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Abstract

Propensity score matching is a method to reduce bias in non-randomized and observational studies. Propensity score
matching is mainly applied to two treatment groups rather than multiple treatment groups, because some key issues
affecting its application to multiple treatment groups remain unsolved, such as the matching distance, the assessment of
balance in baseline variables, and the choice of optimal caliper width. The primary objective of this study was to compare
propensity score matching methods using different calipers and to choose the optimal caliper width for use with three
treatment groups. The authors used caliper widths from 0.1 to 0.8 of the pooled standard deviation of the logit of the
propensity score, in increments of 0.1. The balance in baseline variables was assessed by standardized difference. The
matching ratio, relative bias, and mean squared error (MSE) of the estimate between groups in different propensity score-
matched samples were also reported. The results of Monte Carlo simulations indicate that matching using a caliper width of
0.2 of the pooled standard deviation of the logit of the propensity score affords superior performance in the estimation of
treatment effects. This study provides practical solutions for the application of propensity score matching of three
treatment groups.
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Introduction

PSM (propensity score matching) is widely used to reduce bias

in non-randomized and observational studies [1,2,3]. The

propensity score(PS), introduced by Rosenbaum and Rubin in

1983 [4], is defined as a subject’s probability of receiving a specific

treatment conditional on a group of observed covariates. As the

representation of many covariates, it is estimated at baseline to

control selection bias. There are four main propensity score

methods—propensity score matching, stratification on propensity

score, covariate adjustment using propensity score, and propensity

score weighting [5]—among which PSM is used most commonly

[6].

Propensity score methods have been widely applied to two

treatment groups, but few studies has reported its use for multiple

treatment groups. Imbens extended Rosenbaum and Rubin’s work

to multiple treatment groups. The multiple propensity score,

defined as the probability of receiving a particular treatment

conditional on the observed covariates, can be estimated by a

multinomial logistic regression, given that there is no inherent

order among the different treatments [7]. Wang et al. proposed

the application of stratification on the multiple propensity score to

dose-response relationships in drug safety studies [8]. With a

practical step-by-step approach using data from a mental health

study, Spreeuwenberg et al. introduced covariate adjustment using

multiple propensity score [9]. However, none of the existing

studies, as far as we know, had dealt with PSM for multiple

exposure groups. Many key issues have not been resolved, such as

the assessment of balance in baseline variables and sensitivity

analysis, which limit the application of multiple PSM. In addition,

how to select the optimal caliper is another key issue in multi-

treatment PSM. Austin summarized eight caliper widths com-

monly employed in two treatment group scenario [10]. Two or

three treatment groups are common in clinical practice. The

primary objective of this study was to choose the optimal caliper

for three treatment groups by comparing the PSM methods of

different calipers based on Monte Carlo simulations.

Methods

2.1. Theory
Two different approaches of matching are available in PSM:

global optimal algorithms and local optimal algorithms (also

referred to as greedy algorithms) [11]. Global optimal algorithms

use network flow theory, which can minimize the total distance

within matched subjects [12]. Global methods may be difficult to

implement when there are large numbers of potential controls

from which to choose, since they require the creation of a large

distance matrix. Local optimal algorithms begin with the random

selection of the first subject in the treatment group, and then find

its closest control match based on the absolute value of the
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difference between propensity scores (or the logit of the scores). We

chose to use local optimal algorithms for PSM among three

treatment groups, as is done commonly for two treatment groups.

The simulations were all based on 1:1:1 matching within a pre-

specified caliper width, without replacement. In this schema, the

first subject in group-1 is matched with subjects from group-2 and

group-3 using the smallest distance. The caliper width defines the

range within which the propensity scores (or logit of the propensity

scores) must fall to be considered a valid match [13]. Wider caliper

widths can result in the inclusion of more subjects, a greater

sample size, and more precision, but can also decrease balance

between groups and introduce more bias in estimating treatment

effects. The opposite is true for narrower caliper widths. Thus,

only those subjects with distances fallen within the caliper width

are being included. Those subjects not matched are supposed as

outliers and being excluded. ATE (Average Treatment Effect) and

ATT (Average Treatment Effect for the treated) are commonly

estimated based on potential outcomes, or so called counterfactual

outcomes [14]. ATE is a weighted average of ATT and ATU

(Average Treatment Effect for the untreated). In PSM using

caliper with two treatments or more, only sufficiently overlapped

regions among groups were considered, that is to say, to match

only those units in one group with covariate values that are

sufficiently close to the values observed in other groups. When this

is done, the quantity estimated is no longer the ATE or ATT,

because the average is only taken over the region of common

support. However, we can call it average treatment effects for the

matched samples.

