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Abstract

The analysis of the combined mRNA and miRNA content of a biological sample can be of interest for answering several research
questions, like biomarkers discovery, or mRNA–miRNA interactions. However, the process is costly and time-consuming, separate
libraries need to be prepared and sequenced on different flowcells. Combo-Seq is a library prep kit that allows us to prepare combined
mRNA–miRNA libraries starting from very low total RNA. To date, no dedicated bioinformatics method exists for the processing of
Combo-Seq data. In this paper, we describe CODA (Combo-seq Data Analysis), a workflow specifically developed for the processing
of Combo-Seq data that employs existing free-to-use tools. We compare CODA with exceRpt, the pipeline suggested by the kit
manufacturer for this purpose. We also evaluate how Combo-Seq libraries analysed with CODA perform compared with conventional
poly(A) and small RNA libraries prepared from the same samples. We show that using CODA more successfully trimmed reads are
recovered compared with exceRpt, and the difference is more dramatic with short sequencing reads. We demonstrate how Combo-Seq
identifies as many genes and fewer miRNAs compared to the standard libraries, and how miRNA validation favours conventional small
RNA libraries over Combo-Seq. The CODA code is available at https://github.com/marta-nazzari/CODA.
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Introduction
The analysis of the RNA content of a biological sample, referred
to as transcriptomics, has become a routine practice for many
fields of biology. The transcriptome comprises several types of
RNA, called biotypes [1], whose composition varies depending on
the type of sample or cell model [2–5]. Some of the most frequently
studied biotypes are messenger RNAs (mRNA) and micro RNAs
(miRNAs) due to their link with protein expression levels or for
their biomarker potential [6–11]. mRNAs generally possess a 3′

poly(A) tail and are usually 1 kilobase or longer [12–14], while
miRNAs are short non-coding RNAs that are 20–22 nucleotides
long [15].

Currently, simultaneous mRNA and miRNA analysis from the
same sample is often performed by preparing separate sequenc-
ing libraries for the two RNA species. These libraries follow two
very different protocols for selecting the desired RNA: mRNA
libraries protocols either perform positive poly(A) selection, cap-
turing all RNA species that possess a 3′ poly(A) tail (so called
‘poly(A) libraries’), or perform a negative rRNA selection, by using
baits targeting the ribosomal RNA (rRNA) to deplete these species
from the total RNA (termed ‘ribodepleted libraries’). To sequence
the miRNA content of a sample, a small RNA library needs to be
prepared, which selects small RNAs by performing a size selection.
The separate preparation of two libraries can pose a problem for
samples that have very low starting material or RNA content.

Moreover, mRNA and miRNA sequencing libraries need to be
sequenced on separate flowcells, due to the different number
of cycles required (since the insert sizes differ greatly), and by
the type of reads generated. In fact, mRNA reads are sequenced
paired-end, while short RNA libraries single-end. If longer and
shorter fragments were mixed in the same flowcell, the short
fragments would tend to outcompete the longer fragments, which
would result in the former being overrepresented and latter being
undersequenced. When sequencing continues through the full
fragment, there can be a sharp decline in base quality and the
sequencing run could be potentially aborted [16]. Lastly, when
different library prep kits are used, barcodes and barcode collision
must be considered to confirm compatibility for multiplexing.

One commercially available library prep kit that aims to over-
come these limitations is the NEXTFLEX® Combo-Seq™ library
prep kit that allows to prepare combined mRNA/miRNA libraries
starting from very little input total RNA (between 5 ng and 100 ng)
[17]. In this method, poly(A) RNAs are first selectively retrotran-
scribed; RNA–DNA hybrids are then digested by RNase H into
small fragments; the sample then contains mRNA-derived frag-
ments and short RNAs of comparable length that are further pro-
cessed in the same way. As such, miRNAs but also other similarly
short RNA species, like small nucleolar RNAs (snoRNAs), can be
captured. The final library contains sequences of homogeneous
size that can be then sequenced in a single flowcell.
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Recently, Illumina commercialized the v1.5 S4 35 cycle kit [18]
for the NovaSeq6000 sequencer, which generates short reads. As
the average insert length of a Combo-Seq library is 21–22 nt, it
possesses a very suitable length for being sequenced on a 35-cycle
flowcell, further reducing the price per sample to study the full
transcriptome at very high throughput.

To date, no dedicated pipeline exists to process Combo-Seq
generated datasets, and the manufacturer of Combo-Seq recom-
mends using exceRpt [19]. This toolkit was developed for the
analysis of extracellular RNAs but can be adapted to the analysis
of WGS/exome and long RNA-seq data according to the authors
[20]. The published works we could find using Combo-Seq libraries
employ exceRpt for their bioinformatics analysis [17,21,22]. As
it was not originally developed for Combo-Seq, it presents some
problems when used on this type of data: the references use
custom gene annotations that group together gene counts based
on the biotype, making it a hybrid between a gene and transcript
level analysis. They are custom made by the developers and
available only for human (hg19 and hg38) and mouse (mm10). The
user is thus bound to using them and they cannot be changed
or updated, as it is not possible to prepare a reference using
a genome version downloaded from common repositories such
as Ensembl and Gencode. As a consequence, the applicability
of Combo-Seq libraries is reduced to only two species with an
outdated reference.

To our knowledge, no independent evaluation of Combo-
Seq has been performed, and users could wonder if it provides
results comparable to using a combination of poly(A) and miRNA
libraries. For example, mRNA is fragmented in a different way
(enzymatically in the Combo-Seq protocol or chemically in most
poly(A) libraries), and mRNA fragments undergo a different
size selection, since Combo-Seq retains short poly(A)-derived
fragments, while standard poly(A) libraries usually include 300 nt
long inserts and longer (and thus exclude the shorter mRNA
fragments from the pool).

