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Parkinson’s disease (PD) is an age-related neurodegenerative disorder characterized in part by the preferential loss of nigrostriatal
dopaminergic neurons. Although the precise etiology of PD is unknown, accumulating evidence suggests that PD involves
microglial activation that exerts neurotoxic effects through production of proinflammatory cytokines and increased oxidative and
nitrosative stress. Thus, controlling microglial activation has been suggested as a therapeutic target for combating PD. Previously
we demonstrated that pharmacological inhibition of a class of enzymes known as prolyl hydroxylases via 3,4-dihydroxybenzoate
administration protected against MPTP-induced neurotoxicity, however the exact mechanisms involved were not elucidated. Here
we show that this may be due to DHB’s ability to inhibit microglial activation. DHB significantly attenuated LPS-mediated
induction of nitric oxide synthase and pro-inflammatory cytokines in murine BV2 microglial cells in vitro in conjunction with
reduced ROS production and activation of NFκB and MAPK pathways possibly due to up-regulation of HO-1 levels. HO-1
inhibition partially abrogates LPS-mediated NFκB activity and subsequent NO induction. In vivo, DHB pre-treatment suppresses
microglial activation elicited by MPTP treatment. Our results suggest that DHB’s neuroprotective properties could be due to its
ability to dampen induction of microglial activation via induction of HO-1.

1. Introduction

Parkinson’s disease (PD) is a slowly progressive age-related
neurodegenerative disorder characterized by irreversible
degeneration of the dopaminergic nigrostriatal pathway,
resulting in marked impairments of motor control. Although
PD has been heavily researched in the last two decades, the
precise etiology of the disease is still unknown. However,
research in recent years has provided substantial evidence
supporting the hypothesis that oxidative stress and inflam-
mation both likely play a major role in disease pathogenesis
[1–4].

A growing body of both experimental and clinical stud-
ies suggests that inflammation may contribute to neuro-
degeneration associated with many neurological diseases

including PD [5, 6]. The first evidence for a role for inflam-
mation in PD came from a postmortem study by McGeer
and colleagues who found activated microglia and T-
lymphocytes in the SNpc of a PD patient [7]. Since then,
there have been numerous reports supporting a role for
neuroinflammatory processes in PD pathogenesis [8–10]. In
addition to the presence of activated microglia, increased
levels of proinflammatory cytokines including IL1β and IL-6
and enzymes associated with inflammation such as inducible
nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2)
have been observed in the Parkinsonian brain [11, 12].

Microglia are the resident immune-competent cells in
the brain that act to amplify the effects of inflammation
thereby mediating ongoing cellular degeneration [13, 14].
In the event of brain damage or infection, microglia cells
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Figure 1: (a) BV2 microglial cells were pretreated with DHB (100 μM) for 1 h followed by cotreatment with LPS (100 ng/mL) for 6 h. Total
RNA was isolated and real-time PCR analysis performed. Relative mRNA levels for iNOS, TNF-α, and IL-6 were normalized for GAPDH.
Each bar represents means ± SEM. ∗P < 0.05 compared with the control group, ∗∗P < 0.05 compared with the LPS-treated group. (b)
Protein was extracted from whole cell lysates and subjected to western blot analysis for iNOS protein levels; actin was used as a loading
control. Conditioned media (CM) was collected after 24 h LPS (100 ng/mL) ± DHB treatment and nitrite levels determined using the
Griess reagent. Data are presented as means ± SD of at least four independent experiments. ∗P < 0.05 compared with the control group,
∗∗P < 0.05 compared with the LPS treated group. (c) IL-6 levels in the CM were determined using an ELISA kit according to manufacturer’s
recommendations. Data are presented as means± SD of at least four independent experiments. ∗P < 0.05 compared with the control group,
∗∗P < 0.01 compared with the LPS treated group.

become activated and secrete a variety of proinflammatory
mediators and other potentially neurotoxic factors which can
have deleterious effects on neighboring neurons. Suppression
of microglia activation has been suggested as a possible

therapeutic intervention that may alleviate the progression
of various neurodegenerative diseases including PD [15].