The sum of the probabilities of a subject receiving treatment g is

defined as:

XG

g~1

pg x~1, ð1Þ

where pg_x(g = 1,2…G) denotes the subject x’s probability of

receiving g-th group treatment conditional on the observed

covariates, and G denotes the number of the group. For two

treatment groups, the variance of the propensity score of the

treatment group is equal to the variance of the propensity score of

the control group, and therefore considering the probability of the

subject receiving one of the two treatments is sufficient.

When considering more than two treatment groups, however,

the variances of the propensity score of g groups are not equal.

Therefore, g propensity scores should be taken into account for the

purpose of matching.

For two treatment groups, the matching distance D can be

defined either by D1 or D2:

D1~jlog it(p11){log it(p21)j , D2~jlog it(p12){log it(p22)j ð2Þ

p11 is the probability of receiving treatment 1 conditional on the

observed covariates for the patient in treatment 1, p21 is the

probability of receiving treatment 1 conditional on the observed

covariates for the patient in treatment 2, and etc.

For D1~D2

So D~
D1zD2

2
ð3Þ

For three treatment groups, each patient has three Propensity

Scores. Notation of Propensity Scores in 3 treatment groups is

presented in Table 1.

For three treatment groups, formula (3) can be extended as:

D~
D12zD13zD23

3
, ð4Þ

D12~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(log it(p11){log it(p21))2z(log it(p12){log it(p22))2z(log it(p13){log it(p23))2

3

s
,

ð5Þ

D13~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(log it(p11){log it(p31))2z(log it(p12){log it(p32))2z(log it(p13){log it(p33))2

3

s
,

ð6Þ

D23~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(log it(p21){log it(p31))2z(log it(p22){log it(p32))2z(log it(p23){log it(p33))2

3

s
:

ð7Þ

For multi-treatment groups, the matching distance D can be

extended as:

D~

PG-1

g~1

PG
j~gz1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPG
k~1

(log it(pgk xg
){log it(pjk xj

))2

G

vuut
G

2

� � , ð8Þ

where pgk_x(g = 1,2…G-1; k = 1,2…G) denotes the g-th group

subject xg’s probability of receiving the k-th group treatment

conditional on the observed covariates, and pjk_x(j = g+1,g+2…G;

k = 1,2…G) denotes the j-th group subject xj’s probability of

receiving the k-th group treatment conditional on the observed

covariates. Propensity score matching methods have not been used

for three treatment groups in prior empirical research, and no

commonly used caliper widths can be referenced. We allowed

caliper widths to range from 0.1 to 0.8 of the pooled standard

deviation of the logit of the propensity score in increments of 0.1

using Monte Carlo simulations. For multi-treatment groups, the

pooled standard deviation is defined as:

Table 1. Notation of Propensity Scores in 3 treatment groups.

Treatment(Actual) Treatment1 Treatment2 Treatment3

Treatment1 p11 p21 p31

Treatment2 p12 p22 p32

Treatment3 p13 p23 p33

doi:10.1371/journal.pone.0081045.t001

ð5Þ

ð6Þ

ð7Þ
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S~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n1{1)s2

1z(n2{1)s2
2z � � �z(ni{1)s2

i

n1zn2z � � �zni{i

s
, ð9Þ

where Si denotes the standard deviation of the logit of the

propensity score, and i is the number of the sample combined.

Another key issue in this study is the evaluation of the balance of

baseline covariates before and after PSM. The balance of baseline

variables should be assessed by the standardized difference, which

was first introduced by Flury and Reidwyl in 1986 [15]. Its use has

recently become common in propensity score studies [16,17].

