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resistance (RVR) and renal hemodynamics such as 
renal blood flow (RBF), the kidneys can adapt to both 
physiologic and pathologic stimulants.[3] The activity of 
sympathetic nerves of afferent and efferent renal arteries 
affects RBF and glomerular filtration rate (GFR).[4] 
Furthermore, stimulating renal efferent nerves change 
renal hemodynamics by increasing renin secretion, 
enhancing tubular fluid and electrolyte absorption, 
and reducing water and sodium excretion.[5] The renal 
nerves are inactive under normal conditions and based 
on the steady state measurement of RBF. However, they 
respond to experimental stimuli or several diseases 
where the RSNA exceeds the physiological level. In 
general, the dynamic measurement of RBF indicates that 
renal nerves are incessantly regulating RBF.[6]

Central sympathetic signals from the kidneys target 
various organs, such as the heart and lead the 
peripheral arteries to constrict and increasing of 

INTRODUCTION

The sympathetic nervous system regulates a wide 
range of physiological functions within the body. The 
sympathetic nervous system innervates the kidneys 
through the vasculature, tubules, and juxtaglomerular 
apparatus. Since, the kidneys play an important role 
in adjusting blood pressure, the neural control of the 
kidneys is critical for regulating the body’s fluid volume, 
sodium homeostasis, and renin release.[1] It has been 
suggested that animals’ basal renal sympathetic nerve 
activity (RSNA) is at a minimum level under normal 
conditions. However, this activity is raised in pathological 
conditions, such as hypertension.[2] In addition, 
the RSNA fluctuations affect sodium reabsorption 
from renal tubular cells and renin release from 
juxtaglomerular cells. Due to the involvement of 
renal adrenergic nerves in regulating renal vascular 

The denervation or activation of the sympathetic nerve in the kidney can affect renal hemodynamics. The sympathetic nervous system 
regulates the physiological functions of the kidneys. Stimulation of sympathetic efferent nerves affects various parameters related to 
renal hemodynamics, including sodium excretion, renin secretion, and renal blood flow (RBF). Hence, renal sympathetic fibers may 
also play an essential role in regulating systemic vascular resistance and controlling blood pressure. In the absence of renal nerves, 
the hemodynamics response to stimuli is negligible or absent. The effect of renal sympathetic denervation on RBF is dependent on 
several factors such as interspecies differences, the basic level of nerve activity in the vessels or local density of adrenergic receptor 
in the vascular bed. The role of renal denervation has been investigated therapeutically in hypertension and related disorders. Hence, 
the dynamic impact of renal nerves on RBF enables using RBF dynamic criteria as a marker for renal denervation therapy.
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blood pressure.[7] The role of renal denervation has been 
investigated therapeutically in hypertension, chronic 
kidney insufficiency, and chronic heart failure (HF) 
conditions.[8] This review intends to evaluate the effects 
of renal nerve sympathetic activity or renal sympathetic 
denervation (RSDN) on RBF in physiological and 
pathological conditions based on basic and clinical 
evidences.

SYMPATHETIC RENAL INNERVATION

There are sympathetic inputs and outputs in the kidneys; 
the efferent sympathetic nerves from the central nervous 
system (CNS) and the afferent sympathetic nerves from the 
kidneys to the CNS constitute the sympathetic innervation 
of the kidneys. The sympathetic nerves innervate the 
kidneys through a dense network of postganglion 
neurons. Along the renal artery, preganglionic nerves 
enter the kidney from the hilus[9] and the branches of the 
renal sympathetic efferent nerves innervate glomerular 
arterioles, proximal tubules, and the juxtaglomerular 
system.[10] Activation of the sympathetic nerve increases the 
production of noradrenaline (NA) from the nerve terminals 
and denervation of the kidney causes a significant reduction 
in NA (by 95%).[11] The release of increased NA has three 
primary outcomes as follows:
1. NA stimulates beta‑adrenergic receptors (β1‑ARs) 

of juxtaglomerular granular cells, which in turn 
release renin and increase the activity of the 
renin‑angiotensin‑aldosterone system (RAAS)