In this work, we developed a custom-tailored workflow for the
processing of Combo-Seq data which uses existing tools com-
monly used in RNA-Seq data analysis and compared it to exceRpt.
We generated Combo-Seq libraries from two different in vitro cell
models and sequenced them in 100- or 35-cycle flowcells. We
processed them with CODA or exceRpt and noticed how exceRpt
discards part of the reads during the trimming step. We show that
this is more dramatic as the average read length decreases and
it is more biased toward some RNA species. We also provide an
evaluation of Combo-Seq performance compared to conventional
poly(A) and small RNA libraries prepared from the same RNA
samples. We performed differential expression (DE) analysis to
compare the dysregulated genes and miRNA after benzo[a]pyrene
treatment that can be identified with the different libraries. We
show that the DE genes partially overlap between the two types
of libraries, while there is no overlap of DE miRNAs. In addition,
we performed miRNA RT-qPCR validation to solve discrepancies
between conventional small RNA libraries and Combo-Seq quan-
tification.

Methods
Thyroid follicles differentiation and enrichment
Mouse embryonic stem cell-derived thyroid follicles were differ-
entiated and enriched as described previously [23, 24] (see also
Supplementary Methods).

Datasets
The datasets used in this paper were obtained from two sources:
(1) the human epithelial follicular cell line Nthy-ori 3-1 was
seeded at a density of 40 000 cells/cm2 in a 6-well plate and
exposed for 24 h in triplicate to 1 or 10 μM benzo[a]pyrene (BAP) (B-
1760, Sigma) dissolved in DMSO (dimethyl sulfoxide,1029521000,
Merck) (final concentration of DMSO 0.5%). Six DMSO controls
were included. Cells were cultured in RPMI 1640 Medium, Gluta-
MAX™ Supplement (61870036, Gibco) with 10% FBS (fetal bovine
serum) and 100 U/mL penicillin–streptomycin (15140122, Gibco).
(2) Enriched thyroid follicles were exposed to DMSO 0.5% for
24 h (five biological replicates). For culture, the differentiation
medium (see Supplementary Methods) was supplemented with 8-
Br-cAMP (0.3 nM) and TGF-βRI inhibitor SB431542 (10 μM) (1614,
Tocris). At the end of the exposure time, cells were lysed in QIAzol
Lysis Reagent (79306, Qiagen). Total RNA was extracted using the
Direct-zol RNA miniprep (R2051, Zymo Research) for Nthy-ori 3-1
cells and with the miRNAeasy Micro Kit (217084, Qiagen) for the
follicles.

Libraries preparation and sequencing
An amount of 50 ng (Nthy-ori 3-1) and 20 ng (thyroid follicles)
of total RNA were used as input for the NEXTFLEX® Combo-
Seq™ mRNA/miRNA Kit (NOVA-5139-53, PerkinElmer). All RNA
integrity number (RIN) values, as calculated by the Agilent soft-
ware [25], were 8 or higher. tRNA fragments and Y RNA fragments
were depleted with NEXTFLEX® tRNA/YRNA blocker. A total of 13
and 16 PCR cycles were performed for Nthy-ori 3-1 and follicles,
respectively. Nthy-ori 3-1 samples were sequenced on an S2 Illu-
mina flowcell 100 cycles (v1.5) (Illumina) in single-end mode; folli-
cles samples were sequenced on an S4 Illumina flowcell 35 cycles
(v1.5) (Illumina) in single-end mode. Throughout this paper, we
will sometimes refer to the RNA-Seq data derived from the Nthy-
ori 3-1 and the follicles as ‘1×100 dataset’ and ‘1×35 dataset’,
respectively (‘1×’ means that both libraries were sequenced in
single-end mode).

Poly(A) libraries were prepared on an automated system
(Zephyr G3® NGS) with the NEXTFLEX® Rapid Directional RNA-
Seq Kit 2.0 (NOVA-5198-02, PerkinElmer), NEXTFLEX® Poly(A)
Beads 2.0 (NOVA-512992, PerkinElmer) and NEXTFLEX® Unique
Dual Index Barcodes (NOVA-512923, PerkinElmer) using 1 μg of
total RNA extracted from Nthy-ori 3-1 samples and performing
10 PCR cycles. The libraries were sequenced on an S1 Illumina
flowcell 200 cycles (v1.5) (Illumina) in paired-end mode.

miRNA libraries were prepared manually with the NEXTFLEX®

Small RNA-Seq Kit v3 (NOVA-5132, PerkinElmer) from 100 ng of
total Nthy-ori 3-1 RNA and performing 18 PCR cycles. They were
sequenced on an S4 Illumina flowcell 35 cycles (v1.5) (Illumina)
in single-end mode.

All prepared libraries were quantified on a Qubit 2.0 Fluorom-
eter (ThermoFisher), and quality control performed on the 2200
TapeStation System (Agilent) or BioAnalyzer 2100 expert (Agilent).
The sequencing was done with the NovaSeq 6000 Sequencing
System (Illumina).

Data analysis
RNA-Seq data processing
Data from Combo-Seq libraries were processed with exceRpt
(v4.6.3, 2018-03-18) or CODA. When using exceRpt, we followed
the parameters suggested by PerkinElmer (Supplementary Table
S1) [19].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
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CODA is composed of three steps. Reads are trimmed using
Cutadapt (v3.4) [26] and used as input in two different steps:
miRNAs are quantified with miRge3.0 (v3.0) [27], while genes
using RSEM (v1.3.3) with the —STAR option (v2.7.9a). The STAR
parameters that are hard-coded in RSEM follow the ENCODE3’s
STAR-RSEM pipeline [28], and we opted for these options over
the default STAR because they allow read alignment to more loci
and permit fewer base mismatches than the default (Supplemen-
tary Table S2) [29, 30]. The primary assemblies of the human
(GRCh38) and mouse (GRCm39) genomes were downloaded from
Gencode (https://www.gencodegenes.org/) [31]. For miRNA detec-
tion, the human (v22) and mouse (v22) annotations were obtained
from miRBase (https://www.mirbase.org/) [32]. BBMap (v38.94)
[33], FastQC (v0.11.5) [34] and multiQC (v1.11) [35] are used for
quality control. The CODA code is available at https://github.com/
marta-nazzari/CODA.