Standardized difference can be used for both continuous and

dichotomous variables. For continuous variables, the standardized

difference is defined as:

d~
�xxt{�xxcj jffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
t zs2

c

2

r , ð10Þ

where �xxt and �xxc denote the mean of the variable in treatment and

control subjects, respectively, and s2
t and s2

c denote the variances of

the variable in the treatment and control groups, respectively. For

dichotomous variables, the standardized difference is defined as:

d~
pt{pcj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pt(1{pt)zpc(1{pc)

2

r , ð11Þ

where pt and pc denote the proportion of treatment and control

groups, respectively. It has been suggested that a standardized

difference of less than 0.1 indicates negligible imbalance in a given

covariate between groups [18]. Standardized difference satisfies

the two properties of balance assessment methods proposed by

Imai et al. [19]. First, it should be a characteristic of the sample

rather than a characteristic of the population. Second, this statistic

should be unaffected by sample size. Hypothesis testing does not

satisfy these two properties. A statistical test of hypothesis is

influenced by the sample size, and as a result, better balance may

be achieved in the matched samples than in the initial overall

sample due simply to a smaller sample size. As of now,

standardized difference has only been applied in the analysis of

two treatment groups. For multiple treatment groups in this study,

pairwise comparison is conducted to calculate standardized

difference, among which the greatest standardized difference is

chosen as an indicator to access the overall balance in our study.

2.2. Monte Carlo Simulations
We used Monte Carlo simulations to examine the performance

of the eight different calipers.

2.2.1. We generated eight imbalanced variables among three

treatment groups—4 continuous variables (C1, C2, C3, and C4) and

4 dichotomous variables (D1, D2, D3, and D4 [7])—and assumed

that one continuous covariate and one dichotomous covariate had

maximal standardized differences of 0.2 among the three groups.

Similarly, we assumed that the remaining 3 pairs of continuous

and dichotomous variables had maximal standardized differences

in the full sample of 0.3, 0.4, and 0.5. The 8 variables are

independent.

For each of the 1000 subjects, Tj (j = 1, 2, 3) denotes a multi-

nominal grouping variable. Tj was transformed to a set of dummy

variables where T3 was considered as the base category (control

group) as follows:

j~

1 X1~1, X2~0

2 X1~0, X2~1

3 X1~0, X2~0

8><
>: :

Continuous covariates were generated randomly from the

following distribution:

Ck*N(X1|fkzX2|fk,1),

where Ck denotes the k-th continuous covariate. Thus, the

distribution of the continuous covariates would be N(fk,1) for

group-1 subjects and group-2 subjects, and N(0,1) for group-3

subjects. The values of fk were set as 0.25, 0.35, 0.45, and 0.55, so

that the maximal value of the four pairs of continuous covariates

had standardized differences of 0.2, 0.3, 0.4, and 0.5 among the

three groups (this was determined in an initial set of Monte Carlo

simulations).The prevalence of the 4 dichotomous variables among

group-3 subjects was taken to be 0.1, 0.2, 0.3, and 0.4. The

prevalence of the 4 dichotomous variables among the exposed

subjects was selected so that the maximal standardized differences

of the 4 dichotomous variables among the three groups were 0.2,

0.3, 0.4, and 0.5. This was achieved by setting the prevalence of

the 4 dichotomous variables among group-1 subjects to be 0.147,

0.312, 0.475, and 0.612, respectively. Prevalence of the 4

dichotomous variables among group-2 subjects were set to the

same values (this was determined from an initial set of Monte

Carlo simulations).

2.2.2. Once we had randomly generated the treatment status,

4 continuous variables and 4 dichotomous variables for each of the

1000 subjects, we randomly generated a continuous outcome for

each subject using the following linear model:

Y~{1:6z1:5C1z2C2z3C3z4C4z4D1z3D2z

2D3z1:5D4zX1zX2ze,
ð12Þ

where e*N(0,4), where X1 and X2 denote the treatment status.

The coefficients of the 4 continuous variables and 4 dichotomous

variables denote different correlations with outcome from weak to

strong. The results of normality test for outcome Y are presented

in Table 2. The outcome Y obeys normal distribution in the

scenarios we considered.

