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Platelet-derived Growth Factor

Receptor—influenced Genes
Predicts Clinical Outcome in

Abstract

BACKGROUND: Alpha-type platelet-derived growth factor receptor (PDGFRa) is a cell surface tyrosine kinase
receptor for members of the platelet-derived growth factor family. PDGFRa. plays an important role in the
regulation of several biological processes and contributes to the pathophysiology of a broad range of human
cancers, including glioma. Here, we hypothesize that the genes directly or indirectly influenced by PDGFRa might
be useful for prognosis in glioma. METHODS: By comparing the genome-wide gene expression pattern between
PDGFRat and PDGFRa~ cells from human oligodendrocyte progenitor, we defined the genes potentially
influenced by PDGFRa. RESULTS: The PDGFRa-influenced genes are strongly associated with cancer-related
pathways. We subsequently developed a prognostic gene signature derived from the PDGFRa-influenced genes.
This gene signature is able to predict clinical outcome of glioma. This signature is also independent of traditional
prognostic factors of glioma. Resampling tests indicate that the prognostic power of this gene signature
outperforms random gene sets selected from human genome. More importantly, this signature is superior to the
random gene signatures selected from glioma related genes. CONCLUSIONS: Despite the absence of clear
elucidation of molecular mechanisms, this study suggests the vital role of PDGFRa in carcinogenesis.
Furthermore, the PDGFRa-based gene signature provides a promising prognostic tool for glioma and validates
PDGFRa as a novel and effective therapeutic target in human cancers.
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Introduction

Alpha-type platelet-derived growth factor receptor (PDGFR) is a cell
surface tyrosine kinase receptor for members of the platelet-derived
growth factor family, which is encoded by the gene PDGFRA.
Platelet-derived growth factor receptors (PDGFRs) are a family of
catalytic receptors that play important roles in the regulation of several
biological processes including embryonic development [1], angiogen-

esis [1,2], and cell proliferation and migration [1,3]. PDGFRs
contribute to the pathophysiology of a broad range of human diseases,
including cancers. For example, PDGFRa was found to be expressed
more frequently by tumor-associated stromal cells in lung cancer [4];
overexpression of PDGFRa. is associated with tumor progression in
breast cancer [5]; significant correlation was identified between
PDGFRa. expression and lymph node metastasis in colon cancer [6].
Particularly, PDGFR signaling has been proposed to play a key role in
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malignant brain tumor of glial origin, such as glioma [1]. Glioma is
the most common primary tumors in the central nervous system.
Glioma can be categorized based on pathological evaluation of the
tumor. According to the World Health Organization (WHO)
grading system, gliomas are classified into four grades (I, I, III, and
IV) with the best prognosis in grade I and the most malignancy in
grade IV. WHO grade I and II tumors are termed low-grade glioma.
The term high-grade glioma refers to tumors that are classified as
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WHO grade III, such as anaplastic astrocytoma, anaplastic
oligodendroglioma, anaplastic oligoastrocytoma, and anaplastic
ependymoma, and WHO grade IV, such as glioblastoma. Amplifica-
tion of PDGFRal has been observed in both low-grade [7] and
high-grade [8,9] gliomas. In addition, overexpression of the gene
PDGFRA in glioma at the time of the first diagnosis was found to be
associated with poor overall survival [10]. Inhibition of PDGFRs has
been shown to slow down glioma cell growth in experimental models
[1]. Therefore, inhibition of PDGER signaling has become one of the
targeted therapeutic strategies for glioma [11].

Although the pathological function of PDGFRs in gliomas remains
controversial, coexpression module based on the gene PDGFRA has
been developed to enable the molecular classification of glioma for
clinical diagnosis [12]. It is also reasonable to hypothesize that the
genes directly or indirectly influenced by PDGFRo. might be useful
for prognostic purpose in glioma. Here, we utilized high-throughput
gene expression data to identify the genes potentially influenced by
PDGFRa in glioma. We compared the genome-wide gene expression
pattern between PDGFRa.* and PDGFRa.™ cells from human
oligodendrocyte progenitor [13]. The genes deregulated in PDGFRa
* cells were considered as PDGFR. influenced genes. Gene ontology
analysis indicates that the PDGFRo-influenced genes are strongly
associated with cancer-related pathways. We subsequently developed
a prognostic gene signature derived from the PDGFRa influenced
genes. This gene signature is able to predict clinical outcome in two
independent glioma cohorts. This signature is also independent of
traditional prognostic factors in glioma. Our study suggests that the
PDGFRa-influenced genes potentially serve as biomarkers and
therapeutic targets in clinical and pharmacological contexts,
respectively.