Demultiplexed data from small RNA libraries were processed
as suggested by PerkinElmer [36] and used as input for miRge3.0.
Demultiplexed data from poly(A) libraries were processed using
a modified version of the Omics Data Analysis Framework for
regulatory application (R-ODAF) [37, 38]: reads were trimmed with
fastp [39], and aligned and mapped using RSEM with the —STAR
option.

Pipelines comparison
exceRpt performs adapter trimming and reads size selection in
several steps. First, the 3′ adapter sequence is removed, followed
by a combined 5’ 4 N adapter trimming and exclusion of the
5′ trimmed inserts shorter than 15 nt. As only reads that are
3′ adapter trimmed are reported in the summary statistics by
exceRpt, we retrieved the number of reads passing both trimming
and size-selection filters from the output .log files. The count
of reads trimmed by CODA is the ‘Reads passing filters’ statistic
output by Cutadapt.

The length distribution of trimmed reads was retrieved from
the summary file ‘exceRpt_ReadLengths.txt’ for the exceRpt
pipeline, or after running FastQC for CODA.

To compare CODA and exceRpt, we analysed the genes and
miRNA counts separately. Since exceRpt uses custom-made anno-
tations, a one-to-one feature comparison with the Gencode and
miRge3.0 ones is not possible. For this reason, we summed all
biotypes of the same gene in a single count for exceRpt (see also
Supplementary Methods). For CODA, we used the gene counts
output by RSEM. In addition, as exceRpt filters out reads mapping
to all primary endogenous rRNA genes, we mapped all genes to
the corresponding biotype using the biomaRt R package [40, 41]
and removed all rRNA counts from both datasets. To compare
miRNA counts, we kept only the annotations that overlap between
the miRge3.0 and exceRpt outputs, as trying to manipulate the
annotations to match the discordant annotations could introduce
a bias. The differences between the two workflows are reported in
detail in Supplementary Table S3.

Principal component analysis and correlation analysis
Principal component analyses were performed on variance-
stabilized expression levels of normalized gene and miRNA
read counts using the R package PCAtools (v2.4.0) [42]. Pearson
correlation was used to calculate the correlation between genes
read count. To calculate the miRNA expression correlation among
samples prepared with Combo-Seq and small RNA library prep kit,
we ranked the miRNAs based on level of expression (miRNA with
the highest read count = highest rank). When multiple miRNAs
had the same read count, they were assigned the same rank with

the highest value. miRNAs for which the read count was 0 in
all samples were removed. To evaluate the correlation between
miRNAs, we used the non-parametric Spearman correlation.

DE and gene ontology analysis
DE analysis was performed with R using the DESeq2 [43] and
edgeR [44]. To select relevant DE genes and miRNA, stringent
filtering was applied using a modified version of the R-ODAF.
Briefly, a gene was considered expressed if its count per million
(CPM) value is ≥1 in at least 75% of the replicates of either group
(i.e. BAP or DMSO). In addition, DE genes and miRNAs identified
by DESeq2 were filtered to remove spurious spikes (for details, see
the paper by Verheijen et al. [37]). To increase statistical power, all
BAP samples were grouped together and compared to the DMSO
controls. Gene ontology (GO) (2021) [45, 46] and Reactome (2022)
[47] enrichment analyses were performed using the web-based
tool Enrichr [48], and the FDR was set to 0.01.

miRNAs reverse transcription-qPCR
Total RNA from the six Nthy-ori 3-1 DMSO control samples was
used for cDNA synthesis with the TaqMan® Advanced miRNA
cDNA Synthesis Kit (A28007, Applied Biosystems) according to
manufacturer’s protocol. The synthesized cDNA was used for
qPCR using the TaqMan™ Fast Advanced Master Mix (4444556,
Applied Biosystems) and TaqMan™ Advanced miRNA Assay
(A25576, Applied Biosystems) following the manufacturer’s
protocol for hsa-miR-122-5p (477855_mir), hsa-miR-361-3p
(478055_mir) and hsa-miR-622 (479106_mir). The program used
for the qPCR reaction was 20 s at 95 ◦C (1 cycle), 3 s at 95 ◦C–30 s at
60 ◦C (40 cycles) on a CFX Connect™ Real-Time System (Bio-Rad).
Each sample was analysed in four technical replicates. For each
sample a technical replicate was retained if its Ct value difference
from its closest other replicates was lower than 0.6.

Results
Description of CODA
For the processing of Combo-Seq data, we developed a pipeline
named ‘CODA’ (Combo-Seq Data Analysis), composed of three
different steps (Figure 1). The first step uses Cutadapt to trim the
5′ and 3′ adapters and discard reads that are shorter than 15 nt.
Since Combo-Seq generates libraries from both polyadenylated
RNA species and miRNA, the workflow splits in two and the
trimmed files are used as input for gene and miRNA mapping
and quantification. To analyse the reads that derive from poly(A)-
tailed species, the trimmed reads are aligned to the reference
genome with STAR and quantified using RSEM. To identify miR-
NAs, the trimmed reads are used as input for miRge3.0. The genes
and miRNAs count files output by both tools for each sample
are then merged into a single table for genes and for miRNAs.
The pipeline outputs a report with useful QC metrics that can be
inspected by the user.