2.2.3. We randomly generated 1000 datasets with the

required treatment effect using the above data-generating process

(each randomly generated dataset consisted of 1000 subjects with

required conditions). Within each randomly generated dataset, we

estimated the propensity score by regressing treatment status on

the 8 variables using a multinomial logistic regression model. The

matched samples were obtained by matching subjects on the logit

of the propensity score using nearest neighbor matching, with

calipers ranging from 0.1 to 0.8 of the pooled standard deviations

of the logit of the propensity score in increments of 0.1. The

matching distance was described in Section 2.

2.2.4. The standardized difference(SD) between groups,

matching ratio, relative bias(RB), and Mean Square Error(MSE)

were applied to assess simulation results. Standardized difference is

used for comparing the balance of matched samples. The

matching ratio, defined as the number of matching subjects vs.

total subjects in the treatment with the least number of subjects,

provides an estimate of precision. The relative bias provides a

measure of the magnitude of the bias. The smaller the relative

bias, the smaller the bias of the propensity score model. The

Propensity Score of Three Treatment Groups
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relative bias is defined as:

RB~100|
DETE-TTED

TTE
,

where ETE and TTE denote the estimated treatment effect and

true treatment effect, respectively. TTE is taken from the

simulation model. ETE is average treatment effects for the

matched samples. Group-3 was considered a referenced categor-

y(control group), and the relative bias values between group-3 and

other groups were reported. Under the data-generating process,

the true treatment effect is equal to 1when evaluating group-1 vs.

group-3, and also when evaluating group-2 vs. group-3.

The MSE is used to evaluate the precision of the propensity

score model, which is defined as:

MSE(ĥh)~Var(ĥh)z(Bias(ĥh,h))2,

where Var(ĥh) denotes the variance of the estimator, and Bias(ĥh,h)
denotes the bias of the estimator. Group-3 was considered the

referenced category, and the MSEs between group-3 and other

groups were reported. MSE is a quantitative measure of the trade-

off between variance and bias. Our focus on MSE allows an

investigator to select a caliper width that optimizes this implicit

trade-off.

2.2.5. We considered three scenarios, where the pre_match-

ing ratios of subjects (treatment 1: treatment 2: treatment 3) were

assumed as 1:2:7, 1:2:3 and 2:3:5, respectively. The ‘‘pre_match-

ing ratio’’ means the predefined ratio of subjects’ numbers among

three treatment groups before PSM.

All simulations were performed in SAS, version 9.1.

Results

The mean standardized difference for each of the 8 variables,

matching ratio, relative bias, and MSE are presented in Tables 3,

4, 5. RB13 denotes the relative bias between group-1 and group-3,

and RB23 denotes the relative bias between group-2 and group-3.

Similarly, MSE13 denotes the MSE between group-1 and group-3,

and MSE23 denotes the MSE between group-2 and group-3.

When the pre_matching ratio of subjects was 1:2:3, the

standardized differences for the 8 variables ranged from 0.072 to

0.096.When the pre_matching ratio of subjects was 2:3:5, the

corresponding range was from 0.065 to 0.088 for the 8 different

caliper widths. In both scenarios a standardized difference of each

covariate of less than 0.1 indicates negligible imbalance between

treatment groups. When the pre_matching ratio of subjects was

1:2:7, the corresponding range was from 0.094 to 0.129, and only

31.3% of the standardized differences were less than 0.1.

Irrespective of the pre_matching ratio of subjects, using a

caliper width of 0.8 of the pooled standard deviation of the logit of

the propensity score resulted in the greatest matching ratio. When

the pre_matching ratios of subjects were 1:2:7, 1:2:3 and 2:3:5, the

matching ratios were 99.9%, 98.9%, and 97.9%, respectively.

Using caliper width of 0.1 of the pooled standard deviation of the

logit of the propensity score resulted in the lowest matching ratio.

Thus, when the pre_matching ratios of subjects were 1:2:7, 1:2:3

and 2:3:5, the matching ratios were 82.6%, 81.5%, and 77.3%,

respectively.

