, as noted earlier, 
this notion is supported by the observation that the biophysical 
expression of the GAERS mutation depends on the Cav3.2 splice 
variant used.23 Third, it is currently complicated to fully appre-
hend the long-term impact of small alterations of the channel 
gating on neurodevelopmental aspects which may have an 
important impact on the pathogenesis of the disease. Indeed, in 
addition to their role in neuronal excitability, T-type channels 
also contribute to several developmental aspects. Finally, the 
observation that T-type channel mutations are not confined to a 
particular structural determinant but are rather scattered across 
the entire protein highlight the need for additional structure-
function relationship studies. It is also important to note that 
mutations in a given gene and producing virtually identical 
biophysical alterations can lead to different disorders typically 
without overlap between the diseases. This is, for instance, the 
case for CACNA1H mutations where a gain-of-function phono-
type leads to PA without conferring other disease risk, while 
similar gain-of-function mutations are associated with increased 
risk for IGE without concomitant endocrine disorders. This 
phenotypic heterogeneity suggests that several additional factors 
such as modifier genes, environmental aspects, allelic variations 
or complex genetic and environmental interactions are likely to 
contribute to penetrance and expressivity of these mutations.152

In addition to disorders for which T-type channels have already 
been implicated, it is likely that other disorders could be caused 
or influenced by mutations or polymorphisms in T-type channel 
genes. Indeed, besides being expressed in electrically excitable 
tissues, T-type channels are also present in several non-excitable 
cells. For instance, Cav3.1 channels are functionally expressed 
in immune T cells where they shape the immune response.5 6 
T-type channels are also expressed in sperm cells where they 
participate to the fertilisation of the egg.4 Similarly, T-type chan-
nels contribute to calcium signalling in osteocytes.3 This suggests 
that additional human T-type channelopathies might exist. An 
important step forward in our understanding of T-type chan-
nelopathies will be the identification of modifier genes that are 
likely to play an important role in the phenotypic expressivity of 
T-type channel variants.
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