Prolyl 4-hydroxylases (PHDs) are a family of enzymes
that act to hydroxylate a variety of substrates, the most
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Figure 2: BV2 microglial cells were pretreated with DHB for 1 h
followed by co-treatment with LPS (100 ng/mL) for 16 h. ROS levels
were measured using the DCFDA method. ∗P < 0.05 compared
with the control group, ∗∗P < 0.05 compared with the LPS-treated
group.

well studied of which is hypoxia-inducible factor (HIF).
HIF is a transcription factor that plays a major role in the
regulation of cellular and systemic oxygen homeostasis [16].
It is a heterodimer consisting of a constitutively expressed
β subunit and one of two α subunits, HIF-1α or HIF-2α,
which are mainly regulated by oxygen. During normoxia,
HIFα is continuously synthesized and hydroxylated on a
specific proline residue by specific PHD isoforms in a
cell- and tissue-specific manner [17]. Hydroxylated HIFα
is rapidly ubiquitylated and subsequently degraded by the
proteasome. Under hypoxic conditions, PHDs are prevented
from hydroxylating proline residues of the HIF-1α protein
resulting in upregulation of HIFα isoforms. This results
in accumulation of HIFα in the cytosol followed by its
translocation to the nucleus where it binds HIF-1β. The het-
erodimer then binds to hypoxia response elements (HREs)
found on a variety of genes including heme oxygenase-1
(HO-1), transferrin receptor (TfR), and tyrosine hydroxylase
(TH), resulting in their transcriptional induction [18].

Previous studies have shown that broad pharmacolog-
ical inhibition of the PHDs alleviates neurodegeneration
associated with stroke and hypoxic-ischemic injuries [19,
20]. Recently, studies from our own laboratory found
that PHD inhibition via the broad-acting inhibitor 3,4-
dihydroxybenzoate (DHB) protects against MPTP-induced
neurotoxicity [21]. The exact mechanisms involved, however,
were not elucidated in this previous study. Here, we report
that the neuroprotective effects of DHB could be due at
least in part to antiinflammatory properties of the drug. Our
results demonstrate that DHB prevents microglial activation
that coincides with reduced neuronal cell loss in both in vitro
and in vivo models of PD. These effects may be attributable
to DHB’s known ability to induce increases in HO-1 levels,
in turn eliciting both anti-oxidant and anti-inflammatory
effects.

2. Materials and Methods

2.1. Reagents. All cell culture reagents were purchased from
Sigma Chemical Co. (St. Louis, MO, USA). Antibodies
against MAPKs, NFκB, iNOS, and actin were purchased form
Cell Signaling Technology (Beverley, MA, USA). Reagents for
qPCR were purchased from Promega (Madison, WI, USA)
and Roche Applied Science (USA).

2.2. Cell Lines. The BV2 cell line was obtained from Dr.
Luc Vallieres, Quebec City, Canada. Immortalization of the
BV2 cell line via infection of murine primary microglial
cell cultures with a v-raf/v-myc oncogene-carrying retrovirus
(J2) has been described previously [22]. Phenotypically, BV2
cells tested positive for MAC1 and MAC2 antigens. BV2 cells
were maintained in Dulbecco’s modified essential medium
supplemented with 10% heat-inactivated fetal bovine serum,
streptomycin (10 mg/mL), and penicillin (10 U/mL) at 37◦C.
The dopaminergic neuronal cell line used in the in vitro
neuronal viability studies, N27, is derived from embryonic
rat dopaminergic mesencephalic neurons via SV40 large T-
antigen immortalization. The cells were grown in RPMI
medium 1640 containing 10% fetal bovine serum, penicillin
(100 units/mL), and streptomycin (100 μg/mL) [23]. To
examine the effects of DHB, microglial BV2 cells were
treated with DHB for 1 h before stimulation with LPS.
Cell viability was determined by 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide reduction assay as
previously described [24].