Comparison of CODA with exceRpt
Trimming and read length distribution
Since the first step of both pipelines is adapter trimming, we
evaluated the number of retained trimmed reads and their length
distribution. Figure 2A shows the read length distribution of the 1
× 100 samples trimmed with CODA or exceRpt. The maximum
read length of samples processed with CODA (97 nt) is longer
than the maximum length identified by exceRpt (90 nt). The
median number of reads that pass adapter trimming is 89.44%
and 90.90% of total input reads when using exceRpt or CODA,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
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Figure 1. Schematic representation of CODA: fastq or fastq.gz sequencing files are used as input and 5′ and 3′ sequencing adapters are removed using
Cutadapt. Reads shorter than 15 nt are also discarded. This trimming step retains also reads with a partial or missing 3′ adapter (a point further discussed
in the section ‘Trimming and read length distribution’). Mapping and quantification of miRNA is then performed using miRge3.0. Genes mapping and
quantification is then performed with RSEM using STAR as aligner (which follows the criteria of the ENCODE3’s STAR-RSEM pipeline). As each tool
outputs a single file per sample, the count files are then merged into a single table for genes or miRNAs. The last step uses the BBMap suite and FastQC
to gather some summary statistics on the trimmed/mapped reads and MultiQC is used to compile all information into a .html report.

respectively (Figure 2B). On average, an additional 1.46% of total
raw reads are retained by CODA and their length is between 91
and 97 nt. This increase is even more evident with datasets that
have shorter reads, like the one generated from thyroid follicles
sequenced on a 1 × 35-cycle flowcell (Figure 2C). The maximum
read length when using CODA is 44 nt, while it is 37 nt when
using exceRpt. The median percentage of reads that successfully
pass 5′ and 3′ adapter trimming when using exceRpt is 73.39%
of total sequenced reads. This number increases to 89.12% when
the same samples are trimmed with CODA, retaining an addi-
tional 15.73% of the raw reads. The difference in maximum read
length identified by the two methods likely lies in the choice of
trimmer. When sequencing single-end libraries (like Combo-Seq),
if a fragment is longer than the total number of cycles of the

chosen flowcell, only part of the fragment will be sequenced, thus
partly or completely excluding the 3′ adapter (since single-end
libraries are always sequenced from the 5′ end). Cutadapt has the
option to retain such reads, while the one used by exceRpt with
the options set by the exceRpt developers (fastx -M 7) allows only
1 nt mismatch (Supplementary Figure S1) and if the reads are not
clipped, they are discarded (determined by the -c flag in the fastx
command) [49]. Effectively, exceRpt discards reads where the 3′

adapter is either 6A or shorter or missing altogether. This factor is
the most impactful on the trimmed read length distribution, as 1
× 100 dataset reads trimmed with two other trimmers retaining
non-clipped reads show a similar distribution as Cutadapt, with a
peak at the maximum read length, 97 nt (Supplementary Figure
S2) (see also Supplementary Methods).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
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Figure 2. (A) Read length distribution of 1 × 100 dataset processed with exceRpt (red) or trimmed with CODA (blue). (B) Distribution of trimmed reads
expressed as percentage of total raw read count. (C) Read length distribution of 1 × 35 dataset processed with exceRpt (red) or trimmed with CODA
(blue). For plots A and C, the line represents the average count, while the edges of the shaded area correspond to the highest and lowest count among
the replicates.

Comparison of mapping and quantification
Since Combo-Seq libraries capture both poly(A) species and miR-
NAs, our pipeline performs separately gene and miRNA mapping
and quantification. We compared the reads mapping to genes or
miRNA using CODA and exceRpt.

The mapping efficiency is comparable, evidenced by similar
percentages of trimmed reads mapping to genes or miRNA in
both datasets (Table 1). However, since the number of reads suc-
cessfully passing trimming is higher when using CODA, samples
processed with it have more total mapping reads compared to
exceRpt, especially in the 1 × 35 dataset, going from a median
52.01 M (exceRpt) to 60.69 M (CODA) reads. The median count
of miRNA-mapping reads is instead comparable between the
two methods, supporting the observation that, for shorter inserts
like miRNAs, the 3′ adapters are fully sequenced, and the reads
properly trimmed.

Comparison of genes and miRNAs
To analyse how many and which genes are identified by either
pipeline, we first analysed the overlap of the genes which have a
raw read count greater than 0 in the 1 × 100 and 1 × 35 datasets
processed either with CODA or exceRpt. While the total read count
is higher when the samples are processed with CODA, exceRpt

maps the reads to more genes (Supplementary Figure 3A–C, G).
This is not the case for miRNAs, where a comparable number of
mapped features are detected by both pipelines (Supplementary
Figure 3D–F, H). We then analysed the raw read count distribution
per RNA biotype in the 1 × 100 dataset (Supplementary Figure
S4A) and observed that exceRpt assigns reads to low-expressed
genes belonging to several biotypes, whose count is instead 0
in CODA. The read count distribution for protein coding genes
appears to be bimodal in both pipelines, with two peaks identi-
fiable for ‘low’ and ‘high’ expressed genes (Supplementary Figure
S4B).

Looking at the PCA plots, samples cluster along PC1 according
to the pipelined use both for genes (Figure 3A and B) and miRNAs
(Figure 3C and D), for both the 1 × 100 and 1 × 35 datasets,
showing how the processing method is the biggest source of varia-
tion (Supplementary Figure S5). Additionally, clustering along PC2
reflects the BAP-treated versus control condition for the Nthy-ori
3-1 dataset.

Gene counts correlation is stronger among samples analysed
with the same pipeline, which remains relatively high across the
two methods for the 1 × 100 dataset (Figure 4A). In the 1 × 35
dataset, the correlation among biological replicates analysed with
the same pipeline is also high but shows a lower value across
methods (Figure 4B). The relatively higher correlation between

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
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Table 1. Median counts and proportions of reads mapped to the reference transcriptome (or to exceRpt Gencode annotations) and
miRNA and quantified with CODA or with exceRpt in the 1 × 100 and 1 × 35 datasets

1 × 100 dataset 1 × 35 dataset

Read count Percentage of trimmed reads Read count Percentage of trimmed reads

CODA exceRpt CODA exceRpt CODA exceRpt CODA exceRpt

Total trimmed reads 46.32 M 45.50 M 100% 100% 73.37 M 61.69 M 100% 100%
Genes mapping reads 40.07 M 39.36 M 86.50% 86.42% 60.69 M 52.01 M 84.14% 85.60%
miRNA mapping reads 0.13 M 0.12 M 0.27% 0.25% 1.40 M 1.39 M 1.80% 5.95%

Figure 3. PCA plots showing PC1 and PC2 of PCA analysis carried out on variance-stabilized normalized gene counts for (A) 1 × 100 and (B) 1 × 35
samples processed with either pipeline. Plots showing PC1 and PC2 of PCA analysis carried out on variance-stabilized transformed miRNA counts for
(C) 1 × 100 and (D) 1 × 35 samples processed with either pipeline (cyan = CODA, red = exceRpt).