2. NA reduces sodium and water excretion by increasing 
tubular reabsorption

3. NA reduces RBF and GFR by contracting renal 
arteries.[11][Figure 1].

The activation of distinct adrenoceptor (ARs) subtypes found 
on the renal vasculature by the renal sympathetic nervous 
system mediates adrenergic control of the kidneys. ARs 
support renal hemodynamic and tubular functions and are 
found on the renal vasculature, nephrons, and proximal 

tubules in the kidneys. The α‑ARs are the most important 
regulators of renal vascular tone among the different types 
of ARs.[12] During an adrenergic response, NA released into 
the circulation binds to the smooth muscle cells’ α1 receptors, 
causing the smooth muscle to contract. By mediating 
catecholamine‑induced effects on the ARs type α1 found on 
the renal vasculature, the renal sympathetic nervous system 
significantly affects the renal hemodynamics.[12]

Activation of the sympathetic efferent nerves of the kidney 
can occur in response to reinforced afferent signaling of the 
sensory nerve fibers of the kidney, which can be induced 
by various effectors such as renal hypoxia, ischemia, and 
oxidative stress.[8]

The pelvic area is the primary location of the afferent 
renal sensory nerves and the pressure in this area defines 
the activity of the nerves. Thus, as a reno‑renal reflex 
response, enhancement in the urine flow rate raises the 
firing rate of renal afferent fibers, decreasing efferent 
RSNA and increasing sodium excretion from urine.[13] 
The renal afferent fibers are either chemo‑sensitive and 
respond to nociceptive stimuli (such as inflammation, 
ischemia, acidosis, oxidative stress, adenosine, and 
angiotensin (Ang) (II)) or are mechano‑sensitive (more 
common in the renal cortex) and respond to stretch.[14] 
The nervous system centers that received these signals 
include the nucleus tractus solitaries, paraventricular 
nucleus (PVN) of the hypothalamus, rostral ventrolateral 
medulla (RVLM), and subfornical organ.[15‑17]

The neuronal activity in sympathetic premotor nuclei in the 
brain stem and hypothalamus, including RVLM and PVN, 
determines the degree of RSNA. Preganglionic neurons 
in the intermediolateral cell column of the spinal cord get 
input from the neurons in the RVLM; these neurons then 
project to postganglionic neurons, which in turn project to 
peripheral organs such the heart, arteries, and kidneys.[18] 
Figure 2 summarizes the central and peripheral pathways 
of sympathetic control of the kidney.

Activating of renal afferent sensory nerve (by modulation 
of posterior hypothalamic activity and secretion of oxytocin 
and vasopressin) affects the sympathetic outflow to highly 
innervated organs such as the kidneys, heart, and peripheral 
blood vessels.[19,20] Stimulation of the afferent system 
activates the cardiovascular regulatory centers in the CNS. 
The destruction of these nerves (in some diseases) reduces 
the central sympathetic flow to major organs regulating 
blood pressure, especially the kidneys, heart, and peripheral 
arteries.[14]

Renal denervation is believed to be effective in treating 
numerous diseases that are accompanied by increased 

Figure 1: Schematic image of the effect of increased renal sympathetic nerve 
activity on different parts of the kidney. RSNA = Renal sympathetic nerve activity
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sympathetic renal activity, such as chronic and end‑stage 
renal disease, hypertension, cardiac‑renal syndrome, left 
ventricular hypertrophy, and improper fluid retention in 
HF.[19] In general, afferent sympathetic fibers may also play 
an essential role in regulating systemic vascular resistance 
and controlling blood pressure.[20]

RENAL SYMPATHETIC NERVE ACTIVITY AND RENAL 
BLOOD FLOW

The share of RBF from cardiac output is about 20% at 
rest, so its regulation plays a vital role in controlling 
blood pressure. [21] The kidneys have two robust 
auto‑regulation mechanisms for regulating blood pressure, 
tubule‑glomerular feedback, and myogenic response.[22] 
However, the importance of RSNA in the physiological 
regulation of RBF is still controversial based on the two 
findings. The first finding indicated that electrically 
stimulated renal nerves at different frequencies affect RBF 
differently, and in the pathophysiological range of RSNA, a 
significant decrease in RBF was observed.[6] Other findings 
violate the influence of renal nerves in the physiological 
regulation of RBF since renal denervation is not affecting 
basal RBF. However, both of these findings had significant 
drawbacks.[23] The electrical stimuli inherently cannot 
distinguish between physiological, pathophysiological, 
and supraphysiological effects. RSNA recruits special 
renal postganglionic fibers in response to specific stimuli 
with different effects.[23] In addition, the particular axons 
can electively innervate the vessels, juxtaglomerular cells, 

or tubules, and even axons that innervate juxtaglomerular 
arteries can be differentiated from those that innervate 
other renal vessels.[24] Eventually, by changing RSNA, 
which occurs through either stimulation or denervation, 
it must overcome powerful autoregulatory mechanisms 
to affect the steady state of RBF.[23]

