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Abstract

When we draw, we are depicting a rich mental representation reflecting a memory, percept, schema, imagination, or feeling. In
spite of the abundance of data created by drawings, drawings are rarely used as an output measure in the field of psychology, due
to concerns about their large variance and their difficulty of quantification. However, recent work leveraging pen-tracking,
computer vision, and online crowd-sourcing has revealed new ways to capture and objectively quantify drawings, to answer a
wide range of questions across fields of psychology. Here, I present a tutorial on modern methods for drawing experiments,
ranging from how to quantify pen-and-paper type studies, up to how to administer a fully closed-loop online experiment. I go
through the concrete steps of designing a drawing experiment, recording drawings, and objectively quantifying them through
online crowd-sourcing and computer vision methods. Included with this tutorial are code examples at different levels of com-
plexity and tutorials designed to teach basic lessons about web architecture and be useful regardless of skill level. I also discuss
key methodological points of consideration, and provide a series of potential jumping points for drawing studies across fields in
psychology. I hope this tutorial will arm more researchers with the skills to capture these naturalistic snapshots of a mental image.

Keywords Visual production - Mental representations - Computer vision - Online experiments

Introduction

A key goal of psychological research is to understand the
mind and brain through observations of behavior. These be-
havioral observations are often limited to low-resolution
outputs—such as reaction time and choice—Ilargely because
of their ease of quantification and clear links to several cogni-
tive processes. However, there are fundamental questions that
cannot be answered by single-value outputs, such as the con-
tent of one’s mental representations for an item. Here, I will
demonstrate how drawing as a high-dimensional behavioral
output can be utilized to reveal new insights about human
cognition. Although drawings may seem subjective and high-
ly variable, recent techniques from Big Data and citizen sci-
ence have made objective quantification of drawings at a large
scale accessible to psychologists across the field.
Historically, drawings have had relatively limited usage as
a behavioral output in psychology. Drawings of simple
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objects or abstract shapes have been used clinically, to diag-
nose memory disorders as part of the Wechsler Memory Scale
test battery (Wechsler, 2009), to quantify spatial neglect
(Agrell & Dehlin, 1998), and to investigate parietal cortex
lesions (Makuuchi et al., 2003). Outside of clinical diagnosis,
a high proportion of drawing studies focus on examining the
drawings of children as insight into underlying thoughts or
feelings, often towards a psychoanalytic or therapeutic aim
(e.g., Kosslyn et al., 1977; Otgaar et al., 2016; Thomas &
Jolley, 1998). However, the potential reach of drawing re-
search goes far beyond diagnostic or therapeutic applications;
drawing also holds promise as a basic research method that
can reveal general principles about cognition across ages.
Psychology research in the 1980s and 1990s occasionally uti-
lized drawing as a measure, for example, to understand the
schemas of familiar objects (Rubin & Kontis, 1983), or to
quantify memory for scene boundaries (Inraub & Bodamer,
1993). However, as computers became more popular tools for
administering experiments and recording behavior (e.g., reac-
tion times), drawing as a behavioral measure became less
common. Many researchers grappled with the subjective na-
ture of drawings, and utilized small and simple stimulus sets
along with basic drawing measures to limit variability in draw-
ing behavior.
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Such variability can instead be leveraged to gain rich in-
sight into a wide range of cognitive processes reflective of
how people view, prioritize, remember, and interpret both
external information and internal representations. One can
easily transform drawings into a large set of measures by
combining high numbers of participants per image, principles
from computer vision, and objective, crowd-sourced quantifi-
cation. These measures can capture varied information includ-
ing object detail, spatial accuracy, or errors. In a recent study,
drawings of real-world photographs revealed an unprecedent-
ed richness and accuracy to visual memory, with participants
drawing from memory an average of 150 objects across 12
scenes, in pixel-precise locations, with few false memories
(Bainbridge et al., 2019). This level of performance reached
much beyond the prediction of nine items at maximum that
would be made by verbal recall memory studies (Murdock,
1962). In fact, drawing as a mnemonic strategy has been
shown to outperform verbally based, imagery-based, and se-
mantic elaborative strategies (Wammes et al., 2016; Wammes
et al., 2019), even for memory of highly abstract concepts
(Roberts & Wammes, 2020). Furthermore, learning to draw
may boost one’s ability to efficiently perceive and encode
visual information (Perdreau & Cavanagh, 2014; Perdreau &
Cavanagh, 2016; Vogt & Magnussen, 2007). Computer
vision-based metrics such as saliency models and meaning
maps (Henderson & Hayes, 2017) are also able to significant-
ly predict the objects that are drawn from memory of a scene
(Bainbridge et al., 2019), revealing a new potential for utiliz-
ing computational models to make precise, content-based pre-
dictions of memory.