2.3. Mice. 10-week-old C57BL/6 male mice (Jackson Lab-
oratories, Bar Harbor, ME) were used for the described in
vivo studies. Mice were housed according to standard animal
care protocols, fed ad libitum, kept on a 12 h light/dark
cycle, and maintained in a pathogen-free environment in
the Buck Institute Vivarium. All experiments were approved
by local IACUC review and conducted according to current
NIH policies on the use of animals in research. For DHB
studies (n = 10 per group), the drug was diluted to
a final dose of 100 mg/kg (in 5% ethanol) and adminis-
tered intraperitoneally to mice 6 h prior to 2 consecutive
intraperitoneal injections of either saline vehicle or 20 mg/kg
of MPTP given 12 h apart [21]. Age-matched controls (10
weeks of age) were also treated with 2 × 20 mg/kg MPTP or
saline, 12 h apart. Seven days following the final MPTP or
saline injection, mice were sacrificed for either tissue harvest
for biochemical assays or brain fixation via intracardiac
perfusion for immunohistochemistry.

2.4. RT-PCR. BV2 cells (7.5 × 105 cells on a 6 cm dish) were
treated with LPS in the presence or absence of DHB and
total RNA extracted with TRI reagent. Total RNA (1 μg) was
then reverse-transcribed in a reaction mixture containing
1 U RNase inhibitor, 500 ng random primers, 3 mM MgCl2,
0.5 mM dNTP, and 10 U reverse transcriptase in RT buffer
(Promega). The synthesized cDNA was used as a template
for qPCR analysis using the universal probe library system
from Roche. For in vivo studies, striatal tissue was dissected
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Figure 3: BV2 cells were pretreated with DHB for 1 h (50 & 100 μM) and then stimulated with LPS (100 ng/mL) for a 1 h incubation period.
Cells were lysed, run on a SDS-PAGE gel, transferred to PVDF membranes, and blotted with specific antibodies to (a) phosphorylated
p65 NFκB subunit or (b) phosphorylated or unphosphorylated p38 and JNK. Actin was used as a loading control. Band density
(integrated density value) is expressed graphically as a percentage ratio of densitometric optical density of phosphorylated forms to that
of nonphosphorylated p38 and JNK. Data (mean ± SD) are from three independent experiments; ∗P < 0.05 relative to untreated control
sample.

out from various treatment groups, total RNA extracted
using the TRIZOL method, and reverse-transcribed to
cDNA. qPCR analysis of GAPDH, TNF-α, IL-6, iNOS,
and HO-1 was performed using the Roche universal probe
library detection system. Relative quantification of gene
expression was performed using the comparative threshold
(CT) method. Changes in mRNA expression level were
calculated following normalization to GAPDH. The ratios
obtained after normalization are expressed as fold change
over corresponding wild-type controls [25].

2.5. Measurement of IL-6 and Nitrate Levels in Conditioned
Media (CM). Microglial cells (1 × 105 cells per well in a
24-well plate) were pretreated with DHB or normal media

for 1 h and then stimulated with LPS (100 ng/mL). CM was
collected from the cultured microglia 24 h following LPS
stimulation and the concentrations of IL-6 measured using
the mouse IL-6 ELISA kit from BD Biosciences according
to manufacturer’s instructions [26]. Accumulated nitrite was
measured in the CM using the Griess reagent (Sigma).
For mouse IL-6 measurements, striatal tissue was dissected
from saline or MPTP groups in the absence or presence
of co-DHB treatment and IL-6 levels measured from tissue
homogenates using the ELISA kit as described above. For
HO-1 inhibition studies, BV2 were pretreated with ZnPPIX
(10 μM) for 30 min and treated with DHB for another 1 h
before LPS application. The NO levels were measured after
24 h following LPS stimulation.
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Figure 4: (a) After pretreatment with DHB (100 μM) for 1 h, BV2 cells were stimulated with 100 ng/mL LPS for 1 h and nuclear translocation
of the NFκB p65 subunit assessed by confocal fluorescence microscopy using a fluorescent anti-p65 antibody. Representative laser confocal
microcopy images of p65 (red stain) and nuclear DAPI staining (blue) in cells exposed to LPS ± DHB are shown; pink, merged. (b) BV2
cells were transiently transfected with NFκB-Luc for 24 h and treated with 100 ng/mL LPS for 4 h ± DHB for 1 h. Cell lysates were assayed
for luciferase activity (mean ± SE, n = 4). ∗P < 0.05 versus control, ∗∗P < 0.05 versus LPS.
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Figure 5: (a) Cells were stimulated with given concentrations of DHB for 6 h and mRNA levels of HO-1 analyzed via real-time PCR as
described. (b) BV2 cells were stimulated with various concentrations of DHB for 24 h and whole cell lysates subjected to western blot
analysis using antibody against HO-1 protein; ∗P < 0.05 versus control. (c) Cells were pretreated with ZnPPIX (20 μM) for 30 min followed
by co-treatment with DHB (100 μM) for another 1 h before LPS (100 ng/mL) addition. Conditioned media (CM) was collected after 24 h of
LPS treatment and nitrite levels were determined using the Griess reagent. Each bar represents mean ± SEM from at least four independent
experiments. ∗P < 0.05 compared with the control group, ∗∗P < 0.05 compared with the LPS treated group, ∗∗∗P < 0.05 compared
with the LPSDHB100 treated group. (d) BV2 NFκB-Luc cells were pretreated with HO-1 inhibitor ZnPPIX (20 μM) for 30 min followed by
co-treatment with DHB (100 μM) for another 1 h before LPS (100 ng/mL) addition for 4 h. Cell lysates were assayed for luciferase activity
(mean ± SE, n = 4). ∗P < 0.05 versus control, ∗∗P < 0.05 versus LPS.