It is stated that the vascular system is insensitive to slight 
changes in RSNA. In experimental models, RSNA was 
increased progressively by electrical stimulation of the renal 
nerves in anesthetized cats or dogs[25‑27] or reflex activation in 
conscious dogs.[28,29] At low RSNA levels, only renin release 
occurred, and then, slightly increased levels have resulted 
in changes in sodium excretion, and still, RBF alteration 
was obtained only at much higher levels,[30] indicating that 
in daily life, changes in RSNA at near resting levels have 
minimal impact on RBF.[30]

Grady and Bullivant measured RBF during the daily activity 
in conscious rats, demonstrating that RBF decreased with 
increasing activity levels; however, this result was not 
obtained when RSNA was previously blocked with local 
anesthetics.[31] In alert rabbits, a moderate increase or 
decrease in RSNA affected RBF. However, sound stress, 
air‑jet stress, and hypoxia increased RSNA by 12%–31%, 
reducing RBF by 8%–12% compared to controls.[32] In 
addition, an increase in blood volume, which reduces RSNA 
by 25%, leads to a 17% increase in RBF.[33] It is also reported 
that rapid and physiological changes in sympathetic output 
affect RBF during normal daily activities.[6]

Figure 2: Schematic image of the connections between renal afferent sensory signaling and renal efferent sympathetic outflow on the kidney and other cardiovascular 
organs, which regulate blood pressure. Renal mechano and chemoreceptor reflexes, which are carried out by renal afferent nerves, regulate the activity of premotor 
neurons in the rostral ventrolateral medulla and paraventricular nucleus. CR = Renal chemoreceptors; DRG = Dorsal root ganglion; IML = Intermediolateral cell 
column; MR = Renal mechanoreceptors; NTS = Nucleus tractus solitarius; PVN = Paraventricular nucleus of the hypothalamus; RVLM = Rostral ventrolateral medulla; 
SFO = Subfornical organ
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Routine activities such as sleeping or grooming have 
increased RSNA and concomitantly decreased RBF.[34] 
Furthermore, a small increase in heart rate and RSNA in 
unilaterally renal denervated rabbits showed considerable 
differences in the RBF of innervated and denervated 
kidneys. These findings suggested that RSNA changes in 
the physiological range affect RBF, so further research is 
needed to elucidate the role of renal nerves in the dynamic 
regulation of resting RBF.[23]

Sympathetic activity has two components: frequency 
and amplitude. The frequency shows baroreceptor 
modulation and central generation and the amplitude 
indicates the number of recruited nerves. Since various 
afferent stimuli can change these components, changes in 
the frequency or number of recruited nerves or multiple 
activation patterns can affect kidney function.[35,36] It is 
shown that dilatation of a pig’s uterus reduced RBF by 
sympathetic nerves without altering blood pressure.[37] In 
Mancia et al.’s experiments, RBF decreased by 8%, 15%, 
and 19% in the three states of confrontation; without 
movement, forelimb movement, and hind limb and forelimb 
movement, respectively.[38] An experiment on conscious 
baboons demonstrated that RBF decreased in response 
to psychological stress.[39] Another study found that acute 
psychological stress in conscious monkeys reduced RBF by 
increasing RSNA.[40] Furthermore, RSNA increases and RBF 
decreases in moderate heat stress.[41‑43]

RBF decreases in response to a slight increase in RSNA, 
but whether RBF increases in response to a slight decrease 
in RSNA is ambiguous. In the alert rabbits, an increase in 
plasma volume caused a moderate reduction in RSNA (by 
25%) and a significant rise in RBF. In contrast, this response 
was not obtained in the renal denervated animals.[33]