We have continued to explore a wide range of important
cognitive questions using drawings to reveal the detail within
memory. We used scene drawings to reveal evidence against
the classic textbook phenomenon of boundary extension—a
propensity to extrapolate beyond the borders of a photograph,
said to reflect our mind’s propensity to automatically “fill in”
information. By investigating drawings made from a diverse
range of scenes mirroring the statistics of the real world, we
found the opposite effect of boundary contraction was just as
likely (Bainbridge & Baker, 2020a), and this work has ignited a
new debate in the fields of scene perception and memory
(Bainbridge & Baker, 2020b; Intraub, 2020; Park et al.,
2021). In another study, drawings from participants with
aphantasia—a newly identified condition characterized by a
lack of visual imagery (Jacobs et al., 2018; Keogh & Pearson,
2018; Zeman et al., 2015)—revealed a specific deficit in object
memory over spatial memory, suggesting separate systems to
support visual imagery (Bainbridge, Pounder, et al., 2021a).
This study has motivated follow-up neuroimaging research on
differences between perception and imagery (Bainbridge
etal.,, 2021c). We have also revealed how semantic consistency
(Bainbridge, Kwok, & Baker, 2021b) and categorical competi-
tion (Hall et al., 2021) influence distortions in memory
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drawings. While these examples largely deal with topics related
to perception and memory, these drawing methods can easily
be applied to other topics, such as attention, emotion, morality,
conceptual thinking, decision-making, and social psychology.
Drawings could also be used to characterize mental represen-
tations in unique populations, such as children, older adults,
and those with conditions that may influence percepts, con-
cepts, or memories, such as autism spectrum disorder, schizo-
phrenia, or Alzheimer’s disease.

This tutorial will describe how researchers can implement
their own drawing-based experiments, and how they can score
these drawings through online crowd-sourcing methods. I pro-
vide examples of how these methods can be combined with
other methods such as computer vision or machine learning to
add a predictive component to this research. This tutorial also
includes a publicly available code base and tutorials from
which researchers can build their experiments, even with lim-
ited programming experience (https://osf.io/tgavx/). In a time
when online research is becoming increasingly important and
popular, these tutorials have been designed to teach basic
principles of web architecture and online research, so that
experimenters will become more comfortable thinking about
online data collection more broadly, in this framework of
designing a drawing experiment.

The bipartite structure of a drawing study

Researchers have traditionally shirked away from drawing as
a behavioral measure because of its high level of variability:
drawings can seem highly subjective, drawings are influenced
by strategy and technique, and drawings are highly influenced
by the drawing abilities of the participants. However, with
enough participants and/or well-selected control conditions,
these levels of variability can be easily washed out. In fact,
so far all of our drawing studies have recruited from non-
artists, with many participants expressing a lack of confidence
in their drawing abilities.

The main crux of a successful drawing experiment is a bi-
partite structure: 1) a drawing task with careful control condi-
tions, and 2) a battery of online scoring experiments to quantify
the drawings. In Bainbridge et al. (2019), alongside having
participants draw images from memory, a separate set of par-
ticipants drew from the image (copying it), and a set of partic-
ipants drew from a label of the image category (e.g., living
room). Drawings copied from an image can serve as an up-
per-bound—few people will draw every pixel in an image, so
what is drawn during perception serves as the maximum level
of information one can expect to be drawn from memory. This
upper bound also serves as a control for drawing ability; equal
variability in drawing skill should be captured during both per-
ception and memory. So when assessing memory drawings, the
key question is how they compare to perceptual drawings, not
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how they compare to the original image. Drawings made from
the name of an image category serve as a lower-bound, to
demonstrate what information could be accurately drawn by
solely remembering a semantic label for the image. For our
memory task, we observed that participants recalled high levels
of detail beyond this category representation; they did not draw
just any living room, they drew the specific image of a living
room that they studied (Bainbridge et al., 2019). This sort of
task could also be used to understand people’s developments of
schemas or concepts. Thus, carefully selected control tasks can
manage the level of variability present in the condition of inter-
est. When designing your own drawing experiments, it is es-
sential to consider: what are your lower-bound and upper-
bound measures (or, what are your controls)? Will you compare
drawings to the original image, to drawings by another person,
or within-participant drawings of another form? For example,
in our study of aphantasia (Bainbridge, Pounder, et al., 2021a),
we compared aphantasic memory drawings to same-participant
perceptual drawings (within-subjects), but we also compared
aphantasic memory drawings to control participant memory
drawings (between-subjects). Having the same participant draw
an image from memory and from perception can give a pow-
erful measure of how their performance shifts from one process
to the other. We also frequently compare drawings for a given
image across participants, testing whether one condition or one
group draws more detail than the other for the same image.

After obtaining these drawings, the next key point is that
anything that can be observed in the drawings can be objec-
tively quantified online. While classic drawing tasks require
interpretation of the drawing by the experimenter or a clinician
(e.g., Wechsler, 2009), in this era of online citizen science,
scoring of these drawings can be crowd-sourced. This
removes any subjectivity with interpreting the drawings, and
the ease of crowd-sourcing allows for a large number of cre-
ative measures to be quantified. For example, one could mea-
sure the presence or location of a specific object, the viewing
angle of the drawing, its mood or aesthetic qualities, etc.
These online scoring experiments will be discussed in more
detail later, with a list of properties that have been quantified
from drawings thus far.

After solving these potential issues of subjectivity or
drawing ability, we are left with an incredible gem of
information—a visual mental representation. These draw-
ings reveal how people see the world, with rich visual,
semantic, and spatial information. While an individual
drawing may be difficult to interpret, combining drawings
for a given image, task, or participant creates a compelling
picture book of underlying cognitive processes. These
drawings can reveal not only memories, but concepts, in-
terpretations, schemas, imaginings, and dreams. In this
section, I describe how to collect drawings both in-lab
and online, and discuss important considerations for de-
signing these experiments.