2.6. Western Blot Analyses. Whole cell protein lysates from
BV2 cells were prepared in lysis buffer, protein samples
separated by 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis, and transferred to nitrocellulose membranes
(Invitrogen). Membranes were blocked with 5% skim milk
in 10 mM Tris-HCl containing 150 mM NaCl and 0.5%
Tween 20 (TBST), then incubated with primary antibodies
(1 : 1000) against iNOS, phosphorylated 65 subunit, phos-
phorylated p38, phosphorylated JNK, p38, JNK, HO-1, or
actin [27]. After thoroughly washing with TBST, horseradish
peroxidase-conjugated secondary antibodies (1 : 3000 dilu-
tion in TBST; Millipore, CA, USA) were applied and blots
developed using an enhanced chemiluminescence detection
kit (Pierce Biotechnology, Rockford, IL, USA).

2.7. Measurement of Intracellular Reactive Oxygen Species
(ROS) Levels. Intracellular accumulation of ROS was mea-
sured using H2DCF-DA (Sigma) as previously described
[28]. In brief, microglial cells were stimulated with LPS for

16 h in the absence or presence of DHB then stained with
20 μM H2DCF-DA in Hank’s balanced salt solution buffer
for 1 h at 37◦C. DCF fluorescence intensity was measured on
a fluorescence plate reader at 485 nm excitation and 535 nm
emission (Molecular Devices, CA).

2.8. Transient Transfection of NFκB Reporter Construct and
Assay by Luciferase. Transfection of the NFκB binding
reporter gene into BV2 cells was performed using lipofec-
tamine 2000 (Invitrogen, USA). The NFκB binding reporter
plasmid contains three copies of the κB-binding sequence
fused to the firefly luciferase gene (Clontech, Mountain View,
CA, USA). BV2 cells (2× 105 cells per well in a 12-well plate)
were transfected with 1 μg of the reporter construct mixed
with lipofectamine 2000. After 48 h, cells were harvested and
luciferase activity assayed as previously described [28]. To
determine the effect of DHB on reporter gene activity, cells
were pretreated for 1 h with the agent before treating with
LPS (0.1 μg/mL) for 4 h prior to cell harvest.
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Figure 6: BV2 cells were stimulated with LPS (100 ng/mL) ±
DHB (100 μM) for 24 h. CM from control (BV2-CM), DHB
treated (DHB-CM), LPS-treated (LPS-CM), and LPS/DHB treated
(50 & 100 μM; LPD50-CM, LDP100-CM) BV2 cells was added to
dopaminergic N27 cells plated in 96 well plates. After 48 h, N27
cell viability was assessed via the MTT assay. Data is expressed as
mean ± SD, n = 4. ∗P < 0.01, compared with control-CM group,
∗∗P < 0.01, compared with LPS-CM group.