CODA and exceRpt in the 1 × 100 dataset compared to the 1 × 35
one could be explained by the fact that the median total gene read
count is very similar (from 39.36 M with exceRpt to 40.07 M reads
with CODA, with an increase of around 0.71 M reads). For the 1 ×
35 dataset, instead, there is a gain of ∼8.68 M reads per sample
(around +17%, from a median 52.01 M with exceRpt to 60.69 M
with CODA).

Correlation of normalized miRNA counts for both datasets
is higher among samples analysed with the same pipeline and
between the same sample analysed with CODA or exceRpt
(Figure 4C and D).

To investigate the correlation difference among samples in
the 1 × 100 dataset compared to the one in the 1 × 35 dataset,
we analysed the RNA biotype composition of the Nthy-ori 3-1
and follicles DMSO control samples. To reduce the background
noise and highlight the most consistent differences, we focused
on biotypes representing at least 1% of total mapping reads on
average (Figure 5A and B, Supplementary Table S4). Reads map-
ping to lncRNA and snoRNA are mainly between 60 and 100 nt
long and are thus identified in the 1 × 100 dataset samples by

both pipelines. Mitochondrial rRNA (Mt rRNA) reads show two
peaks, at 89 and 91 nt, but the 91 nt peak is not identified
by exceRpt (Figure 5C). snoRNA are almost completely missed
by exceRpt. Possibly, these reads and other biotypes on average
longer than 44 nt do not have a complete 3′ adapter, and are
thus discarded by exceRpt. By recovering longer reads with an
incomplete adapter, CODA also recovers protein coding reads,
which constitute between 40% and 80% of the reads with an
incomplete or partial adapter (Figure 5D).

DE analysis was performed to evaluate the number of DE
genes and miRNA after BAP exposure of Nthy-ori 3-1 cells (1
× 100 dataset). MA-plots of the dataset processed with either
workflow showed comparable distributions for the genes (Sup-
plementary Figure S6A and B), while highly expressed miRNAs
are characterized by a higher log2 fold change when analysed
by CODA (Supplementary Figure S6C and D). In addition, the two
pipelines identify a comparable number of DE genes and miRNA
(CODA: 1201 DE genes, 1 DE miRNA; exceRpt: 1251 DE genes, 0
DE miRNA) (FDR = 0.01) (Supplementary Figure S6E and F) but
only a partial overlap between genes (Supplementary Figure S6G).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
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Figure 4. Pearson correlation of normalized gene counts for (A) 1 × 100 and (B) 1 × 35 samples. Pearson correlation of normalized miRNA counts for (C)
1 × 100 and (D) 1 × 35 samples.

GO and Reactome analysis show how the P-adjusted values for
the same pathways are mostly lower in CODA (Supplementary
Figure S7A and C) and showing enrichment for more terms (Sup-
plementary Figure S7B and D). As BAP is known to be a strong
inducer of the cytochrome P450 enzymes CYP1A1 and CYP1B1
via the activation of the aryl hydrocarbon receptor (AHR) [50], we
analysed the expression of these two genes: both result DE at a
comparable level (CYP1A1: p-adj = 5.2e-11 in CODA, p-adj = 4.2e-
10 in exceRpt; CYP1B1: p-adj = 1.5e-05 in CODA, p-adj = 2.3e-10 in
exceRpt) (Supplementary Figure S7E and F). Taken together, these
results show how DE results are comparable between pipelines,
with CODA showing higher sensitivity in gene functional enrich-
ment analysis.

Evaluation of Combo-Seq compared to poly(A)
and small RNA libraries
To evaluate the genes and miRNA identified by Combo-Seq
libraries, we compared them to conventional poly(A) libraries
(for genes) and small RNA libraries (for miRNAs) prepared with
the same Nthy-ori 3-1 input RNA. We evaluated the number of
expressed genes and miRNA using both libraries and performed

DE analysis to identify genes and miRNA dysregulated upon BAP
treatment.

The median total gene read count is 42.4 M and 35.0 M reads
for Combo-Seq and poly(A) libraries, respectively (Supplementary
Figure S8A), while for miRNAs it is 0.13 M (Combo-Seq) and 2.78 M
(small RNA libraries) reads (Supplementary Figure S8B). Samples
cluster along PC1 based on library preparation method and along
PC2 based on treatment both for genes (Figure 6A) and miRNAs
(Figure 6B), showing how the type of library is the greatest source
of variation (Supplementary Figure S9). In addition, the greater
spread along PC2 for Combo-Seq samples could be attributed
to the libraries preparation over different batches, as opposed
to the poly(A) and small RNA libraries, which were prepared in
single batches, or to the low number of miRNA-mapping reads
in Combo-Seq samples, as background noise tends to increase
with small sample sizes. Correlation of genes normalized counts
is not very high between the two different libraries compared
to the correlation within the same methods (Figure 6C). Due to
the very different sequencing depths of the two datasets, nor-
malization for library size would tend to overestimate miRNA
count in the samples prepared with Combo-Seq (Supplementary

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
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Figure 5. Average biotype composition of (A) 1 × 100 (six replicates) and (B) 1 × 35 (five replicates) DMSO control samples processed with either CODA
or exceRpt. The values are expressed as percentage of total gene read counts. Read length distribution for (C) 1 × 100 and (D) 1 × 35 datasets expressed
as percentage of total mapped reads grouped per biotype. Only the biotypes representing at least 1% of total reads on average are reported.