Drawing as measured in the laboratory

Drawing is an incredibly versatile methodology for in-person
research, and adaptable to different experimental needs (Fig.
1). In its simplest form, it only requires paper and a pen, and is
easily understood by most people. Because of its simplicity, a
drawing task can be administered to a patient group, a class-
room of students, and in different social groups. Conversely,
one can also design a more complex and well-controlled study
for in-lab participation.

In some of our recent drawing studies (Bainbridge, Kwok,
& Baker, 2021b; Hall et al., 2021), in-lab participants studied
images on a computer at a fixed visual angle while an eye-
tracker (an EyeLink 1000 Plus) recorded their fixation pat-
terns. They then drew each image from memory on a piece
of paper with a rectangular border matching the size and di-
mensions of the original image. Importantly, they drew using
a pen-tracking tablet (Wacom Intuos Pro Paper) so that we
could capture pen movement patterns, and assess their link
to eye movement patterns. Through pen tracking, we can mea-
sure many types of information, such as: time spent on spe-
cific details, order of drawing information, action trajectories
reflecting unconscious processes in decision-making (Song &
Nakayama, 2009), and errors. For example, we observed eras-
ing behavior (reflected in pen movements but not the final
drawing) and found that those with aphantasia show less
editing than those with typical imagery (Bainbridge et al.,
2021a, b).

One could envision modifying such a drawing task so it
could be run simultaneously with neuroimaging. A temporally
resolved method such as electroencephalography (EEG) or
magnetoencephalography (MEG) could be utilized to link
changes in brain activity to the time course of drawing (e.g.,
can we decode what is being drawn at a given moment?). Thus
far, EEG research has shown alpha band activity patterns dur-
ing drawing that could suggest improved learning (Belkofer
et al., 2014; van der Meer & van der Weel, 2017). While
slower in time scale, functional magnetic resonance imaging
(fMRI) could be used to examine questions about inter-subject
correlations during recall, or representations of information at
a coarser time scale, adopting methods used to analyze verbal
recall during fMRI (Chen et al., 2017). With MRI-compatible
touchscreen interfaces (e.g., MRItab: Vinci-Booher et al.,
2018), drawing can be natural and seamless inside an MRI
scanner. Indeed, some labs have already identified brain net-
works engaged during drawing tasks (Gowen & Miall, 2007,
Schaer et al., 2012), and compared representations during ob-
ject drawing and object recognition (Fan et al., 2020).
Additionally, experiments testing letter drawing during
fMRI have revealed visual-motor networks of letter recogni-
tion (James & Gauthier, 2006; Vinci-Booher et al., 2019).
Thus, drawing inside a scanner is certainly feasible, and could
present a new way in which to decode mental representations.
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Pen + Paper

(Bainbridge et al., 2019)

+ Flexible, adaptable
+ Easy to administer

- Hard to digitize

Drawing-based

: Pen + Tablet
Experiment eniane

(Bainbridge et al., 2020)

+ Tracks pen
+ Easy to digitize

° - Hard to administer
- Less familiar

Mouse + Website
(Bainbridge et al., 2021)

+ Tracks mouse
+ Can collect remote data
+ Already digitized

- Difficult interface
- Risk of low effort

@ Online Scoring

Is this object in the
drawing?

Where is that object in the drawing?

Fig. 1 A broad flow-chart of the general methods of drawing experi-
ments. First, participants view (or imagine) images in an experiment.
The task and participant sample can vary flexibly—the only requirement
is that the task require participants to draw. Then, participants create
drawings, with one of three different interface options: a pen and paper,

Drawing as measured digitally

Online research is becoming increasingly popular in the psy-
chological sciences, and offers a method to efficiently capture
large amounts of data from diverse groups. For example, even
though the prevalence of aphantasia is around 1-3%, we were
able to recruit 61 online participants through Reddit and
Facebook forums (Bainbridge, Pounder, et al., 2021a). The
growing popularity of pen-based tablet devices also means
that many online participants may have a comfortable way
to draw digitally. However, even using an average computer
mouse, participants can produce high-quality drawings in a
web interface (Fig. 2).

In terms of implementation, we conduct our online drawing
experiments using in-house code written in HTML and
JavaScript (along with jQuery), available on the Open
Science Framework page with this tutorial (https://osf.io/
tgavx/). Coding without the need of proprietary software
makes the code incredibly flexible and adaptable (and can be
edited in a standard text editor). For drawing, we adapt an open-
source jQuery plugin called wPaint (Websanova, 2011). This
plugin works like a standard drawing program, where the par-
ticipant can use a pen tool in different colors to draw lines, and
an eraser to remove those lines. There are also undo, redo, and
clear buttons to let the user fix any mistakes. While we thus far
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a pen and tablet, or mouse on a website. Some of the key pros (green
pluses) and cons (red minuses) of each approach are listed here. Finally,
these drawings are uploaded to an online crowd-sourcing platform where
large numbers of online scorers judge these drawings for a range of fine-
grained details

have only allowed the pen tool in our studies (, wPaint by
default includes a wide range of tools, such as lines, text, ellip-
ses, rectangles, and a fill tool. These tools could be useful to the
experimenter, but in some cases the experimenter may want to
remove extraneous tools to reduce the participant degrees of
freedom. Once the drawing is complete, the image can then
be saved as text using base64 encoding. Most common pro-
gramming languages can flexibly convert between an image
format (like JPEG) and base64 (see code). We also use
jQuery or JavaScript (a combination of its mouseup(),
mousedown(), and mousemove() functions) to track the location
and timing of the mouse while drawing. This results in output
much like the in-lab pen tablet experiments, where you know
what stroke is being drawn by the participant at any time. You
can also track the movements they make before undoing or
clearing data, which can capture drawing errors, or navigations
away from the task.