RBF in the cortex and medulla was also decreased after 
the electrical stimulation of the sympathetic nerves.[44] 
Stimulation of the renal sympathetic nerve creates a different 
pattern in medullary perfusion and renal cortex, attributed 
to the less sensitive medulla in the anesthetized rat.[45] In 
rabbits, activation of the renal sympathetic nerves resulted 
in a greater increase in RBF and cortical perfusion than 
in medullary perfusion.[46,47] They were similar at each 
stimulation level of perfusion changes in the inner and 
outer medulla.[48]

In humans, renal function is measured in response 
to stimuli related to RSNA change instead of direct 
RSNA assay, while it is impossible to measure RSNA 
directly.[35] Psychological stress increases the activity of 
the sympathetic muscle nerve by up to 30% and decreases 
cortical blood flow by up to 36%.[49] Submerging in water 
and neck suction increases RBF due to decreased RSNA 

levels.[50,51] To sum up, it is clear that the stimulation of the 
sympathetic nerves of the kidney reduces RBF, and many 
studies proposed that the alterations in RSNA induced by 
natural behavioral activities had a remarkable effect on 
RBF [Table 1].

RENAL SYMPATHETIC DENERVATION AND RENAL 
BLOOD FLOW

The RSDN is performed to determine the nonneurological 
effects on the kidney. In this case, either the response is 
weak and difficult to measure or there is no response 
at all. Studies indicated that RBF increases in alert 
and resting animals after renal denervation, so RSNA 
is responsible for supplying the tonic level of renal 
vasoconstriction.[31,32] Furthermore, GFR was increased in 
patients with refractory hypertension with bilateral renal 
denervation.[53] In contrast, there was no difference in 
RBF between innervated and denervated kidneys in alert 
and resting rats.[34] Similarly, in anesthetized rats during 
the 1st h after unilateral renal denervation, no difference 
in RBF was observed in the denervated and innervated 
kidneys.[3] Such findings were also detected in rabbits 
on days 14–21[54] or after 7 weeks.[30] Similarly, there was 
no change in RBF after administrating an adrenergic 
blocker (dibenamine) to relaxed and stress‑free state 
patients.[55] In general, the effect of RSNA on RBF differs 
in anxiety and pathophysiological conditions from calm 
and restful conditions. Anxiety and pathophysiological 
conditions reduce RBF, but in calm conditions, there is 
a slight tonic effect on RBF.[48] The tonic result of basal 
RSNA on RBF seems to be negligible, and acute surgical 
denervation has little impact on renal hemodynamics.[48] 
Overall, the basal renal nerve activity does not affect renal 
hemodynamics; for example, it is specified that in alert 
dogs and humans, renal denervation with medication or 
surgery does not affect RBF,[56,57] and in nondiuretic rats 
after acute unilateral denervation, renal plasma flow (RPF) 
remains unchanged in the kidneys.[58]

