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Abstract

Regional differences and regulatory mechanisms of vegetation productivity response to

changing environmental conditions constitute a core issue in macroecological researches.

To verify the main limiting factors of different macrosystems [temperature-limited Tibetan

Plateau (TP), precipitation-limited Mongolian Plateau (MP), and nutrient-limited Loess Pla-

teau (LP)], we conducted a comparative survey of the east-west grassland transects on the

three plateaus and explored the factors limiting regional productivity and their underlying

mechanisms. The results showed that aboveground net primary productivity (ANPP) of LP

(109.10 ± 16.76 g m−2 yr−1) was significantly higher than that of MP (66.71 ± 11.11 g m−2

yr−1) and TP (57.02 ± 10.59 g m−2 yr−1). The response rate of ANPP with environmental

changes was different among different plateaus, being closely related to the main limiting

factors. On MP, this was precipitation, on LP it was temperature and nutrients, and on TP, it

was non-specific, reflecting restriction by the extremely low temperature. After autocorrela-

tion screening of environmental factors, different regions exhibited different productivity

response mechanisms. MP was mainly influenced by temperature and precipitation, LP was

influenced by temperature and nutrient, and TP was influenced by nutrient, reflecting the

modifying effect of the main limiting factors. The effect of each regional environment on

ANPP was 72.56% on average and only 27.18% after simple regional integration. The

regional model could optimize the simulation error of the integrated model, and the relative

deviations in MP, LP, and TP were reduced by 31.76%, 17.22%, and 2.23%, respectively.

These findings indicate that the grasslands on the three plateaus may have different or even

the opposite mechanisms to control productivity.

Introduction

Vegetation productivity, the productive capacity of plant communities under natural environ-

mental conditions, is a research hotspot in terrestrial ecosystems [1]. The most direct
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manifestation of vegetation productivity is food and fuel, which are closely related to human

survival. It is estimated that approximately 40% of vegetation productivity in terrestrial ecosys-

tem can be directly or indirectly utilized by humans [2]. Therefore, improving the simulation

accuracy and forecasting ability of vegetation productivity models is of great significance for

evaluating for ecosystem carrying capacity and sustainable development of the ecological envi-

ronment [3].

Widespread regional variation is one of the major challenges for estimating large-scale veg-

etation productivity, and it is a common problem faced by ecologists. For estimating vegeta-

tion productivity at regional and global scales, model simulation is the most informative

method, while field surveys and observations often verify the simulation accuracy of the model

[4]. In previous studies, the estimations of vegetation productivity mainly focused on improv-

ing the universality of a model, making the relationship model show trends in parameter

enrichment and structural complexity [5, 6]. As a combination of different geographic plates

or biota, Earth’s surface is influenced by factors such as topography, altitude, and distance

from the ocean. Therefore, each region should have different environmental regulatory mech-

anisms and show completely different characteristics at different spatial scales or in different

seasons [7, 8]. Therefore, in a unified empirical model obtained from certain biota or global

data, the accuracy error of regional simulation needs to be further explored or quantified.

On different plateaus (or macrosystems), the role of major limiting factors in the response

mechanism of vegetation productivity to changing environmental conditions may be an

important theoretical basis for solving such problems. In natural ecosystems, based on Liebig’s

law of “minimal factors” [9], there is always one factor that reaches a state of insufficiency first,

leading to the stability in entire system. Thus, limiting factors at the regional scale may be con-

sidered as relatively insufficient ecological factors after regional comparison. In addition to the

regulation of various environmental factors, the level of vegetation productivity is also closely

related to plant attributes [10, 11]. However, considering the interaction and co-evolution

between plant attributes and main regional ecological factors [12], the concept of regional lim-

iting factors is worth paying more attention to. At this level, these factors differ from the limit-

ing factors at individual or population levels and are based on the overall control of the biota

and large-scale environment. Therefore, we can compare regions with different main limiting

factors to compare the response intensity at which vegetation productivity responds to envi-

ronmental changes and the regional variation in response mechanisms to assess the status of

regional limiting factors in the general promotion of large-scale productivity models.