Attached to this tutorial, we include code examples for four
drawing experiments with increasing complexity, designed so
that the code can be flexibly adapted for the reader’s uses, and
also designed to teach some basic principles about web pro-
gramming and architecture (Fig. 3). Example 1 includes the
code for the simplest drawing interface, with HTML forming
a basic page structure, and JavaScript used to load in the
drawing interface and save the drawing. Building from
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Perceptual Drawings

Memory Drawings s

—— ’ Low-Effort

Online

A

Fig. 2 Example drawings from experimental data of the same living
room photograph. Shown are example drawings all taken from separate
participants, where they drew the same living room while viewing the
image (‘“Perceptual Drawings”) or while recalling the image (“Memory
Drawings”). Drawing quality was high regardless of whether participants
were drawing with pen on paper (from Bainbridge et al., 2019), or with a

Example 1, Example 2 adds JavaScript code that tracks and
saves the mouse movements of the user. Example 3 provides
an example of how multiple drawing interfaces can be inte-
grated into a timed experiment with multiple trials. Finally,
Example 4 shows how to integrate this code with a PHP script
to save data to a private server.

When running an online experiment, there are some specific
decisions one must make that are less important for in-person
experiments. First, with a plethora of programming and online
platform options available, it can be difficult to choose the right

Example 2:
Drawing interface +
Mouse movement tracking

Example 1:
Drawing interface

AeXmeN/Teo@ L mma)

p

R

. =

Fig. 3 The four online drawing experiment examples available with this
tutorial. The code is designed to provide examples at different levels of
complexity, starting from a basic drawing interface (Example 1), and
building up to a full-fledged experiment with timed trials, mouse tracking,

mouse on a website (from Bainbridge, Pounder, et al., 2021a). It is also
readily apparent when participants are not taking the task seriously or
missed the stimulus, as seen from poor attempts at drawing the living
room from two online participants (“Low-Effort”, from Greenberg
& Bainbridge, 2021)

online host for any experiment. I discuss recommendations and
considerations applicable to online experiments in
Supplemental Information S1 (https://osf.io/q2vwz/). Second,
online research is often plagued with an increased concern
over data quality, because of the emergence of bots and task
farms (Chmielewski & Kucker, 2019). Conveniently, it is usu-
ally relatively straightforward to identify low effort in drawings,
and bots cannot yet perform these tasks. In Supplemental
Information S2 (https://osf.io/q2vwz/), I provide targeted
advice on avoiding cheating in online drawing tasks.

Example 3:
Drawing interface +
Mouse movement tracking +
Timed Trials

Example 4:
Drawing interface +
Mouse movement tracking +
Timed Trials +
Server Uploading

QTS

%

&

N
RS

and saving to a private server (Example 4). These examples could also
serve as an iterative approach to learning web design, starting with basic
HTML and JavaScript, building up to more complex JavaScript func-
tions, and finishing with server-side scripting in PHP
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Considerations when designing a task
Task design decisions

While the implementation of a drawing task can be flexible,
there are various decisions an experimenter must consider
(Table 1). In our prior studies, we have never imposed a time
limit on drawing time, however a time limit could be useful
(e.g., to only capture top-priority items in one’s representa-
tions for an image). We often do not tell participants that they
will be tested with drawing until they get to the drawing por-
tion of the experiment (Bainbridge et al., 2019). We take this
approach to limit drawing-targeted encoding strategies by par-
ticipants, such as focusing on remembering information they
know they will be better at drawing. We also test participants
in a free recall manner, to avoid a risk of participants inserting
false information based on cued information (e.g., if you tell
them to “draw the living room” they studied, they may insert
canonical living room objects—Ilike a couch—even if they
don’t specifically remember one). However, future experi-
ments could intentionally manipulate task instructions or cues
to see the role of strategies on memory performance. One final
consideration is how long a delay the experimenter wants
between presentation of the original image and the drawing
(if any). Drawings take much longer than other behavioral
outputs, with participants generally taking 2 min per drawing
when given no time constraints (Bainbridge et al., 2019).
Thus, memory for information might decay during the draw-
ing period itself, and detail could dissipate with later drawings.
We actually did not observe evidence for this in our original
study; participants drew on average 12 images from memory
and there was no evidence that later drawings contained less
detail than earlier drawings (Bainbridge et al., 2019).
However, there was a loss of detail when drawing after an

Table. 1

intervening 12-minute distractor task in comparison to imme-
diate recall. Thus, timing may be an important consideration,
and one could use pen movements to quantify what informa-
tion is recalled first or last.