Materials and Methods
Gene Expression Data Sets

We obtained the gene expression data for both PDGFRa™ and
PDGFRa. ™ oligodendrocyte progenitor cells from the Gene Expres-
sion Omnibus (GEO) database [14] (GEO accession: GSE29368),
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which was based on the Affymetrix Human Genome U133 Plus 2.0
Array [13]. In the original study, the PDGFRa. ™ cells were defined
based on expression of the PDGFRa epitope CD140a, which were
sorted from the fetal human forebrain using FACS [13]. The gene
expression data from University Hospital of Coimbra (UHC),
Portugal (GEO accession: GSE43289) [15] and Henry Ford Hospital
(HFH), USA (GEO accession: GSE4290) [16] were used to identify
the glioma related genes, in which the gene expression level was
significantly correlated with WHO glioma grade. Both the UHC and
HFH data sets were based on the Affymetrix Human Genome U133
Plus 2.0 Array. The gene expression data from Shanghai Changzheng
Hospital (SCH), China (GEO accession: GSE19728) [17], was used
to validate the relationship between glioma grade and our
PDGFRo-influenced gene signature (PIGS), which was also based
on the Affymetrix Human Genome U133 Plus 2.0 Array. To validate
the prognostic power of the gene signature, we collected two
independent cohorts with available clinical outcome information: the
EORTC (European Organisation for Research and Treatment of
Cancer) cohort (GEO accession: GSE43107) [18] and the UCLA
(University of California at Los Angeles) cohort (GEO accession:
GSE4412) [19], which were based on Affymetrix Human Exon 1.0
ST Array and Affymetrix Human Genome U133A/B Array,
respectively. Figure 1 indicates the working scheme of how all these
transcriptomic data sets were implicated in this study.

Microarray Data Processing

We applied the robust multiarray average (RMA) function in the
“affy” package of bioconductor [20] to summarize the expression level
of each probeset for the data sets generated by Affymetrix Human
Genome U133 Plus 2.0 Array and Affymetrix Human Genome
U133A/B Array. For the data set based on Affymetrix Human Exon
1.0 ST Array, the gene expression values were summarized using the
Affymetrix Power Tools Version 1.15.0. The function “mas5calls” in
the “affy” package [21] was used to compute probeset present/absent
call for the progenitor cell, UHC, and HFH data sets. For the
progenitor cell data set, only the probesets that were present in all
replicates of at least one group were used for further analysis. For the
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Figure 1. The working scheme of the study. \We first compared the transcriptomic pattern between PDGFRa. ™ and PDGFRa.~ cells
from human oligodendrocyte progenitor, which yielded a list of PDGFRa-influenced genes. Next, the UHC and HFH cohorts were
analyzed to infer the glioma-related genes, which were either positively or negatively correlated with glioma grade. We developed a
gene signature based on the intersection between the upregulated genes in high-grade glioma and the overexpressed genes in
PDGFRa™ cells and the intersection between the downregulated genes in high-grade glioma and the underexpressed genes in
PDGFRa ™ cells. We validated the power of this gene signature in grade prediction in the SCH cohort. We further validated the
predictive power of the gene signature in differentiating glioma patients with distinct survivals in the EORTC and UCLA cohorts.
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Table 1. The 28 genes of PIGS. !
MAPK signaling pathway ]