Figure S10). We then ranked the miRNAs in each sample based
on their level of expression (highest read count = highest rank)
and calculated Spearman correlation of the ranks across samples.
The correlation plot confirms the PCA results, showing a high
correlation among samples prepared with the same type of library
(Figure 6D).

To evaluate how the type of library affects genes and miRNA
detection, we compared the transcripts that are thus considered
expressed. On average, as many genes are identified in samples
prepared with poly(A) as in Combo-Seq libraries (3% more on aver-
age) (Supplementary Figure S11A–C). On the other hand, small
RNA libraries identify 1.8 times more miRNAs than Combo-Seq
on average, and similarly to genes, most of the ones detected by
Combo-Seq overlap with the other library (Supplementary Figure
S11D and F). Regression analysis of the average normalized read
count of expressed genes and miRNAs for each group is not

very strong (average R2 = 0.60 for genes and R2 = 0.69 for miRNAs)
(Supplementary Figure S12).

Next, to identify DE genes and miRNA in the BAP-treated
samples compared to the DMSO control, we performed DE
analysis. When the samples are prepared with poly(A) libraries
or Combo-Seq libraries, 4462 or 1186 genes result DE, respectively,
967 of which overlap between the two methods (Figure 7A). GO
analysis shows that most top 10 terms are shared by Combo-
Seq and poly(A) and are related to the processes of protein
localization to telomeres (GO:0070203, GO:1904851, GO:1904816),
regulation of apoptosis (GO:0042981, GO:0043065, GO:0043069),
extracellular matrix organization (GO:0030198, GO:0097435,
GO:0030334, GO:0030335) and regulation of protein localization
to Cajal body (GO:1904871, GO:1904869) (Figure 7B). Reactome
enrichment analysis shows similar results, where on average the
top hits tend to have a lower P-adjusted value in the poly(A)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
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Figure 6. (A) PCA plot of variance-stabilized transformed gene counts of Nthy-ori 3-1 samples prepared using Combo-Seq or poly(A) libraries. (B) PCA
plot of variance-stabilized transformed miRNA counts of Nthyori 3-1 samples prepared using Combo-Seq or small RNA libraries. (C) Person correlation
of normalized gene counts for Nthy-ori 3-1 samples prepared with Combo-Seq or poly(A) libraries. (D) Spearman correlation of ranked miRNA counts of
Nthy-ori 3-1 samples prepared using the Combo-Seq kit a small RNA kit. Combo-Seq libraries were sequenced on a 1 × 100 single-end flowcell, poly(A)
libraries on a 2 × 200 paired-end flowcell and small RNA libraries on a 1 × 35 single-end flowcell.

dataset compared to Combo-Seq (Figure 7C). Globally, a greater
enrichment in both GO (biological pathway) and Reactome terms
results from poly(A) samples (Supplementary Figure 13). BAP is a
genotoxic compound able to induce apoptosis. For this reason, we
analysed the expression of genes known to be induced by TP53, by
BAP treatment, or labelled as pro-apoptotic (Table 2). It must be
pointed out that neither of the BAP concentrations tested resulted
cytotoxic on Nthy-ori 3-1 cells after treatment for up to 72 h (data
not shown). A partial overlap of the dysregulated genes can be
observed (up: BMF, CDKN1A, CYP1A1, CYP1B1, FAS, MDM2; down:
BNIP3, BOK, GADD45A), while some genes result dysregulated in
either dataset (BAK1, BCL2L11, BID, DDB2, RRMB2).

Using Combo-Seq samples processed with CODA, we identify
only one DE miRNA, while we identify nine DE miRNA from
small RNA libraries samples. Interestingly, there is no overlap
between the DE miRNA in the Combo-Seq and small RNA groups
(Figure 7D). In addition, the only DE miRNA in the Combo-Seq
group (hsa-miR-3654) is not expressed in the small RNA one.
Vice versa, only six out of nine DE miRNA (hsa-miR-1268a/1268b,
hsa-miR-186-5p, hsa-miR-222-3p, hsa-miR-30a-3p, hsa-miR-30c-
2-3p, hsa-miR-92a-1-5p) are expressed in the Combo-Seq group.

To discern which of the two libraries most truthfully detects the
miRNAs in our samples, we validated the expression of three
miRNAs using RT-qPCR in the DMSO control samples. We selected
miRNAs for which the two datasets disagree in either direction (i.e.
the rank is high in one dataset a low in the other) or are in concor-
dance (Figure 7E): we selected hsa-miR-622, hsa-miR-122-5p and
hsa-miR-361-3p (Supplementary Figure S14). RT-qPCR shows how
hsa-miR-361-3p is the only miRNA detected in the DMSO control
samples, at consistent levels among biological replicates. On the
other hand, hsa-miR-122-5p and hsa-miR-622 are not detected
(Figure 7F).