2.9. Immunocytofluorescent Staining to Assess Nuclear Translo-
cation of NFκB. BV2 cells were seeded onto glass coverslips
and stimulated with LPS (100 ng/mL) following pretreat-
ment with DHB (100 μM) or media for 1 h. Then cells
were fixed in 4% paraformaldehyde, permeabilized in 0.5%
Trition X-100 for 30 min. After blocking with 5% nonfat
milk in PBS buffer, cells were incubated with rabbit anti-p65
antibodies for 1 h at room temperature. After a brief wash,
cells were incubated with Alexa fluor-conjugated secondary
antibody (1 : 500, Molecular Probes) [28]. Finally, the cells
were washed again, mounted with vectashield hard mount
with DAPI and visualized using a Zeiss LSM 510 confocal
microscope.

2.10. Assay of Effects of CM from BV2 on Cell Viability in
Dopaminergic N27 Cells. BV2 cells were stimulated with LPS
(100 ng/mL) in the absence or presence or DHB (100 μM)
for 24 h. CM from control, DHB treated, LPS-treated, or LPS
+ DHB-treated cells was added to dopaminergic N27 cells
plated in 96 well plates. After 48 h, N27 cell viability was
assessed via the MTT assay.

2.11. In Vivo Immunohistochemistry. Immunochemistry was
performed on sections from the striata of fixed perfused
brains from mice treated with MPTP in the absence or
presence of DHB cotreatment versus saline-treated controls.
Microglial activation was detected using primary antibodies
against Iba1 [29]. Briefly, 7 μm SN sections from paraffin-
embedded brains were cut and processed for staining.
Sections were mounted onto slides and processed in 10 mM
citrate buffer for enhancement of antigen retrieval. After
blocking with 10% donkey serum for 1 h, primary anti-
body (1 : 500, anti-Iba1 antibody; Dako) was applied to

the sections for overnight incubation at 4◦C followed by
biotinylated secondary antibody and 3,3′-diaminobenzidine
processing.

2.12. Statistical Analysis. Unless otherwise stated, all exper-
iments were performed in triplicate samples and repeated
at least three times. The data are presented as the mean
± SE and statistical comparisons between groups were
performed using one-way ANOVA followed by Student’s t-
test between two populations based on the assumption that
both populations have normal distribution. A P value < 0.05
was considered significant.

3. Results

3.1. DHB Suppresses LPS-Mediated Upregulation of Both
Proinflammatory Genes and Associated Gene Products in BV2
Microglial Cells. LPS stimulation is known to induce the
expression of multiple proinflammatory genes that can in
turn contribute to neuroinflammation and subsequent neu-
rotoxicity. In our studies, LPS treatment of BV2 microglial
cells was found to result in upregulation of mRNA levels
for the proinflammatory cytokines TNF-α and IL-6 and for
the nitric oxide (NO) producing enzyme iNOS (Figure 1(a)).
Pretreatment with DHB not only significantly decreased
proinflammatory gene expression but also iNOS protein
levels and amounts of NO and IL-6 secreted into the CM in
a concentration-dependent manner (Figures 1(b) and 1(c)).
DHB at the concentrations used for these studies (10 to
100 μM) were not found to have any effects on cell viability
as assessed by the MTT assay (data not shown).

3.2. DHB Attenuates LPS-Induced Intracellular ROS Produc-
tion and Activation of NFκB and MAP Kinase Pathways. LPS
is known to induce the production of intracellular ROS
that can in turn stimulate expression of proinflammatory
genes via the activation of secondary messenger systems
including NFκB and the MAP kinases [30]. LPS exposure
was found to not only induce increased intracellular ROS
production in microglial BV2 cells (Figure 2), but also
phosphorylation of the p65 subunit of NFκB and the MAP
kinases JNK and p38 necessary for their activation (Figure 3).
Pretreatment with DHB was found to significantly block
LPS-induced ROS production in a dose-dependent manner
(Figure 2) and to modulate LPS-induced phosphorylation
of these pathway components (Figure 3). Furthermore, it
prevented nuclear translocation of p65 and subsequent
NFκB-dependent transcriptional activity, the latter in a
dosage-dependent fashion (Figure 4). These data suggest that
DHB can prevent oxidative stress-mediated induction of
these inflammatory pathways.