Table 1: The effect of renal sympathetic nerve activity on 
renal blood flow
RSNA in animal or human RBF Reference
Anesthetized cat Decrease [25]
Anesthetized dog Decrease [26]
Conscious dog Decrease [28,29]
Conscious rat Decrease [31,34]
Conscious rabbit Decrease [32]
Anesthetized pig Decrease [37]
Conscious cat Decrease [38]
Conscious baboon Decrease [39,42]
Anesthetized rat Decrease [43,52]
Conscious monkey Decrease [40]
Human Decrease [49]
RSNA=Renal sympathetic nerve activity; RBF=Renal blood flow
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All stimuli that significantly reduced RBF in renal 
innervated rabbits, such as air‑jet stress, hypoxia, or 
noise stress, failed to elicit an RBF response after renal 
denervation.[32] Similarly, following baroreflex alteration 
of RSNA, the response of RBF was significantly altered in 
response to change in arterial pressure after administering 
a calcium antagonist or an Ang II antagonist following 
renal denervation in rats.[59] In the same way, in conscious 
cats, RBF responses to confrontation following renal 
denervation were eliminated.[38] Other studies have shown 
that acute denervation causes diuresis and natriuresis in 
anesthetized dogs and rats without significantly affecting 
renal hemodynamics parameters.[58,60,61] No alteration in 
RBF was reported with renal denervation performed on 
unconscious pigs[62] and cats[63,64] and no difference was 
observed in anesthetized monkeys in renal excretory 
function after renal denervation.[65] However, in conscious 
baboons, RBF responses to psychological stress following 
renal denervation were persisted.[39] The impact of RSDN 
on RBF at different times after RSDN in patients with 
resistant hypertension indicated a 20% increase in total 
blood flow per cardiac cycle and a significant decrease in 
blood pressure, without any changes in RBF.[66] It is also 
stated that under normal sympathetic tone, the sympathetic 
nerve fibers of the kidney have little effect on the dynamic 
auto‑regulation of renal vascular tone and, consequently, 
on RBF.[3] In a study on a pig model, RBF increased acutely 
after RSDN and remained at the same acute peak even 
after a month, while RBF reserve remained lower, and 
based on these observations, it can be concluded that such 
changes in RBF parameters can be a valuable biomarker for 
successful denervation.[67] Hemodynamic measurements 
in renal arteries of healthy pigs after RSDN, immediately, 
3 weeks, and 3 months after RSDN indicated that RBF at rest 
propends to increment.[68] This results agree with relative 
increase in RBF after renal denervation in dogs.[69] However, 
as contradictory results in this regard, in anesthetized 
nondiuretic rats, RBF and GFR remained unchanged after 
denervation.[58] Furthermore, some studies have reported 
that renal basal sympathetic nerve resection in normal dogs 
and rats does not affect RBF.[70,71] A study on rats determined 
the regional blood flow in the cortex and medulla of the 
left kidney, and they did not observe a significant effect on 
intracortical blood distribution after renal denervation,[72] 
However, acute unilateral renal denervation increased RBF 
and RPF without altering GFR. In general, renal denervation 
did not affect intracortical blood flow distribution and renal 
hemodynamics.[72] Otherwise, it is suggested that renal 
denervation causes a rapid (approximately 25%) increase 
in cortical perfusion in anesthetized rats.[73] In hypertension 
and congestive HF (CHF) rat model, RSDN increased basal 
RBF.[70] However, in Sprague Dawley rats (SD), RSDN 
did not affect RBF.[3] These disagreements may be due to 
differences among animal species or the RSDN method.[30]

It has been reported that renal denervation does not 
significantly alter arterial pressure in spontaneously 
hypertensive rats (SHR) over a short period of 1 h, despite 
interfering with intrarenal function (such as increasing RBF, 
dynamic autoregulation of RBF, and variability of RBF).[74] 
Meanwhile, despite causing systemic hypotension, RSDN 
does not affect perfusion and renal function at various 
intervals (directly and after 3 months) and does not alter RBF 
in patients with hypertension.[75] Hence, it can be deduced 
that the effect of RSDN is negligible on acute or chronic 
renal perfusion.[75] However, a case report indicated that 
RSDN was associated with increased RPF.[76]

In Wistar Kyoto (WKY) and SHR, acute renal denervation 
under genetic control resulted in continuous diuresis 
and natriuresis in SHR and not in WKY, and there 
was no significant change in RBF.[77] Also, in SD and 
Munich‑Wistar (MW) rats, similar to SHR, renal 
hemodynamics remained unchanged.[77] Acute denervation 
studies have shown a negligible tonic effect of renal efferent 
nerves on renal arteries in SHR, WKY, and SD‑MW rats.[77] 
Strain differences have been identified between SHR and 
WKY in renal excretory response to acute unilateral renal 
RSDN.[77] Also, the effect of acute renal RSDN on RBF or 
GFR is not noticeable in normal adult rats in hydroponic, 
euvolemic, or volume‑expanded conditions.[58,78] Table 2 
shows the effect of RSDN on RBF in some studies models.