Intriguingly, hsa-miR-622 is coded within the keratin 18 pseu-
dogene 27 (KRT18P27) (Supplementary Figure S15A). It is possi-
ble that a fragment of KRT18P27 mRNA generated early in the
protocol of Combo-Seq library preparation, when poly(A) species
are retrotranscribed and the RNA-cDNA hybrid is fragmented
by RNaseH, is then erroneously recognized as an miRNA. Anal-
ysis of the isomiRs of hsa-miR622 reveals how there is a wide
distribution of isomiRs across the six DMSO replicates detected
at a low level (Supplementary Figure S15B). Interestingly, hsa-
miR-622 read count calculated by exceRpt is comparable to the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
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Figure 7. (A) Overlap of DE genes after BAP treatment compared to the DMSO control in datasets prepared with Combo-Seq libraries (red) or poly(A)
(yellow) libraries. (B) Results of GO (biological process) and (C) Reactome pathway analyses performed on the DE genes in BAP versus DMSO samples
prepared with either Combo-Seq (red) or poly(A) (yellow) libraries. The top 10 GO terms with lowest P-adjusted value in each group were selected and
then plotted together. If two or more terms had the same P-adjusted value, all terms were reported. The dotted grey line corresponds to the set FDR
value of 0.01. (D) Overlap of DE miRNA after BAP treatment compared to the DMSO control in datasets prepared with Combo-Seq libraries (red) or small
RNA (blue) libraries. (E) Scatterplot representing the rankings of miRNA in mean read count of Nthy-ori 3-1 DMSO control samples. The mean read count
was calculated as the average of the replicate samples prepared with either a Combo-Seq or small RNA library prep kit. miRNAs were then ranked based
on their level of expression in each condition (most highly expressed miRNA = highest rank). Each dot in the plot represents a miRNA, and miRNAs for
which the mean count was 0 in both conditions were removed. A total of 1104 miRNAs were ranked and miRNAs with the same level of expression were
assigned the same rank. The miRNA selected for qPCR validation are highlighted in red. (F) RT-qPCR analysis of the selected miRNAs. The bar represents
the average Ct value for each sample, and the error bars represent the mean ± sd. Each sample was measured in four technical replicates.

one calculated by CODA, supporting the hypothesis that this is
not a consequence of a mature miRNA processing, but that at
least part of the fragments derives from KRT18P27 fragmentation
(Supplementary Figure S15C).

Discussion
Combo-Seq is a library prep kit for RNA-Seq that allows us to
prepare combined mRNA-miRNA libraries starting from the same

sample with very little minimum input (down to 5 ng of total
RNA). For these reasons, it represents a convenient solution for
simultaneously analysing both RNA species from a single sam-
ple, even for samples that contain little RNA, such as biopsies,
extracellular fluids or organoids. In addition, it provides useful
information about the relative mRNA and miRNA content of a
cell, which to our knowledge cannot be provided by any library
preparation kit currently available in the market. However, no
specific bioinformatic pipeline was developed for the processing

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac582#supplementary-data
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Table 2. List of genes that are induced by BAP, involved in apoptosis, or induced by TP53. The data refer to the differential expression
analysis carried out in the Nthy-ori 3-1 samples prepared either with Combo-Seq or poly(A) library kit. If the gene results upregulated,
it is reported in red, if downregulated, in blue. The name of the library is reported, as well as the Ensembl gene ID and a brief
description of the protein coded by the gene

Combo-Seq Poly(A) Ensembl gene ID Protein function

BAD BAD ENSG00000002330 Proapoptotic member of the BCL-2 family
BAK1 BAK1 ENSG00000030110 Proapoptotic member of the BCL-2 family
BAX BAX ENSG00000087088 Proapoptotic member of the BCL-2 family
BBC3 BBC3 ENSG00000105327 Proapoptotic member of the BCL-2 family
BCL2L11 BCL2L11 ENSG00000153094 Proapoptotic member of the BCL-2 family
BID BID ENSG00000015475 Proapoptotic member of the BCL-2 family
BIK BIK ENSG00000100290 Proapoptotic member of the BCL-2 family
BMF BMF ENSG00000104081 Proapoptotic member of the BCL-2 family
BNIP3 BNIP3 ENSG00000176171 Proapoptotic member of the BCL-2 family
BOK BOK ENSG00000176720 Proapoptotic member of the BCL-2 family
CDKN1A CDKN1A ENSG00000124762 Inhibitor of cyclin-dependent kinase 2 and 4 complexes. Regulated by p53.
CYP1A1 CYP1A1 ENSG00000140465 Member of cytochrome P450 family. Induced by the AHR after binding by BAP.
CYP1B1 CYP1B1 ENSG00000138061 Member of cytochrome P450 family. Induced by the AHR after binding by BAP.
DDB2 DDB2 ENSG00000134574 Involved in DNA repair. Regulated by p53.
FAS FAS ENSG00000026103 Member of TNF-receptor superfamily. Necessary for the formation of the

death-inducing signalling complex (DISC), involved in apoptosis. Regulated by p53.
GADD45A GADD45A ENSG00000116717 Involved in DNA repair mechanism. Regulated by p53.
MDM2 MDM2 ENSG00000135679 Oncogene. Codes for a nuclear-localized E3 ubiquitin ligase. It targets tumour

suppressor proteins (like p53) for proteasomal degradation. Regulated by p53.
RRMB2 RRMB2 ENSG00000048392 Necessary for DNA synthesis. Regulated by p53.

of this data. To this purpose, the manufacturer recommends using
the exceRpt pipeline with some modifications [19]. Nonetheless,
it presents some limitations when adopted for the processing of
Combo-Seq data.

In this paper, we illustrated CODA, a pipeline we developed for
the processing of Combo-Seq data. It is modular and implements
free-to-use tools often employed in RNA-Seq processing analysis.
The first step is adapter trimming with Cutadapt, which we
chose because its manual clearly states that it can handle partial
adapters, a key point especially critical for shorter sequencing
reads. In addition, Cutadapt is regularly supported and updated,
and offers a clear and extensive documentation. After trimming,
our pipeline performs separate alignment and quantification of
miRNAs and genes: miRNA detection is carried out with miRge3.0.
Gene mapping and quantification is done with RSEM based on
the ENCODE3’s STAR-RSEM pipeline. It is important to note that,
although we selected certain tools, the strength point of CODA
is the control that the user has over each step that is carried
out and it is possible to change each tool according to the user’s
preferences. CODA can then be considered a guideline on how to
analyse sequencing data deriving from Combo-Seq libraries, and
the end user is free to use it or set up their own.