Additional information beyond the drawing

Another consideration is whether participants should be able to
include additional information beyond the line drawing. We
have provided participants with colored pencils, and found that
individuals with aphantasia use less color than those with typ-
ical imagery (Bainbridge, Pounder, et al., 2021a). We also al-
low participants to write text labels when they are unable to
recall details, or are unconfident about their drawing for an
object. These text labels can help an experimenter score or
interpret an image (Bainbridge, Kwok, & Baker, 2021b), and
have also revealed that individuals with aphantasia rely on se-
mantic representations to scaffold their memory for an image
(Bainbridge, Pounder, et al., 2021a). We also sometimes con-
clude experiments with a task where participants can indicate
what image and objects they were intending to draw, to make
scoring more straightforward (Hall et al., 2021). One could
envision other types of information that could be collected in
combination with a drawing. For example, experimenters could
record participants verbally describing their drawing as they
create it. Other sensor measurements such as pen speed or
pressure could reflect unconscious cognitive processes, such
as confidence or task difficulty (Song & Nakayama, 2009).
Outside of the drawing task, I recommend collecting basic de-
mographic questions about artistic experience (i.e., years of
artistic training, ratings of one’s own drawing ability, occupa-
tion) in order to quantify individual variability in performance.
We used these measures to demonstrate that individuals with
aphantasia showed memory-specific deficits in their drawings,

Important considerations when designing a drawing experiment

Experimental design Output measures

Specific to in-lab studies: Specific to in-lab studies:

» What visual angle, resolution, and size will my images be? (Ensure » Will I record eye-tracking during the study phase?Specific to online

drawing area matches this.)* Will I (the experimenter) watch the drawing
process (and how might this influence participants)?Specific to online
studies:* Will I restrict the hardware that can be used with the experiment
(e.g., phone, tablet, monitor)?s Will I include catch trials or questions to
ensure high data quality?General considerations:+ How long will
images be displayed for, and what fixation behavior will be allowed?e
When will participants know they will be drawing? (At the beginning of
the study? Right before the drawing portion?)» What instructions/cues
will I use for each drawing trial? (Or will I make it a purely free recall
task?)

studies:* Will I restrict the response devices that can be used (e.g., finger,
stylus, mouse, joystick)?General considerations:* Will I record pen-/-
mouse-tracking during the recall phase? (And what measures do I care
about? Time/stroke order? Speed? Pressure? Trajectory?)s Will I allow
for color and/or text?* How long will participants be allowed to draw
for?e Will I track erasures in some way?* What demographic information
do I want to record? (e.g., artistic ability)
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not explained by differences in general artistic ability
(Bainbridge, Pounder, et al., 2021a).

Limitations in drawing tasks

While drawings are information-rich, there are also limitations
to drawing as a behavioral measure. First, drawings can be
laborious to create, so the experimenter is limited in the num-
ber of drawings they can request before the participant is fa-
tigued or out of time (the most we have requested is about 30:
Bainbridge et al., 2019). With online experiments, the amount
of dedicated focus the experimenter can expect is probably
even shorter. Some individuals may also feel resistant to
drawing—embarrassed about their abilities, or unsure where
to begin. Finally, drawing ability can still be a barrier to accu-
rately representing one’s mental representations; for example,
one may have a clear image of a face but still be unable to
draw it. Nonetheless, drawings can often capture more vivid
visual details than other methods such as verbal report.

Objective quantification of drawings

After collecting drawing data, the next important step is to
quantify these drawings. Unlike classic drawing studies where
the experimenter must use their discretion to score each draw-
ing, a key innovation with this method is that the experimenter
must outsource quantification of these drawings. In this way,
we can leverage the rich ability of people to extract informa-
tion from ambiguous input (a drawing), but utilize this ability
at a large scale, unbiased by the experimental questions, to
create objective scores for each drawing. Table 2 lists a survey
of the types of measures that can be captured from drawings.
Using human ratings, one can quantify a range of information
from image-based metrics, to detail-level metrics analyzing
specific portions of an image. Computationally derived

Table. 2 Examples of information that can be quantified from drawings

measures can also be directly compared with these human
metrics. This tutorial includes a base of code to create, test,
and analyze online scoring experiments for drawings, as well
as compare their results to computationally derived measures.

Image-level metrics

The most straightforward of metrics to crowd-source are those
where online scorers must make a singular judgment of a draw-
ing (Fig. 4). Viewing a drawing, a scorer could be asked to
make a range of responses along a Likert scale, for example
scoring the drawing quality, aesthetic quality, emotional va-
lence, realism, interpretability, or other similar measures.
They can also be asked to compare the drawing to another
image or set of images, for example judging: How similar is
this drawing to this image?; Which viewing perspective does
this drawing take (e.g., front, %, side, birds-eye)?; How similar
is this drawing to the average schema across these photo-
graphs? Online scorers can also be asked to make short re-
sponses related to the drawing, such as: What is this a drawing
of?; Name the objects in this drawing; How would you describe
this drawing to someone? Finally, online scorers can also make
judgments based on a video of the mouse movements of a
drawing, labeling features such as the existence of erasures/
editing, the order of pen strokes, or the speed of drawing.

Detail-level metrics

Perhaps most interesting and innovative of the described ap-
proach is to rely heavily on detailed scoring of images. A first
principle is that many of our experiments are automatically
derived. For example, one common experiment is having on-
line scorers judge which objects from a photograph exist in a
drawing of that photograph (Fig. 4). To create this experiment,
we first identify the outlines of all of the objects in the photo-
graph. This can be conducted by someone in-lab or through

Image-level metrics Detail-level metrics

Computational metrics

Image/scene identity Object identities Saliency
Drawing quality Feature size/location/orientation Color/luminance
Aesthetic quality Similarity to a schema/exemplar Symmetry

Emotional valence
Viewing perspective

Realism/imaginativeness Usage of color

Texture and material of objects
Caricaturization of features

Spatial frequency, edges, GIST
Mid-level measures: SIFT, HOG

Deep learning: classification & heatmaps

Similarity to a schema Usage of text labeling Meaning maps

Accuracy Drawing order & time Motion maps

Erasures and errors Object-object relationships Semantic segmentation

Interpretability Insertions of false details Generative Adversarial Network inputs
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Drawing Judgment

Object Selection

The photograph has an object in red.