As seen from matching ratios, using a caliper width of 0.8 of the

pooled standard deviation of the logit of the propensity score

resulted in the greatest bias, irrespective of the pre_matching ratio

of subjects. When the pre_matching ratios of subjects were 1:2:7,

1:2:3 and 2:3:5, the relative biases were 17.3%, 56.7%, and

71.4%, respectively, between group-1 and group-3. Those

between group-2 and group-3 were 4.8%, 24.9%, and 31.4%,

respectively. Using a caliper width of 0.1 of the pooled standard

deviation of the logit of the propensity score resulted in the lowest

bias. For the pre_matching ratios of 1:2:7, 1:2:3 and 2:3:5, the

relative biases were 1.6%, 4.3% and 3.3%, respectively, between

group-1 and group-3, and the relative biases were-1.6%, 3.4% and

2.0%, respectively, between group-2 and group-3.

When the pre_matching ratio of subjects was1:2:3 or 2:3:5,

using a caliper width of 0.2 of the pooled standard deviation of the

logit of the propensity score resulted in the lowest MSE between

group-1 and group-3. When the pre_matching ratio of subjects

was 1:2:3, using a caliper width of 0.2 of the pooled standard

deviation of the logit of the propensity score resulted in the lowest

MSE between group-2 and group-3. When the pre_matching ratio

of subjects was 2:3:5, using a caliper width of 0.2 of the pooled

standard deviation of the logit of the propensity score resulted in a

MSE that was negligibly higher than the lowest MSE between

group-2 and group-3. When the pre_matching ratio of subjects

was 1:2:7, the MSE was only slightly lower than that of the highest

MSE (MSE ranging from 0.260 to 0.313). When the pre_matching

ratio of subjects was1:2:3 or 2:3:5, using a caliper width of 0.8 of

Table 2. Results of Normality Test for Outcome Y.

caliper P

pre_matching ratios of subjects: 1:2:7
pre_matching ratios of subjects:
1:2:3 pre_matching ratios of subjects: 2:3:5

unmatched 0.148 0.052 0.052

10% 0.091 0.097 0.088

20% 0.105 0.119 0.109

30% 0.112 0.12 0.103

40% 0.103 0.115 0.103

50% 0.104 0.106 0.102

60% 0.106 0.102 0.089

70% 0.106 0.103 0.089

80% 0.108 0.099 0.085

doi:10.1371/journal.pone.0081045.t002

Propensity Score of Three Treatment Groups
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the pooled standard deviation of the logit of the propensity score

resulted in the highest MSE.

Empirical Study

We applied the matching schemes to a perspective observational

clinical study designed to evaluate the mortality and morbidity of

patients with heart failure already receiving optimal medical

therapy in China. There were 601 patients recruited in this study,

who were divided into 3 treatment groups by heart failure

durations, including less than 1 year (n = 215), 1–5 years (n = 242)

and more than 5 years (n = 144).

In order to reduce the bias from confounding variables, PSM

was used to adjust the baseline differences. Standardized

differences for covariates before and after matching is compared

(We can’t calculate the RB and MSE in this example because the

average treatment effect is unknown). The propensity score was

estimated by using a logistic regression model. Heart failure

durations were used as the dependent variable, and the other 9

confounders that were identified in Table 6 as independent

variables, including sex, rhythm, LVEDD (left ventricular end-

diastolic dimension), age, NYHA (New York Heart Association)

class, QRS duration, LVEF (Left Ventricular Ejection Fraction),

Heart rate and Medicine therapy. We used 0.2 of the pooled

standard deviation of the logit of the propensity score as caliper

width for PSM. The matching ratio was 73.6%. The balances of

baseline variables were assessed by standardized difference. The

standardized differences for the 9 confounders were all bigger than

0.1 before PSM. The standardized differences of all confounders

were smaller than 0.1 except Medicine therapy, which indicates

negligible imbalance among treatment groups after PSM.

Discussion

The primary objective of the current study was to compare the

PSM methods of different calipers and to choose the optimal

caliper for three treatment groups. We summarize our findings as

follows.

Firstly, on the basis of a fixed matching ratio, the test of a good

propensity score model is the degree to which it results in the

baseline covariates being balanced between treatment and control

subjects [3]. However, it should not be expected that perfect

balance will be achieved for all baseline variables between

treatment and control subjects in the matched sample. Currently

there is no balance test widely recognized for PSM of more than

two treatments. In this study, the standardized difference was used

for pairwise comparison among three groups, and the greatest

standardized difference was chosen to evaluate the overall balance.