To compare CODA to exceRpt, we generated Combo-Seq
libraries from two different cell models and compared the
processing of the two pipelines. We showed that, because of
the chosen trimmer, the maximum read length of trimmed
reads when using CODA is higher than the one with exceRpt,
and it results in more reads successfully passing. This is more
dramatic the shorter the sequenced reads are. This tends to
affect gene-mapping reads, rather than miRNA mapping ones:
in fact, when the same samples are processed with CODA, the
absolute number of reads mapping to genes increases, especially
for shorter sequencing reads, where the proportion of reads with
an incomplete/missing adapter increases. On the other hand, the
number of reads mapped to miRNAs is almost the same. The

two pipelines are comparable at the mapping stages, showing
similar percentages of reads passing trimming that are aligned to
genes or miRNA, possibly because they both use STAR as mapper
for genes, while miRNA mapping, being more stringent and less
ambiguous, can be performed by different aligners with similar
results. In addition, more genes are assigned reads when samples
are processed with exceRpt rather than CODA. This difference
may be due to the quantification step: while exceRpt adopts
its own quantification algorithm [20], CODA uses RSEM, which
employs an Expectation–Maximization (EM) algorithm in its
statistical model, whereby assignment of multimapping reads is
determined by estimating the level of expression of deriving from
unambiguously mapping reads [29]. We hypothesize that while
exceRpt attributes every read to its highest scoring location, RSEM
instead allocates reads mapping to very low expressed genes to
higher expressed paralogues.

We also observed that the read length distribution in Combo-
Seq libraries is not homogeneous for all RNAs: some biotypes tend
to generate fragments longer than the Combo-Seq average (which
is 21–22 nt [51]). As such, most reads coming from these species
will have an incomplete/partial adapter when sequenced on a low
number of cycles (e.g. using a 1 × 35 flowcell like we did). If the
pipeline used to process the data cannot retain these reads, they
will be lost. This can lead to an incorrect estimation of the RNA
biotype composition of a sample, and loss of potentially interest-
ing data [52, 53]. Although two different RNA extraction kits were
used during the Nthy-ori 3-1 and thyroid follicles processing, the
generated RNA-Seq data is comparable [54, 55]. We believe then
the results obtained by the analysis of the 1 × 100 and 1 × 35
datasets have been minimally influenced by this factor.

We also compared how Combo-Seq libraries perform in com-
parison to standard poly(A) and small RNA libraries for the anal-
ysis of mRNA or miRNA, respectively. We showed how the type of
library is the main source of variation when comparing the two
datasets. We noticed that conventional poly(A) libraries identify
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around 4% more genes, while small RNA libraries identify almost
twice as many miRNAs. The difference in genes identified is most
likely due to the chemistry underlying the library preparation kit,
as very different RNA inputs from the same sample prepared with
the same kit show very similar percentages of exonic-, intronic-
and intergenic-mapping reads [56]. In addition, for this work, the
poly(A) libraries were prepared in a single batch in an automated
system. The Combo-Seq libraries were prepared manually over
different batches and the protocol includes several steps. It is
then possible that the variation introduced during the Combo-Seq
libraries preparation reflects in a variability in gene expression
among biological replicates, which would affect the DE analysis.
Considering the miRNAs, most of the variability in detection
probably arises from the difference in total miRNA read counts.
Indeed, the number of recovered miRNAs from Combo-seq is
dependent on the miRNA content of the cells, which seems to be
low in the selected Nthy-ori 3-1 cell line. The sequencing depth
would therefore need to be much higher to reach a number of
reads comparable to the small RNA libraries. Admittedly, the input
RNA used for library preparation is a possible confounder, as we
did not test how the number of miRNA mapping reads changes
with different amounts of input, and using a lower amount, which
increases the miRNA/mRNA ratio in Combo-Seq libraries [57],
could result in a greater number of miRNA mapping reads and
thus in more miRNAs identified. Small RNA libraries prepared
with a high RNA input perform similarly when detecting highly
expressed miRNAs compared to using a low input, and detect
more low-expressed ones [58].

DE analysis shows how four times more DE genes are identified
in poly(A) libraries, but GO top hits are almost the same. Nine
versus one DE miRNAs result also from the analysis in small
RNA and Combo-Seq libraries, respectively. While we observed an
overlap in the DE genes between the two methods, we did not get
a similar result for the DE miRNAs. In addition, miRNA validation
by RT-qPCR is concordant with small RNA libraries: hsa-miR-622
was detected by Combo-Seq only at high levels, but its expression
was absent in RT-qPCR. We hypothesize that at least part of
the reads assigned to hsa-miR-622 in Combo-Seq samples may
instead derive from the fragmentation of the KRT18P27 transcript.
hsa-miR-122-5p was detected at low levels and only by small RNA
libraries, which as already discussed have a greater read coverage.

In conclusion, Combo-Seq is a convenient solution to capture
both poly(A)-tailed and small RNAs starting from very little mate-
rial and from a single RNA aliquot. In addition, it requires less
time and money per sample than the combination of conventional
separated poly(A) and small RNA libraries. However, it presents
some inconsistencies when compared to standard poly(A) and
small RNA libraries, which researchers should be aware of and
evaluate when choosing how to prepare their samples.

Key Points

• We developed CODA, a pipeline for the processing of
RNA-Seq libraries prepared with the Combo-Seq kit. It
makes use of established RNA-Seq data analysis soft-
ware and allows for control and customization over
the different processing steps. The pipeline can be
used as such, using the necessary files available in the
CODA GitHub repository, or modified according to the
user’s need.

• Compared to exceRpt, CODA increases the number of
reads passing the initial trimming phase. The gain is

more dramatic as the number of sequencing cycles
decrease. Longer reads are enriched for some RNA bio-
types like snoRNA, lncRNA and mtRNA.

• DE analysis following BAP treatment using Combo-Seq
libraries identifies fewer DE genes and miRNAs than
matched poly(A) and small RNA libraries, respectively.
There is a partial overlap of DE genes, but no overlap of
DE miRNAs.

• RT-qPCR validation of three miRNAs shows concordance
with small RNA libraries over Combo-Seq.
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