Is this a drawing of this image?
Is that object in the drawing?

o DefinitelyNot o Probably Not
o Unsure o Probably o Definitely oYes ©No

Fig. 4 Example online scoring experiments for the drawings. One can
use online scoring to collect image-level metrics, such as how well a
drawing matches an image (“Drawing Judgment”) or what differences
may exist between the drawing and image (“False Objects”). Online
scoring can also give fine-grained detail-level metrics, with online partic-
ipants providing a response for every object, such as whether each object

crowd-sourcing using LabelMe (http://labelme.csail.mit.edu/
Release3.0/, Russell et al., 2007), an online interface where
you define the polygons that form the outlines of each object
in an image. LabelMe saves these annotations as an XML file
defining the coordinates of each object polygon’s points,
which serves as a file that can be flexibly read into many
programming languages. Similar outlines could also be
derived using a computer vision or deep learning algorithm
such as VGG-16 for object classification (Simonyan &
Zisserman, 2014). With these outlines, we know what objects
are in an image, at what size, and what location. We can create
(and have provided) code that can automatically create one
image for every object, in which its outline is highlighted in
red in the context of the scene. We then automatically create
thousands of online scoring trials where a scorer sees a draw-
ing and an object highlighted in red and has to respond wheth-
er that object is in the drawing or not. These ratings are col-
lected across a number of scorers (we typically use five per
object, given the large number of objects we collect judgments
on), and then the majority response wins, to determine what
objects exist in a drawing.

A second principle is that we run multiple nested
experiments, where the trials of one experiment are derived
from the trials of the previous experiment. For example, an-
other possible experiment is to derive the locations of every
object in a drawing (Fig. 4). To do this, we automatically
create online scoring trials only for the objects that are judged
to exist in a drawing in the task described previously. For
those specific trials, we show online scorers the photograph
with an object highlighted in red, and the matching drawing
with a superimposed red ellipse. The job of the participant is to
move and resize the ellipse to highlight that corresponding
object in the drawing. We collect five ellipses per object,
and take the median center and radii as the final ellipse for
the object. Across all of our studies, these measures have
indicated a high spatial accuracy, where objects tend to be
drawn at the same sizes and locations as the original objects
in the photographs (Bainbridge et al., 2019; Bainbridge et al.,

@ Springer

Object Location False Objects

Write down any objects in the drawing
that are not in the photograph.

New objects: 1

The photograph has an object in red.
Move and resize the circle to cover the
same object in the drawing.

exists in a drawing (“Object Selection”) or where it is located and at what
size (“Object Location”). These four specific experiments have been val-
idated across studies (Bainbridge et al., 2019; Bainbridge, Kwok, &
Baker, 2021b; Bainbridge, Pounder, et al., 2021a; Hall et al., 2021), and
are provided in the code base of this tutorial

2021a, b), suggesting this ellipse measure is successful. Future
versions of this experiment could use a LabelMe-like interface
to instead measure a complex contour for a drawn object.

After these object identification and object location exper-
iments are complete, you now have a direct correspondence of
objects in the drawing to objects in the photograph. This al-
lows the experimenter to ask a wide range of questions. You
can examine how usage of detail or color varies within and
across individual objects. You can examine what task manip-
ulations modulate the drawing-photograph correspondences
(for example: does a longer memory delay reduce the spatial
correspondence between the two?). You can investigate when
an object was drawn and for how long, just as you can mea-
sure when and how long an object was fixated on in a photo-
graph. You can ask online scorers to judge individually drawn
objects in ways they can judge the entire image: scoring an
object for aesthetic or emotional value, or describing it or
attributing it a label. You can apply similar methods not just
to singular objects, but also to clusters of objects, object parts,
or features (e.g., the features in a face). Finally, you can look at
false memories — what objects are drawn that do not exist in an
original image, and where are they?

This image-object-to-drawn-object correspondence also
means that drawings and images can be transformed into rep-
resentations defined by the object space. It may be difficult to
compare drawings and photographs at the pixel level because
drawings tend to be sparser across their pixels (although see
the next section). Instead, drawings and photographs can be
compared at the object level, where a given image or drawing
is represented by a vector of objects. For example, you could
compare a vector of fixation durations on objects in a photo-
graph and a vector of drawing durations on objects in a draw-
ing. As another example, you could compare ratings of aes-
thetic values of objects in a photograph to ratings of drawing
quality of objects in a drawing. The same methods could also
be used for other types of discrete elements, for example to
compare the locations of facial features in a photograph to the
locations of facial features in a drawing. Conceptualizing
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images and drawings in an object space also allows one to
perform computations across drawings — for example, looking
at the average aesthetic rating across individuals for a given
drawn object, or collecting a proportion of people who drew a
given object. This allows for the creation of object-based
heatmaps that can visualize these values using the stable loca-
tions of the objects in the original image, even when showing
data from the drawings (Fig. 5).

Computationally derived metrics

Many measures that can be computationally derived from a
photograph can be computationally derived from a drawing as
well. These algorithms can vary in complexity by pixel-level
computations, more complex image-based metrics, and deep-
learning-derived metrics.