If the greatest standardized difference is less than 0.1, it represents

a meaningful balance among the three groups. Balance of

covariates between groups was achieved when the pre_matching

ratio of subjects was 1:2:3 or 2:3:5. When the pre_matching ratio

of subjects was 1:2:7, the standardized differences were not

reduced to below 0.1(but were below 0.15). The reason may be

Table 3. Results of Monte Carlo Simulations (pre_matching ratios of subjects: 1:2:7).

caliper Standardized difference for covariates
Matching
ratio RB13 RB23 MSE13 MSE23

C1 C2 C3 C4 D1 D2 D3 D4

10% 0.127 0.121 0.120 0.116 0.129 0.120 0.110 0.112 82.6% 1.6% 21.6% 0.306 0.313

20% 0.110 0.106 0.107 0.100 0.111 0.107 0.098 0.101 95.0% 4.8% 20.4% 0.266 0.273

30% 0.108 0.105 0.105 0.098 0.110 0.105 0.095 0.099 97.8% 8.5% 1.3% 0.265 0.263

40% 0.108 0.105 0.104 0.098 0.110 0.105 0.094 0.097 98.9% 11.8% 2.6% 0.269 0.260

50% 0.108 0.105 0.104 0.098 0.110 0.105 0.094 0.097 99.4% 14.1% 3.6% 0.276 0.262

60% 0.108 0.104 0.104 0.098 0.110 0.106 0.094 0.097 99.7% 15.7% 4.2% 0.283 0.263

70% 0.107 0.104 0.104 0.098 0.111 0.106 0.094 0.097 99.9% 16.7% 4.6% 0.289 0.262

80% 0.107 0.104 0.104 0.098 0.111 0.106 0.094 0.097 99.9% 17.3% 4.8% 0.293 0.262

doi:10.1371/journal.pone.0081045.t003

Table 4. Results of Monte Carlo Simulations (pre_matching ratios of subjects: 1:2:3).

caliper Standardized difference for covariates
Matching
ratio RB13 RB23 MSE13 MSE23

C1 C2 C3 C4 D1 D2 D3 D4

10% 0.092 0.092 0.090 0.085 0.096 0.089 0.086 0.082 81.5% 4.3% 3.4% 0.179 0.201

20% 0.084 0.082 0.081 0.078 0.087 0.081 0.078 0.073 90.3% 9.2% 5.0% 0.164 0.175

30% 0.083 0.082 0.079 0.077 0.086 0.081 0.077 0.072 92.9% 16.9% 8.1% 0.183 0.176

40% 0.082 0.082 0.080 0.078 0.086 0.082 0.078 0.072 94.7% 26.2% 12.5% 0.225 0.182

50% 0.082 0.083 0.081 0.080 0.088 0.085 0.079 0.073 96.2% 35.6% 16.3% 0.288 0.193

60% 0.081 0.083 0.082 0.083 0.089 0.085 0.080 0.074 97.4% 43.8% 19.9% 0.365 0.206

70% 0.081 0.083 0.083 0.085 0.089 0.088 0.082 0.075 98.3% 50.9% 22.7% 0.444 0.220

80% 0.082 0.084 0.085 0.087 0.089 0.089 0.085 0.076 98.9% 56.7% 24.9% 0.516 0.230

doi:10.1371/journal.pone.0081045.t004
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that the sample size proportion of group-1 was too small. A

standardized difference below 0.1 suggests negligible bias in a

given covariate between two treatments. Whether this criterion is

suitable for multiple treatments is a valuable question worth

further discussion.

Secondly, in spite of the pre_matching ratio of subjects, the

matching ratio increased as caliper width increased. When the

caliper width changed from 0.1 to 0.2 of the pooled standard

deviation of the logit of the propensity score, the increase in

matching ratio was substantial (increased by 12.4%, 8.8%, and

9.7% when the pre_matching ratios of subjects were 1:2:7, 1:2:3,

or 2:3:5, respectively). When we used caliper widths from 0.2 to

0.8 of the pooled standard deviation of the logit of the propensity

score in increments of 0.1, the matching ratios were only slightly

lower than that of the highest matching ratio.