3.3. DHB Induces Upregulation of Hemoxygenase-1 (HO-1)
Expression and Protein Levels in BV-2 Microglia Cells. We
demonstrated in our previous study that PHD inhibition
via DHB results in upregulation of the enzyme HO-1, likely
via a HIF-1α transcription-dependent process [21]. HO-1
has recently emerged as a key molecule in the resolution
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Figure 7: Mice were pretreated with DHB (100 mg/kg, intraperitoneally) 6 h prior to administration of either saline (Sal) or MPTP (20 mg/kg
x2, 12 h apart). Animals were sacrificed 2 days later. (a) Levels of striatal IL-6 were measured using an ELISA kit from BD Biosciences. Each
bar represents mean + SEM for 4 animals in each group. ∗P < 0.05 compared with the Sal group, ∗∗P < 0.01 compared with the MPTP-
treated group. (b) DHB pretreatment decreases the mRNA levels of MPTP upregulated proinflammatory cytokines. ∗P < 0.05 compared
with the Sal group, ∗∗P < 0.05 compared with the MPTP-treated group.

of oxidative stress-mediated microglial activation including
that induced by LPS [31]. BV2 microglia treated with
DHB for 24 h were found to have both elevated HO-1
expression and protein levels and this was found to occur
in a concentration-dependent manner (Figures 5(a) and
5(b)). Pretreatment with ZnPPIX, a potent HO-1 inhibitor,
was found to abrogate the inhibitory effects of DHB on
LPS-induced NO production (Figure 5(c)) have a small but
significant effects on NFkB activity (Figure 5(d)).

3.4. The Neuroprotective Effects of DHB Coincides with Inhi-
bition of Microglial Activation Both In Vitro and In Vivo.
A number of studies have demonstrated that activated
microglia can induce neural toxicity [32–34]. Our in vitro
results suggest that DHB could possibly exert neuroprotec-
tive effects via its ability to suppress microglial activation. To
assess this possibility, the neuronal toxicity of conditioned
media (CM) from LPS-treated BV2 cells grown in the
absence and presence of DHB treatment was evaluated in
dopaminergic N27 cells. CM from LPS-stimulated microglia
(LPS-CM) was found to produce significant toxicity in N27
cells, which was attenuated in CM from BV2 cells grown
in the additional presence of co-DHB treatment (Figure 6).
This suggested that the toxicity of the CM derived from LPS-
treated microglia could be dependent on release of soluble
neurotoxic factors and be prevented by presence of DHB.
We cannot, however, rule out the possibility that part of the
neuroprotective effects may be due to residual DHB in the
CM from the microglial cells that could have a direct impact
on neuronal survival.

Based on our in vitro results, we next assessed the
ability of DHB to prevent microglial activation in MPTP-
treated mice, a commonly used toxin model of PD. Our
previously published data demonstrated that DHB treatment
prevented nigrostriatal neurotoxicity associated with this
model [21]. We found that MPTP treatment resulted in a
significant increase in striatal IL-6 levels that was significantly
attenuated by co-DHB administration (Figure 7(a)). We
next evaluated the effects of DHB treatment on striatal
expression of various cytokine mRNAs (TNFα, IL6, and
iNOS) following MPTP intoxication. qPCR analysis revealed
significant induction of proinflammatory gene expression
in the presence of MPTP that was blocked by pretreat-
ment with DHB (Figure 7(b)). To assess the impact of
DHB on microglial activation in MPTP-treated mice [28],
immunohistochemistry was performed on sections from
control and MPTP mice in the absence and presence of
DHB cotreatment using the microglial activation marker
Iba1 (Figure 8). Prior to activation, microglia normally
exhibits a highly ramified morphology (as observed in both
control and DHB-treated mice). In response to activation by
MPTP, microglia begins to withdraw their ramified branches
and became amoeboid-like. This activated morphological
phenotype was found to be significantly attenuated in the
presence of DHB pretreatment, demonstrating the ability of
DHB to in part attenuate microglial activation resulting from
MPTP treatment.