First, many measures can be derived through directly ex-
amining the pixels of the drawing. By averaging the pixel
values at each color channel, one can get an idea of how much
information is present for each basic color (R, G, B), for ex-
ample, how blue the drawing is. By instead measuring the
variance, one captures a measure of the contrast in the image.
If drawings are made in an online interface, the experimenter
can limit the specific colors that can be used in the interface,
and the number of pixels matching each color can be quanti-
fied to provide a fine-grained measurement of the distribution
of colors. The density or amount of “ink” in the drawing can
be quantified as the total number of non-white pixels. From

Object Memory

the pixels of an image, one can also measure symmetry and
spatial frequency. To quantify symmetry, one can divide the
image into two halves and subtract one half with the mirror-
flipped version of the other. The more non-zero pixels that
remain, the more asymmetric the image is. Finally, spatial
frequency captures the edge information or spectral energy
present in the image, and can be calculated by looking at the
Fourier transform of the drawing. The Natural Image
Statistical Toolbox is an open-source MATLAB toolbox that
can quantify these measures of color, contrast, symmetry, and
spatial frequency (Bainbridge & Oliva, 2015).

Many tools developed in the realm of computer vision
already exist for quantifying higher-level information about
images, such as HOG, SIFT, and GIST. HOG (histogram of
oriented gradients) is an image feature often used for object
classification that analyzes edge orientations in local image
regions (Dalal & Triggs, 2005). SIFT (scale-invariant feature
transform) is a feature often used for image alignment that
compares local regions of an image to a reference set (Lowe,
1999). Finally, GIST captures the gist and spatial envelope
presented by the spectral energy within an image (Oliva &
Torralba, 2001). These features can be used to parse the con-
tent of an image, for example, they can be used to automati-
cally classify the genre of a painting (Agarwal et al., 2015).
However, they have not been used in the field of psychology
as metrics to quantify drawings, although there are toolboxes
available for quantifying images (Khosla, 2017). Visual sa-
liency is also a common metric that can be quantified using

Original Image

More drawn

$o-

Memory Locations

Longer fixations
More Salient

Fig. 5 Different quantifications of the same image. Here we illustrate
how different human- and computationally derived metrics can be com-
pared in the pixel or object space between images and drawings. From the
Object Selection online experiment, one can create a heatmap indicating
the proportion of participants who drew each object (“Object Memory”).
One can also use the Object Location online experiment to derive the
locations of drawn objects (“Memory Locations”, showing the median

BVS

S &

®

More Salient

ellipse for the top four drawn objects). These object values and locations
can then be compared to the values and locations of participants’ fixation
behavior on the image (“Eye Fixations”), or computer-derived image
metrics like Graph-Based Visual Saliency (“GBVS”) or DeepGaze 11
neural network predictions (“DeepGaze 1I”’). The original photograph
and example data come from Bainbridge, Kwok, & Baker, 2021b
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tools such as Graph-Based Visual Saliency (GBVS, Harel
et al., 2007). GBVS creates a heatmap of the salient portions
of'an image (in other words, the parts of an image that are most
visually dissimilar from other parts), and can predict eye
movement patterns.

More recently, deep learning neural networks (DNNs) are
becoming increasingly common ways to quantify an image.
They serve as compelling models of the early human visual
system (Cichy et al., 2016; Yamins et al., 2014), and have
made strides in predicting object perception through networks
like AlexNet (Krizhevsky et al., 2012) and VGG-16
(Simonyan & Zisserman, 2014), scene perception through
networks like Places-CNN (Zhou et al., 2014), fixations
through networks like DeepGaze II (Kiimmerer et al., 2016),
and memory through networks like MemNet (Khosla et al.,
2015) and ResMem (Needell & Bainbridge, 2021). Most of
these pre-trained networks are publicly available, and can be
used to make inferences about novel images. For example,
one could measure: To what degree can the objects or scene
of a drawing be classified? How does memorability of a draw-
ing compare to memorability of the original image? Do pre-
dicted fixations on an image relate to what objects people will
draw? Some DNNs also create heatmaps across the image,
such as MemNet, which creates a heatmap of what image
information most contributes to its predicted memorability
score. There has also been burgeoning work in relating
DNN-based representations of drawings to those of the corre-
sponding image (Fan et al., 2018) and using DNNs to score
drawing recognizability (Long et al., 2021).

There are two main ways in which these computational
methods can be used to quantify drawings. Most directly, they
can be used to quantify both the drawing and its original
photograph, and then those two can be directly compared.
For example, a singular value of color contrast could be de-
rived for each photograph and each drawing and then corre-
lated. For another example, a GBVS heatmap could be created
for a photograph and a GBVS heatmap could be created for a
drawing, and these saliency measures could be correlated pix-
el-by-pixel. However, drawings will intrinsically differ on
many visual features in comparison to photographs, and often
not for particularly interesting reasons. For example, drawings
likely will include less color across all the pixels than a pho-
tograph, since it is effortful and inefficient to color each pixel.
There also may not be as many fine details within a drawing
and lines may not be as straight, thus influencing spatial fre-
quency and symmetry measures. Instead, it may make more
sense to transform these measures to the object space. For
example, one could look at the color contrast of each object,
normalized by the mean color contrast across objects, and
compare this measure between the photograph and a drawing.
Through this normalization, you would remove the differen-
tial influences of color usage in drawing versus an image. For
heatmap measures like GBVS, you can compute the average
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value across the pixels contained within an object (e.g., the
average saliency of the chair), and compare it to another mea-
sure (e.g., the proportion of people who drew that chair).
Putting these computational metrics into the object space also
makes it easier to combine data across drawings of the same
image.