Overall, there is a degree of uncertainty in these studies. The 
reasons for the above inconsistent results are not specific, 
because the studies were performed either under anesthesia 
or consciously. Factors such as differences between animal 
species, the method of RSDN, the degree of RSNA required 
to impact on RBF, final evaluation of renal hemodynamics, 
and validation of renal denervation are factors that can be 
involved in these differences.[82] Studies in normal animals 
presented where basal RSNA was sub‑vasoconstrictor, basal 
RBF and dynamic RBF auto‑regulation were not altered 
by the elimination of basal RSNA by renal denervation.[70] 
Also, under a number of physiological and pathological 
circumstances, there may be a change in the functional 
participation of a1– ARs.[12] In the deoxycorticosterone 
acetate‑salt (DOCA)‑salt‑hypertensive rats, a local change in 
the density of α1‑ARs may be responsible for the increased 
responsiveness of the mesenteric vascular bed to α1‑AR 
agonists, and Suzuki et al. discovered that the mesenteric 
vasculature of DOCA‑salt hypertensive rats had increased 
α1‑AR density and affinity.[83] Compared to normotensive 
WKY rats, SHR rats showed enhanced affinity of the small 
mesenteric artery α1–AR.[84] Both Dahl salt‑sensitive rats 
and SHR rats showed higher renal densities of α1‑AR 
and α2–AR.[85] Additional research in various salt‑related 
hypertension animal models has shown that a local change 
in the α1‑AR density may be the cause of the increased 
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reactivity of the vasculature to catecholamine.[86] The 
neurovascular transduction mechanisms may vary as a 
result of these variations in vascular beds’ sensitivity.[86] 
Aging modifies the distribution of the vascular α1‑AR 
subtype in humans, which differs from animal models, 
changes with vessel bed.[87] These discoveries provide 
possible new therapeutic targets that might be used in a 
variety of clinical scenarios.

THE SYMPATHETIC NERVOUS ACTIVITY IN 
PATHOLOGICAL CONDITIONS

Overactive sympathetic nerves are linked to hypertension 
and numerous cardiometabolic disorders, but the 
underlying mechanisms are poorly understood. [88] 
Sympathetic hyperactivity is associated with decreased 
GFR, RBF, and salt excretion, and this might affect systemic 
blood pressure. Renal denervation has been demonstrated 

to be an effective therapeutic method for lowering blood 
pressure. The relationship between renal sympathetic 
nerves and the pathophysiology of hypertension, HF, and 
chronic kidney disease has been highlighted.[89] Based on 
these phenomena, renal denervation helps lower blood 
pressure and may be used to treat insulin resistance,[90] 
obesity‑related hypertension,[91] HF,[92] chronic kidney 
disease, [93] metabolic syndrome, [94] diabetes, [95] and 
obstructive sleep apnea.[96]

Hypertension
Sympathetic hyperactivity is a common trait in both human 
and animal models of hypertension. When compared to 
normotensive people, RSNA in hypertension patients is 
twice.[97] However, Gattone et al. demonstrated that renal 
damage is mitigated by sympathetic function suppression 
irrespective of systemic hypertension.[98] Antiadrenergic, 
diuretics, Ang‑converting enzyme inhibitors (ACEi), AngII 