Gene symbol Gene title Weight Colorectal cancer E

Regulation of actin cytoskeleton 0
ANXAI Annexin Al 1 Pathways in cancer :
ANXAZ Annexin A2 1 Focal adhesion ;
CD63 CD63 molecule 1 Melanoma E
CHI3L1 Chitinase 3-like 1 (cartilage glycoprotein-39) 1 . \
DTX3L Deltex 3-like (Drosophila) 1 Axon guidance E
FNDC3B Fibronectin type III domain containing 3B 1 L. X X Lysosome ¥
HRHI Histamine receptor H1 1 Arrhythmogenic right ventricular cardiomyopathy '
ITGA7 Integrin, alpha 7 1 Prostate cancer ;
MRC2 Mannose receptor, C type 2 1 Endocytosis E
PPIC Peptidylprolyl isomerase C (cyclophilin C) 1 Adherens junction !
ATP6VIG2 ATPase, H+ transporting, lysosomal 13 kDa, V1 subunit G2 -1 Heparan sulfate biosynthesis .
ATRNLI Actractin like 1 -1 Glioma
C200rf194 Chromosome 20 open reading frame 194 -1 ErbB signaling pathway ]
CAMTAI Calmodulin-binding transcription activator 1 -1 Apoptosis E
CAND1 Cullin-associated and neddylation-dissociated 1 -1 Gap junction !
CCDC90A Coiled-coil domain containing 90A -1 Bladder cancer :
CLASP2 Cytoplasmic linker associated protein 2 -1 . . !
CPEB3 Cytoplasmic polyadenylation element binding protein 3 -1 Leukocyte tra?!::]zdof:;ﬁ;?r;{gfaatrgz E
ERBB4 v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) -1 '
GTF2H5 General transcription factor ITH, polypeptide 5 —1 | E—
NTN4 Netrin 4 -1 1 102 10
PLEKHM3 Pleckstrin homology domain containing, family M, member 3 —1 P-value
POUGF1 POU class 6 homeobox 1 -1
PTPN4 Protein tyrosine phosphatase, nonreceptor type 4 (megakaryocyte) -1 Figure 2. The top 20 KEGG pathways associated with the
RALGPS1 Ral GEF with PH domain and SH3 binding motif 1 -1 .
SGIP1 SH3-domain GRB2-like (endophilin) interacting protein 1 -1 PPGFRa’-mﬂuenced genes. The P—values We.re calculated by
TMEMS7 Transmembrane protein 57 ) Fisher's exact test. The vertical dash line denotes the
ZNF334 Zinc finger protein 33A —1 significance level of o = 0.05.

UHC and HFH data sets, only the probesets that were present in at
least two-thirds of the samples were retained. We limited our analysis
to the probesets with unique annotations. The genes on chromo-
somes X and Y were removed. For the SCH, EORTC, and UCLA
data sets, we used the geometric mean of expression values of all
probesets mapping to a gene if the gene was encoded by multiple
probesets. Significance analysis of microarrays [22], implemented in
the samr library of the R Statistical Package, was used to compare
log,-transformed gene expression levels between PDGFRo.™ and
PDGFRo™ progenitor cells. False discovery rate (FDR) was
controlled using the q-value method [23,24]. Transcripts with
FDR < 5% and FC > 2 were deemed differentially expressed.

Risk Score

We used a published scoring system to compute the risk score for
each patient [25—27]. The risk score is a linear combination of gene
expression values. The formula is shown below:

S= ZVVi(ei—#i)/Ti
)

Here, S is the risk score of the patient; 7 is the number of genes in
PIGS; W; denotes the weight of gene i (as shown in Table 1); ¢;
denotes the expression level of gene 7 and |1; and T, are the mean and
standard deviation of the expression values for gene i across all
subjects, respectively. A higher risk score implies a poorer clinical
outcome.

Results
Genes Influenced by PDGFRu.

We compared the gene expression pattern between PDGFRa. ™" and
PDGFRa™ cells from human oligodendrocyte progenitor. One
PDGFRa ™ cells microarray data set containing gene expression

information for both PDGFRa. " and PDGFRa. - cells was collected
from the GEO database [14] (GEO accession: GSE29368) [13],
which was based on the Affymetrix Human Genome U133 Plus 2.0
Array. At the specified significance level of FDR < 5% and fold change
(FC) > 2 (see Materials and Methods for details), 1445 probesets
encoding 1076 genes were found to be overexpressed in PDGFRa. "
cells (Supplementary Table S1 and Figure S1), while 741 probesets
encoding 541 genes were underexpressed in PDGFRo.™* cells
(Supplementary Table S2 and Figure S1). We considered these
deregulated genes as PDGFRa-influenced genes. We next searched the
enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) [28]
pathways among the PDGFRa-influenced genes. We found that the
PDGFRa-influenced genes are significantly associated with several
cancer-related KEGG terms, such as “colorectal cancer,” “pathways in
cancer,” “melanoma,” “prostate cancer,” and “glioma” (Figure 2).
These findings suggest that the PDGFRa-influenced genes are
involved in human cancer pathogenesis.