Thirdly, when the pre_matching ratio of subjects was 1:2:7, the

MSE was only slightly lower than that of the highest MSE when

we used caliper widths of 0.2 of the pooled standard deviation of

the logit of the propensity score. When the pre_matching ratio of

subjects was 1:2:3 or 2:3:5, using a caliper width 0.2 of the pooled

standard deviation of the logit of the propensity score resulted in

the lowest MSE or close to the lowest MSE. This shows that using

this caliper results in greater precision than achieved with other

calipers. Regardless of the pre_matching ratio of subjects, using a

caliper width of 0.1 of the pooled standard deviation of the logit of

the propensity score resulted in the lowest bias, followed by the

caliper width of 0.2 of the pooled standard deviation of the logit of

the propensity. Depending on the pre_matching ratios of subjects,

our findings suggest that a width of 0.2 of the standard deviation of

the logit of the propensity score is the optimal caliper.

There are certain limitations to the current study. Whether the

greatest standardized difference among ‘‘pairwise comparison

between three groups’’ was a suitable indicator for overall balance

is worthy of further discussion. In our simulations, only continuous

outcome variables were generated in the model to determine the

optimal caliper width by estimating their differences in means, but

not differences in risk (for binary outcomes). In our scenarios, the

first four covariates (C1–C4) were assumed to be independent

normal random variables, while the last four covariates (D1–D4)

were assumed to be independent Bernoulli random variables, we

didn’t consider the difference between continuous variables and

dichotomous variables as covariates. Additional pre_matching

ratios of subjects and further iterations were not examined, due to

computational limitations. In our scenarios, we used approxi-

mately 10 days on a PC (CPU: Pentium Dual-Core E5400;

memory: 4G). Much of the time was spent in forming the multiple

propensity score matched samples.

Our studies have provided practical solutions for the application

of PSM to three treatment groups or more, however, it seems not a

good choice to apply PSM with treatment arms more than 4, due

to the insufficiently overlapped regions among groups, computa-

tional complexity and burden.
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Table 5. Results of Monte Carlo Simulations (pre_matching ratios of subjects: 2:3:5).

caliper Standardized difference for covariates
Matching
ratio RB13 RB23 MSE13 MSE23

C1 C2 C3 C4 D1 D2 D3 D4

10% 0.083 0.081 0.077 0.077 0.088 0.080 0.073 0.070 77.3% 3.3% 2.0% 0.152 0.160

20% 0.076 0.075 0.070 0.069 0.079 0.071 0.066 0.065 87.0% 8.4% 3.7% 0.140 0.144

30% 0.076 0.075 0.070 0.069 0.079 0.072 0.068 0.065 90.0% 17.4% 7.4% 0.161 0.139

40% 0.076 0.074 0.070 0.070 0.079 0.073 0.069 0.066 92.2% 28.5% 12.1% 0.213 0.145

50% 0.076 0.075 0.073 0.074 0.080 0.076 0.072 0.068 94.1% 40.4% 17.5% 0.303 0.160

60% 0.076 0.076 0.075 0.079 0.080 0.079 0.076 0.069 95.6% 52.1% 22.7% 0.424 0.183

70% 0.076 0.077 0.078 0.083 0.082 0.082 0.079 0.072 96.9% 62.2% 27.2% 0.552 0.209

80% 0.076 0.078 0.081 0.088 0.084 0.085 0.083 0.075 97.9% 71.4% 31.4% 0.690 0.237

doi:10.1371/journal.pone.0081045.t005

Table 6. Results of Empirical Study.

caliper Standardized difference for covariates Matching ratio

sex rhythm LVEDD age NYHA QRS LVEF Heart rate
Medicine
therapy

unmatched 0.214 0.387 4.288 0.276 0.317 0.407 0.203 0.156 0.292 —

20% 0.100 0.053 0.027 0.088 0.050 0.098 0.043 0.094 0.142 73.6%

doi:10.1371/journal.pone.0081045.t006
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