Table 2: he effect of renal sympathetic denervation on renal blood flow
RSDN Model RBF References
Transmission blocking drug (xylocaine) Conscious rat Increase [31]
Bilateral Conscious rabbit Increase [32]
Bilateral Conscious sheep Increase [79]
Acute and chronic Anesthetized rat No change [48]
‑ Anesthetized rat Increase (cortical RBF) [73]
Chronic (14–21 days) Rabbit No change [54]
Chronic (7 weeks) Rabbit No change [30]
‑ Conscious rat No change [34]
Adrenergic blocking drug (dibenamine) Human unstressed No change [55]
Adrenergic blocking drug (dibenamine) Anxious human Increase [55]
Surgical or pharmacological Conscious dogs and humans No change [56,57]
Acute unilateral Nondiuretic rats No change [58]
‑ Rats No change [59]
‑ Conscious cats No change [38]
Unilateral Anesthetized rats and dogs No change [58,60,61]
Acute Anesthetized pigs No change [62]
‑ Cat No change [63,64]
Chronic bilateral Anesthetized monkeys No change [65]
‑ Conscious baboons No change [39]
Acute unilateral Rat Increase [72]
‑ Hypertensive patients No change [66]
Acute Rat No change [3,77]
‑ Porcine model Increase [67]
Chronic Pig Increase [68]
‑ Normal dog No change [70,71]
Acute Hypertensive rats Increase [70,74]
Acute Congestive heart failure rat Increase [70]
Acute Spontaneously hypertensive rats No change [77]
Acute Wistar‑Kyoto genetic control rats No change [77]
Chronic Normotensive rats (Sprague–Dawley strains) No change [80]
Acute Volume‑expanded Rat No change [78]
Acute Hydropenic, euvolemic rat No change [58]
‑ Pacing‑induced heart failure rabbit Increase [81]
Chronic Resistant hypertension patient No change [75]
RSDN=Renal sympathetic denervation; RBF=Renal blood flow
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receptor blockers (ARBs), calcium‑channel blockers, and 
anti‑renin medicines are just a few of the many efficient 
anti‑hypertensive medications that are now on the market. 
However a significant portion of individuals with essential 
hypertension are drug‑resistant, meaning they are unable 
to lower their blood pressure despite taking three separate 
antihypertensive medications at the recommended dose.[99] 
Renal denervation is a therapeutic option for severe resistant 
hypertension patients.[100,101] The rise in blood pressure was 
reduced in the DOCA‑salt rat model of hypertension by 
surgically ablate both efferent and afferent renal neurons.[102] 
The afferent renal nerve activity in the clipped kidney was 
increased in the two‑kidney‑one‑clip (2K1C) mouse and 
rat models, while afferent renal denervation (ARDN) and 
total renal denervation (TRDN) attenuated the increase in 
blood pressure.[103,104] The expression of Ang II receptors 
was assessed in both kidneys of the 2K1C rat model, and 
the results revealed a significant up‑regulation of Ang 
II receptor mRNA in the clipped kidney; while, renal 
denervation led to a normalization of their expression in 
the ischemic kidneys.[105] TRDN reduced the rise of blood 
pressure during the emerging stage of hypertension in 
stroke‑prone SHR (SHRSP), but such finding was not seen by 
ARDN.[106] It seems that the suppression of the development 
of hypertension in SHRSP is a result of the denervation 
of efferent renal nerves.[106] RSDN is helpful in the 
pathophysiological circumstances of sympathetically driven 
hypertension, such as obesity‑related hypertension.[107] 
RSDN, lowered renin production and enhanced RBF in 
individuals with essential hypertension, indicating that the 
efferent renal nerves had been successfully targeted.[76] RSDN 
does not necessarily have antihypertensive effects in several 
animal models, such as Ang II salt‑induced hypertensive 
rats, Wistar rats, and dogs whose hypertension was brought 
on by chronic nitric oxide (NO) synthase suppression.[108‑110] 
Both ARDN and TRDN were unable to reduce blood 
pressure elevation in Ang II or high salt diet‑induced 
hypertensive rats (AngII‑salt rats).[111] AngII‑salt rats show 
continually high blood AngII levels despite sympathetic 
nerve activity and vascular disorders such as arteriosclerosis, 
endothelial dysfunction, and impairment of vasodilator 
response to sympathetic suppression.[111] It seems that, 
RSDN may not lower blood pressure even if it lowers the 
sympathetic outflow from the brain. In addition, RSDN may 
be inefficient in lowering blood pressure in the presence 
of pathophysiological factors linked to the development 
of vascular diseases, such as advanced age and isolated 
systolic hypertension.[111] RSDN may be useful in treating 
certain types of hypertension and offers the potential for 
more individualized disease management.[112]

Heart failure
Sympathoexcitation is a feature of chronic HF, especially in 
the heart and kidneys.[113] Renal vasoconstriction, reduced 

RBF, increased water and salt reabsorption, and renal 
fibrosis are all brought on by increased RSNA.[114] Following 
stimulation of the sympathetic nerves that innervate the 
vasculature, the vasculature (macro‑and microcirculations) 
is susceptible to endothelial cell malfunction, smooth 
muscle cell hypertrophy, and vasoconstriction. The release 
of renin from the kidneys, activation of the RAAS, and renal 
damage are all further enhanced by increased RSNA. RSNA 
causes pathological changes in the kidneys, which increase 
blood volume, cause tissue edema, and cause systemic 
vasoconstriction through Ang II to considerably worsen 
HF.[115] The success of neuro‑hormonal modulators, including 
beta‑blockers, ACEi, ARBs, aldosterone antagonists, 
diuretics, and neprilysin inhibition, as standards of care 
to treat CHF is a testimony to the substantial role the SNS 
plays in worsening HF severity.[116‑119] Despite the fact that 
these pharmacotherapies have been effective in lowering 
morbidity and early death, pharmacotherapy resistance, 
unintended side effects, and patient nonadherence to 
medication regimens[120,121] continue to aggravate HF 
symptoms over time. Therefore, there is still a clinical unmet 
need for supplemental or alternative therapy approaches to 
treat HF. In animal model studies of the CHF, it was found 
that acute renal denervation in anesthetized rats, increased 
RBF,[70] so it can be concluded that the renal nerves may apply 
a tonic vasoconstrictive function in CHF.[122]