To determine how deep the PDGFRa-influenced genes are
involved in glioma, we explored the genes that are associated with the
severity of glioma. We obtained two gene expression data sets of
glioma patients from the GEO database: the UHC cohort (GEO
accession: GSE43289) [15] and the HFH cohort (GEO accession:
GSE4290) [16]. Both data sets were based on the Affymetrix Human
Genome U133 Plus 2.0 Array. There were 40 subjects in the UHC
cohort, which included 3 grade I, 3 grade I, 6 grade III, and 28 grade
IV patients. For the HFH cohort, there were in total 176 samples
including 23 nontumor, 45 grade I, 31 grade III, and 77 grade IV
subjects. Spearman's rank correlation test was used to identify the
glioma related genes, in which the gene expression level was
significantly correlated with glioma grade. Only the genes differen-
tially expressed with glioma grade (Spearman's rank correlation test:
adjusted P < 0.005 after Benjamini—Hochberg correction) in the
both cohorts were retained for further analysis. In total, we found that
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Figure 3. Relationship between glioma grade and the PDGFRo-influenced genes. (A) Glioma-related genes. Each dot stands for a gene.
Spearman's rank correlation test was used to calculate the correlation between glioma grade and gene expression for the both
UHC and HFH cohorts. The correlation coefficient of the UHC cohort (pync) is significantly correlated with the correlation coefficient
of the HFH cohort (pyrn) (Pearson correlation test: r = 0.71 and P < 10719). Only the genes differentially expressed with glioma
grade in the both cohorts were considered as glioma-related genes. The dark gray filled dots denote the genes upregulated in
high-grade glioma, while the white filled dots represent the genes downregulated in high-grade glioma. The red line shows
lowess-smoothed data. (B) Comparison between the genes upregulated and downregulated in high-grade glioma. Y-axis denotes
the logs,-transformed fold change (FC) in gene expression between PDGFRa* and PDGFRa.~ cells. Log,FC is significantly higher for
the genes upregulated in high-grade glioma (t-test: P = 2.8 x 107’), which suggests that the genes upregulated in high-grade
glioma are more likely to be overexpressed in PDGFRa." cells. (C) Positive correlation between glioma grade and PIGS-based risk
score in the SCH cohort. Each dot stands for a patient from the SCH cohort. The horizontal line indicates the mean of each category.

Spearman's rank correlation test: p = 0.70 and P = 1.7 x 107°.

81 probesets encoding 67 genes were upregulated in high-grade
glioma (Figure 3A and Supplementary Table S3) while 340 probesets
encoding 275 genes were downregulated in high-grade glioma
(Figure 3A and Supplementary Table S4). Interestingly, the genes
that were upregulated in high-grade glioma were more likely to be
overexpressed in PDGFRa ™ cells, compared with the downregulated
genes (Figure 3B). Among the upregulated genes in high-grade
glioma, 10 genes were found to overlap with the overexpressed genes
in PDGFRa." cells, which is statistically significant (cumulative
hypergeometric test: P = 5.0 x 10 ). For the downregulated genes
in high-grade glioma, 18 genes significantly overlapped with the
underexpressed genes in PDGFRa™ cells (cumulative hypergeo-
metric test: P = 2.7 x 10 ). All these results suggest that the
PDGFRo-influenced genes are significantly enriched among the
glioma associated gene set.

PDGFRo.-influenced Gene Signature

Above, we identified 10 genes within the intersection between the
upregulated genes in high-grade glioma and the overexpressed genes
in PDGFRa." cells. In addition, 18 downregulated genes in
high-grade glioma were found to overlap with the underexpressed
genes in PDGFRa.™" cells. We designated all these 28 genes as
PIGS (Table 1 and Supplementary Figures S2 and S3). Based on the
PIGS, we constructed a scoring system to assign each subject a risk
score, representing a linear combination of the PIGS expression values
weighted by the direction of differential expression: 1 for the
upregulated and —1 for the downregulated genes in PDGFRa.™ cells
(see Materials and Methods for details). A higher risk score suggests a
poorer clinical outcome.

We first tested whether the PIGS based risk score was able to
predict glioma grade. For this purpose, we obtained an independent
gene expression data sets, the SCH cohort, from the GEO database

including 17 glioma patients (GEO accession: GSE19728) [17]. As
we expected, there was a significant positive correlation (Spearman's
rank correlation test: P = 1.7 x 1072) between glioma grade and
PIGS-based risk score (Figure 3C).