Applications of this method to other
questions and fields

While this drawing method has thus far been applied to ques-
tions related to memory and visual imagery, this method has
large-reaching implications across questions in psychology.
Here I will provide some launching points for ideas in alter-
nate subdomains of psychology and neuroscience, although I
envision the number of possible questions is infinite.

This method can serve as a tool for understanding schemas
or concepts. Drawing has been used to investigate the emer-
gence of schemas in children (Freeman & Janikoun, 1972;
Long et al., 2021), the influence of culture on schemas (Axia
et al., 1998), and to question whether children even can use
drawings to represent schemas (Kosslyn et al., 1977).
Drawings have also revealed how experts differentially orga-
nize information through chunking (e.g., investigating elec-
tronic technicians’ memories for circuit diagrams: Egan &
Schwartz, 1979). Online crowd-sourced scoring and digitized
drawings can allow for even more fine-grained views into
category schemas and the role of expertise across the lifespan.

Drawings can be used to capture current cognitive states
and their fluctuations within an individual. Just as emotion
and stress can color our memories or perception, they likely
color our drawings as well. In fact, drawing is occasionally
used as a method for children to indicate emotional states
(Thomas & Jolley, 1998) and moments of stress (Rollins,
2005). Regardless of age, the content and nature of one’s
drawings may shift with changes in emotional state or stress,
and these drawings could be useful as diagnostic or commu-
nicative tools. For example, what errors may be introduced in
a drawing (e.g., false additional items, missing items) during
times of stress? How do anxiety or depression influence the
features of a drawing? And, can emotional state be predicted
from drawings, even when made from images without an in-
herent emotion?

The act of drawing itself may also have a direct influence
on cognitive abilities, informing questions on the plasticity of
the brain. Artists, who are highly trained at drawing, show
different fixation patterns from non-artists when viewing an
image, and recall more details (Vogt & Magnussen, 2007).
Even for non-artists, drawing when learning information
shows larger benefits over verbally rehearsing information in
adults (Perdreau & Cavanagh, 2016; Wammes et al., 2016)
and children (Gross & Hayne, 1998). However, drawing can
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also inflate the existence of falsely recalled information
(Bruck et al., 2000; Otgaar et al., 2016). Future studies could
examine how artistic training influences the accuracy of draw-
ings, and translates to performance in other non-drawing
tasks. Drawing also acts as an interaction of multiple process-
es: perception, attention, and motor control (Cohen & Bennett,
1997; Makuuchi et al., 2003). The highly quantified drawings
proposed here can investigate how subtle manipulations in
perception, integration, attention, and motor ability influence
the content of drawings.

Drawings also can reveal insight into higher-level ques-
tions about social interactions, decision making, and morality.
Children draw more accurately when their drawings are used
as a form of social communication (Light & McEwen, 1987).
Children also draw family members differently based on their
attachment style (Goldner & Scharf, 2011). Thus, there are
clear social influences on drawing even from an early age.
Along a similar vein, what differences might emerge when
drawing people from different social categories? In a study
by Uddenberg and Scholl (2018), when white participants
reconstructed a face from memory utilizing an interface that
generates virtual faces along a continuum, they tended to re-
produce a face as more white that it was. Thus, reconstruction
tasks like drawing could unveil subtle biases related to our
representations and perceptions of social categories like race
and gender. Drawings could also be used to indicate percep-
tions of different decision-making options or moral choices.
For example, we often internalize an intrinsic value for ob-
jects, such as tastier foods having high value (Bakkour et al.,
2019), and such value differences may appear in drawings of
these objects.

Finally, while drawings of specific shapes are sometimes
included in test batteries with patients (the Ray-Osterrich fig-
ure to test memory: Shin et al., 2006; the clock-drawing test
for spatial neglect: Agrell & Dehlin, 1998), drawings of com-
plex, naturalistic images promise a deeper look into variations
in cognitive experience. | have already described work show-
ing separate systems for object and spatial imagery in individ-
uals with aphantasia (Bainbridge et al., 2021a, b). Aphasic
patients (individuals with diminished language ability) also
show marked deficits in drawing objects from memory, cor-
related with diminished language abilities (Gainotti et al.,
1983). Performance on a clock drawing test can also differen-
tiate healthy elderly adults from those with Alzheimer’s dis-
ease (Cahn et al., 1996). Thus, in many ways, deficits may be
reflected in one’s drawings, as drawing requires an interwo-
ven combination of many cognitive abilities.

Conclusions

While drawing has often been regarded as a noisy task, dele-
gated mostly to test batteries in the clinical domain and historic

studies before the advent of computers, there is much untapped
potential in drawing as a rich, informative behavioral measure.
Leveraging modern methods of large-scale online experiments,
crowd-sourcing, and high quantification through computer vi-
sion and pen-tracking, new drawing experiments have already
revealed exciting insights about memory, perception, and atten-
tion, and promise to answer plentiful questions across psychol-
ogy. This tutorial serves as a basis to equip any researcher—
regardless of programming knowledge—with the tools to con-
duct high-quality drawing experiments, and be aware of the big
picture questions one must keep in mind when running these
studies. With this, we will be better able to draw out the mental
representations in people.
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