DiBona and Sawin investigated the tonic effect of basal 
RSNA on dynamic autoregulation of RBF in rats, and 
found that, RSDN increased basal RBF in CHF and SHR 
but not in SD and WKY rats[70] and notably ameliorated 
auto‑regulation of RBF.[70] In the pacing‑induced HF 
model in rabbits, decreased RBF, increased RVR, increased 
expression of Ang II receptor type 1 (AT1), and decreased 
expression of Ang II type II receptor (AT2) in renal cortical 
arteries, was specified.[81] These alterations were stopped 
by RSDN before induction of HF. Principally, the results 
of these animal studies cleared that the activity of renal 
sympathetic nerves has a deleterious effect on RBF and 
can be associated with changes in the expression of Ang II 
receptors so that renal denervation may be effective in the 
treatment of CHF.[92]

HF is linked to sleep apnea,[123] and RSDN counteracted 
the decrease of renal hypoperfusion during apnea and the 
activation of the RAAS in the kidney.[124] An improvement 
in sodium excretion, an increase in cardiac output, and an 
improvement in RBF mediating unfavorable responses 
were all seen in animal models of RSDN after myocardial 
infarction.[125,126]

Kidney diseases
Another research used an ovine model of hypertensive 
chronic kidney disease to show the efficacy of RSDN. In 
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comparison to sham controls animal, the hypertensive CKD 
accompanied with RSDN showed larger improvements in 
GFR, RBF, and albuminuria 5 months after the ablation.[127] 
Furthermore, RSDN recovered estimated GFR (eGFR) by 
changes of intrarenal hemodynamics in CKD patients.[128,129] 
The eGFR assessments could help to evaluate the exact 
renal functions.[130]

It has been shown that ischemic acute kidney injury changes 
renal hemodynamics and is associated with endothelial cell 
dysfunction brought on by an increase in the formation of 
reactive oxygen species, which reduces NO availability.[131] 
Numerous physiological functions of NO in the kidney 
include the control of RSNA.[132] By reducing NO synthesis 
may directly increase sympathetic nervous system activity 
in CKD patients.[133] The glomerular microvasculature 
becomes more constricted as a result of NO production 
inhibition and proximal tubular reabsorption decreases.[133] 
RSDN treatment has stopped these effects.[134] However, 
RSDN may not be suitable for lowering blood pressure in 
patients with polycystic kidney disease.[135]

Renal denervation and future challenge
Despite new data demonstrating the large benefits of RSDN, 
there are still numerous unsolved problems, including 
responder identification, procedural guidance, effects 
persistence, and the applicability of clinical outcomes. The 
identification of responders is a particularly important subject 
matter. The hypertensive patients who had a baseline plasma 
renin activity > 0.65 ng/ml/h or a baseline heart rate > 73.5 bpm 
were more sensitive to RSDN.[136,137] The preference of patients 
for RSDN is another crucial feature that has to be taken 
into account in addition to the identification of responders. 
A nationwide web survey in Japan revealed that the presence 
of side effects while taking antihypertensive medications, 
younger patient age, male sex, higher systolic blood 
pressure (at home or at the office), and poor antihypertensive 
drug adherence were all significant predictors of preference 
for RSDN.[138] This should be considered while deciding on a 
course of antihypertensive treatment. Finally, it is debatable 
whether renal nerve regeneration impacts the long‑term 
responses to renal denervation. The re‑innervation of the 
renal nerves may start in humans as early as 28 days.[139] 
Similar events were seen in dogs where, 3–6 months after 
transplantation, renal autografts were re‑innervated.[139] On 
the basis of enough data, it is envisaged that the therapeutic 
use of RSDN would proceed completely.

CONCLUSION

Several afferent and central pathways are involved in 
inducing an increase in RSNA, all of which result in a 
significant reduction in RBF that is proportional to the 
increase in RSNA. Without renal nerves, the response to 

stimuli is minimal or absent. Based on experiments, the 
effect of RSDN on RBF varies. The dynamic impact of renal 
nerves on RBF enables using RBF dynamic criteria as a 
biomarker in renal denervation therapy.
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