PIGS Predicts Survival in Glioma

We next tested whether the PIGS-based risk score can be used to
predict survival in glioma. From the GEO database, we downloaded
two independent gene expression data sets: the EORTC cohort
including 95 high-grade glioma patients (GEO accession:
GSE43107) [18] and the UCLA cohort composed of 85 high-grade
glioma patients (GEO accession: GSE4412) [19]. These data sets
were chosen based on two criteria: (i) the large number of samples
(sample size > 80) and (ii) the availability of clinical outcome data.
We defined PIGS positive (PIGS™) patients as those having a risk
score > 0, while the other patients were assigned as PIGS negative
(PIGS ™), as the median of risk score was approximately equal to zero
in each validation cohort (Supplementary Figure S4). Univariate Cox
proportional hazard regression of survival indicates that the PIGS™
patients have a 2.91- and 2.46-increased risk of death in the EORTC
and UCLA cohorts, respectively (Table 2). Kaplan—Meier survival
curves demonstrate a significant difference in survival between the
PIGS™ and PIGS™ glioma patients in the two validation cohorts
(log-rank test: P = 2.2 X 107° for the EORTC cohort and
P=8.1x 10" for the UCLA cohort) (Figure 4A).

Table 2. Univariate Cox proportional hazards regression of survival by PIGS status.

Cohort N HR 95% CI of HR P-value
EORTC 95 291 (1.84, 4.61) 55 x 10°
UCLA 85 2.46 (1.43, 4.23) 1.2 x 1072

N: patient number; HR: hazard ratio; CI: confidence interval.
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Figure 4. PIGS predicts survival in glioma in the validation cohorts. (A) Kaplan—Meier curves for the glioma patients from the EORTC and
UCLA cohorts. The black curves are for the PIGS™ patients, while the gray curves are for the PIGS™ patients. P-values were
calculated by log-rank test. (B) Superior prognostic power of PIGS compared with random gene signature. The dark gray area
shows the distribution of Z for the 1000 resampled gene signatures picked up from human genome with identical size as PIGS. The
dark gray area shows the distribution of Z for the 1000 resampled gene signatures selected from the glioma-related genes. The
black triangle stands for the Z-value of PIGS. Right-tailed P-values of the sampling distributions were calculated.

Nonrandom Prognostic Power of PIGS

Venet et al. suggested that most published prognostic gene
signatures were not significantly better than random gene sets of
identical size that were randomly picked up from human genome
[29]. Here, resampling tests were used to address this issue. We
generated 1000 random gene signatures by randomly selecting 28
genes from human genome (the same size as PIGS). For each random
gene signature, we calculated the risk score for each glioma patient.
Univariate Cox proportional hazard regression of survival was used to
evaluate the association between the random gene signature and
clinical outcome. For each round of randomization (i.e., each
randomly generated 28-gene list), we calculated the Wald statistic (2),
the ratio of Cox regression coefficient to its standard error, which
stands for the prognostic power of the 28 random genes. Our
alternative hypothesis was that the Z of PIGS should be more positive
than expected by chance if the prognostic power of PIGS was
significantly better than the random gene signatures. Figure 4B
demonstrates that the Z of PIGS is significantly larger than that of the
random gene sets in the two validation cohorts (right-tailed:
P = 0.003 for the EORTC cohort and P = 0.015 for the UCLA

cohort).

PIGS is Better than the Random Gene Signatures Selected
Jfrom Glioma-related Genes

Here, we address why we focused on the PDGFRo-influenced
genes to develop prognostic signature. To answer this question, we
compared the performance of PIGS against the gene set associated
with glioma by a second resampling test. We limited the resampling
pool to the genes that were differentially expressed with glioma grade
(Supplementary Tables S3 and S4) and defined these genes as glioma
related. We then randomly selected 28 genes from the glioma-related
gene pool and tested the predictive power of the random gene set. The
performance of the random gene signature was also quantified by the
Z-value computed by univariate Cox proportional hazard regression
of survival. We found that the prognostic power of PIGS is
significantly better than that of 1000 random glioma-related gene
signatures in the both validation cohorts (right-tailed: 2 = 0.002 for
the EORTC cohort and P = 0.047 for the UCLA cohort)
(Figure 4B). These results suggest that the prognostic signature

derived from the PDGFRa-influenced genes is superior to the gene
sets filtered out by unbiased approaches.