4. Discussion

Previous studies have demonstrated that the pharmacolog-
ical PHD inhibitor 3,4-DHB can directly protect cultured
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Figure 8: Iba1 immunostaining of SN sections of mice treated with either saline (Control), DHB, MPTP or DHB + MPTP. (a) Microglia
in MPTP-treated mice display a morphological transformation from resting ramified microglia to activated amoeboid like forms with
withdrawn processes (indicated by arrows) which is inhibited in the presence of DHB treatment. (b) MPTP treatment leads to a significant
increase in the number of activated microglia relative to saline and DHB treated mice. Activated microglia were bilaterally counted under a
40x objective. Data are means ± SEM for 4 mice per group, ∗P < 0.05 compared to saline group.

neuronal cells against both oxidative stress [20] and ischemic
injury [19]. Our current study suggests that in addition to
these direct effects, DHB could also elicit neuroprotection
via a heretofore unknown action of the drug—its capacity
to dampen microglial activation via its ability to prevent
oxidative induction of the MAPK and NFκB signaling
pathways. These pathways can in turn elicit the synthesis and
release of proinflammatory factors from activated microglia,
indirectly impacting on neighboring neurons [35–37].

LPS is known to induce oxidative phosphorylation of
p38 and JNK within microglia, stimulating activation of
NFκB via phosphorylation of its p65 subunit. Subsequent
nuclear translocation of p65 results in increased expression

of several proinflammatory genes [28]. In our current study,
DHB treatment was found to partially inhibit LPS-induced
increases in microglial ROS levels as well as phosphorylation
of p38 and JNK, subsequent p65 translocation and media-
tion of transcriptional activation. This was associated with
reduced expression of proinflammatory genes in microglial
cells induced either directly in vitro by LPS or in vivo
by MPTP along with reduced release of IL-6. In vitro,
DHB also partially prevented both increased NO release
and had a small but significant effect on NFκB activation.
Pharmacological inhibition of iNOS has been shown to
prevent dopaminergic neurodegeneration as a consequence
of microglial activation and transgenic mice lacking iNOS are
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more resistant to MPTP-mediated dopaminergic neurotoxi-
city [38–41].

The anti-inflammatory effects of DHB could be due
to its ability to upregulate HO-1 expression. HO-1 has
recently been demonstrated to inhibit oxidatively induced
microglial activation such as that elicited by LPS [31]. In the
present study, inhibition of HO-1 using the pharmacological
inhibitor ZnPPIX was found to attenuate DHB-mediated
inhibition of microglial NO production as well as having
a small but significant effect on NFκB activity. HO-1 is
a microsomal enzyme that catalyzes oxidative cleavage of
the porphyrin ring of the heme molecule leading to the
formation of biliverdin, carbon monoxide (CO), and free
iron [42]. The beneficial protective effects of HO-1 in inflam-
mation are mediated not only via enzymatic degradation
of proinflammatory free heme, but also via production
of the antiinflammatory compounds bilirubin and carbon
monoxide [43, 44]. Recent reports have suggested that
upregulation of HO-1 may have both anti-oxidant and anti-
inflammatory effects [30, 45–47] and that therefore the HO-
1 system may be an important therapeutic target for inflam-
mation associated with neurodegeneration. The concomitant
enhancement of HO-1 expression and reduction in LPS-
induced NO production by DHB is consistent with previous
reports using other anti-inflammatory agents [48, 49].

Based on our current results, we propose that the
neuroprotective effects of DHB may be in part due to its
ability to inhibit the inflammatory NFκB/cytokine pathway.
However, this does not definitively rule out that it may
alternatively be acting via direct neuroprotective effects on
the neurons themselves. Future studies using in vivo LPS-
induced nigrostriatal degeneration models will be helpful in
delineating the relative contributions of anti-inflammatory
versus direct antioxidant in terms of the neuroprotective
effects of DHB.

Microglial activation has long been associated with
dopaminergic neuropathology in PD [9, 32]. DHB admin-
istration was found to reduce microglial activation and the
release of soluble inflammatory factors in association with
reduced neurotoxicity both in vitro and in vivo. DHB’s
ability to dampen microglial activation may suggest a novel
mechanism of action for the drug that mechanistically could
involve HO-1 induction. This hypothesis will require further
validation, but presents a possible novel mode of action for
the drug.
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