PIGS is Independent of Standard Prognostic Covariates

To confirm the role of PIGS as an independent prognostic factor,
we investigated the performance of PIGS in comparison with the
traditional prognostic variables in glioma. Because of the limited
clinical and pathological information, we did not consider the UCLA
cohort. Only the EORTC cohort was investigated by multivariate
model.

Firstly, we only considered the prognostic variables including age,
gender, type of surgery (biopsy, partial, or total resection), Eastern
Cooperative Oncology Group (ECOG) performance score [30], loss
of heterozygosity (LOH) on chromosome 1p and 19q [31], and
histological status (anaplastic oligoastrocytoma or anaplastic oligo-
dendroglioma). There were 89 patients without missing data.
Multivariate Cox proportional hazards regression of survival indicates
that PIGS is the most significant covariate compared with the other
clinical and pathological factors (Table 3).

Secondly, we took more molecular factors into account, including
epidermal growth factor receptor (EGFR) amplification [32],
isocitrate dehydrogenase 1 (/DHI) mutation [32], and O-6-methyl-
guanine-DNA methyltransferase (MGMT) promoter methylation
[33]. Because of missing observations, only 53 patients were included
in this round. Multivariate Cox proportional hazards regression
reveals that PIGS is still the most significant covariate in the new
multivariate model (Table 4).

Table 3. Multivariate Cox proportional hazards regression conducted on 89 patients from the

EORTC cohort.

Covariate HR 95% CI of HR P-value

PIGS, + vs. — 346  (2.04,5.84) 3.7 x 10°°
Age (per year) 1.03  (1.00, 1.06) 6.7 x 1072
Gender male vs. female 0.94 (0.55, 1.61) 8.4 x 107!
Type of surgery (biopsy, partial, or total resection) 0.65 (0.43, 0.97) 37 x 1072
ECOG performance score (0, 1, or 2) 1.51 (1.08, 2.10) 1.7 x 1072
1p/19q LOH, + vs. — 0.87 (043, 1.75) 69 x 107"
Histology AOA vs. AOD 1.70 (0.95, 3.04) 7.4 x 1072

HR: hazard ratio; CI: confidence interval; AOA: anaplastic oligoastrocytoma; AOD: anaplastic
oligodendroglioma.
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Table 4. Multivariate Cox proportional hazards regression conducted on 53 patients from the

EORTC cohort.

Covariate HR 95% CI of HR P-value

PIGS, + vs. — 6.10 (2.48, 15.00) 8.2 x 107
Age (per year) 1.05 (1.00, 1.10) 45 % 1072
Gender male vs. female 1.75 (0.76, 4.05) 1.9 x 107!
Type of surgery (biopsy, partial, or total resection) ~ 0.31 (0.16, 0.58) 3.2 x 1074
ECOG performance status (0, 1, or 2) 1.01 (0.59, 1.72) 9.7 x 107!
1p/19q LOH, + vs. — 057 (0.15,2.10) 39 x 107!
[EGFR amplification, + vs. — 1.37 (0.58, 3.25) 48 x 107!
IDHI mutation, + vs. — 0.40 (0.16, 1.01) 52 x 1072
MGMT methylation, + vs. — 353 (1.19, 10.53) 24 x107°
Histology AOA vs. AOD 1.18  (0.49, 2.86) 7.1 % 107"

HR: hazard ratio; CI: confidence interval; AOA: anaplastic oligoastrocytoma; AOD: anaplastic
oligodendroglioma.

From Tables 3 and 4, we can notice that patient age, type of
surgery, ECOG performance score, and MGMT methylation status
are also significant variables in multivariate model. Therefore, we
further stratified the patients in the EORTC cohort according to
respective significant factors and redid Cox proportional hazards
regression. For patients with age < 45, 45 < age < 55, and age > 55,
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PIGS™ patients had 2.78-fold (P = 1.2 x 10%), 3.04-fold
(P =77 %x 1072), and 3.09-fold (P = 1.4 x 10 ?) increased risk
for death, respectively. For patients with biopsy, partial resection, and
total resection, PIGS™ patients had 9.15-fold (P = 4.2 x 1072,
3.18fold (P = 3.9 x 107%), and 2.73-fold (P = 1.7 x 1077
increased risk for death, respectively. For patients with ECOG
performance score 0, 1, and 2, PIGS™ patients had 2.24-fold
(P = 4.2 x 1077, 3.99fold (P = 2.8 x 10~*), and 4.69-fold
(P=1.7 x 10™?) increased risk for death, respectively. For patients
with methylated MGMT promoter, PIGS™ patients had 3.52-fold
(P = 3.2 x 10™%) increased risk for death. Kaplan—Meier survival
curves also demonstrate significantly reduced survival for PIGS™
patients in each subset grouped by age, type of surgery, ECOG
performance score, and MGMT methylation status (Figure 5). Taken
together, these results suggest that PIGS is an independent prognostic
variable and enhances the identification of glioma patients at greater

risk for death.

Discussion
PDGFRa plays a role in organ development, wound healing, and
tumor progression. Mutations in the gene PDGFRA have been
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Figure 5. Kaplan—Meier curves for glioma patients grouped by clinical and pathological factors. (A) Patients were stratified by age. (B)
Patients were stratified by surgery type. (C) Patients were stratified by ECOG performance score. (D) Patients were stratified by
MGMT promoter methylation status. The black curves are for the PIGS™ patients, while the gray curves are for the PIGS ™~ patients.

P-values were calculated by log-rank test.
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associated with a variety of human cancers [34—36]. In addition,
elevated PDGFRa. expression was found in several human tumors
[4—6,35], particularly in glioma [1,7,10]. In this study, we
investigated the prognostic power of PDGFRd-influenced genes in
glioma. By comparing the genome-wide gene expression pattern
between PDGFRa.™ and PDGFRa. ™ cells, we defined the genes
potentially influenced by PDGFRa. These genes are strongly
associated with cancer-related KEGG pathways. We subsequently
developed a prognostic gene signature, PIGS, which was composed of
28 PDGFRo-influenced protein-coding genes. We indicate that
PIGS-based risk score can be used to predict glioma grade. In
addition, PIGS is able to predict clinical outcome in two independent
glioma cohorts.

Multivariate Cox regression indicates that PIGS outperforms the
traditional prognostic factors of glioma. Besides PIGS status, we
considered nine clinical and pathological variables in the multivariate
model, including age, gender, surgery type, ECOG performance
score, 1p/19q LOH status, EGFR amplification status, IDH1
mutation status, MGMT promoter methylation status, and histolo-
gical status. PIGS-based risk score is the most significant covariate
compared with all the other factors. Even we stratified the data sets
according to the other significant covariates, PIGS was still able to
differentiate the patients with poor outcome from the long survival
ones in each subgroup. These results confirm that PIGS is not
dependent on specific values of the respective covariates. PIGS
working cooperatively with traditional clinical and pathological
factors may increase prognostic accuracy when identifying patients at
higher risk of death in glioma.

A controversial computational study by Venet et al. suggested that
the majority of published prognostic gene signatures of breast cancer
were not significantly better than random gene sets of identical size
that were randomly selected from human genome [29]. To address
this issue in our study, we conducted a resampling test by randomly
selecting 28 genes (the same size as PIGS) from human transcriptome
and calculated the prognostic power for the random gene signature.
The resampling test indicates that PIGS is superior to the random
gene sets selected from human genome. However, it should also be
noted that, in the EORTC cohort, the Z-value is larger than two
(2.3% percentile in normal distribution) for almost half of the
random gene signatures (Figure 4B). Therefore, the performance of a
prognostic signature for glioma should not only be measured by the
nominal P-values generated by Cox regression or log-rank test as
many randomly generated gene signatures could also classify subjects
with a fairly significant nominal P-value. Therefore, we suggest that
resampling test should be a standard procedure when generating
prognostic biomarkers for specific human disease. Nominal P-values
only address the statistical question as to whether the given gene set is
related to disease, but not the question whether the gene set is more
related to disease than random gene sets [29]. Resampling test also
demonstrates that the prognostic power of PIGS is even better than
the random signatures selected from the gene pool that are
differentially expressed in glioma. This result addressed the question
why we only developed gene signature around PDGFRa. instead of
using unbiased screening.

Conclusions

Despite the absence of clear elucidation of molecular mechanisms,
this study suggests the vital role of PDGFRa in carcinogenesis.
Furthermore, the PDGFRa.-based gene signature provides a promis-
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ing prognostic tool for glioma and validates PDGFR®. as a novel and
effective therapeutic target in human cancers.
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