Generally, research based on limiting factors has mostly been carried out under controlled

experiments, but research using natural global change transects with evidently different limit-

ing factors are rare. The global change terrestrial transect [13] is arranged along the direction

of change for the main or secondary driving factors, such as temperature, precipitation, land

use intensity, and nutrient status [14]. The transect has the characteristic of "replace time with

space", in that regional spatial changes of the gradient can be regarded as a long-term ecologi-

cal change. To some extent, these transects can be understood as long-term control experi-

ments preset by earth; the biggest difference between them and control experiments is that the

former reflect long-term adaptations in plants, whereas the latter focus on short-term

responses. Therefore, experimental design on the concept of terrestrial transects is ideal for

exploring the response mechanism of vegetation productivity under different regional limiting

factors.

Temperature, precipitation and nutrients are important drivers of global change. Many

control experiments have shown that extreme temperatures [15] and droughts [16] will signifi-

cantly reduce aboveground net primary productivity (ANPP), and the synergy of N and P [17]

will promote ANPP. The grasslands of the Tibetan Plateau (TP), Loess Plateau (LP) and
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Mongolian Plateau (MP), as the specific macrosystems in the Northern Hemisphere, may be

ideal locations for verifying the effects of regional limiting factors. On the TP, owing to high

altitude and widespread glaciers, low average temperature may be the main factor limiting

plant growth [18, 19]. On the LP, owing to its unique geological structure and topography

formed by aeolian soil, soil erosion is serious, meaning that a lack of nutrients may be the

main factor limiting vegetation growth [20, 21]. The MP is an arid and semi-arid region, and

the grassland vegetation dynamics are related to the variability in precipitation, and thus,

insufficient precipitation is the main limiting factor [22].

Based on the new idea of comparative transect, the present study focuses on the grasslands

of the TP, LP, and MP to explore the regional response of productivity to environmental

changes and to verify the modification effects of the main limiting factors. Our research was

intended to determine the following: 1) distribution patterns of vegetation productivity in

three typical grassland macrosystems; 2) environmental response characteristics and specific

expression of vegetation productivity in different macrosystems; and 3) main mechanisms

underlying grassland productivity in different macrosystems. Further verify the hypothesis

that the regional limiting factor plays a leading role in the productivity response mechanism.

Methods

Study area

Typical grassland ecosystems on three plateaus in the Northern Hemisphere were selected

(31–45˚N, 80–123˚W; S1 Table). The three plateau transects were intended to represent

regions restricted by temperature, precipitation, and nutrients, and the measured data for

mean annual temperature (MAT) on the TP, mean annual precipitation (MAP) on the MP,

and soil N content on the LP support this inference (Fig 1). The map data illustrated in Fig 1

was derived from Land Cover Climate Modeling Grid product (MCD12C1) (https://lpdaac.

usgs.gov/products/mcd12c1v006/).

Fig 1. Grassland distribution in the Northern Hemisphere and contrastive grassland transect between the

Mongolian Plateau, loess Plateau, and Tibetan Plateau. After comparing the three regions, the main limiting factors

of each region were obtained. Grasslands on the Tibetan Plateau have a relatively low mean annual temperature

(MAT), which is considered to lead to temperature limitation; grasslands on the Mongolian Plateau have a relatively

low mean annual precipitation (MAP), which is considered to lead to precipitation limitations; grasslands on the Loess

Plateau have relatively low total soil N leading to nutrient limitation.

https://doi.org/10.1371/journal.pone.0240238.g001
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The average altitude of TP is>4000m, and MAT is<0˚C, the highest monthly average tem-

perature in<10˚C, and the MAP is 20–487mm [23]. There are three grassland types, namely,

alpine meadow, alpine grassland, and alpine desert from southeast to northwest [24]. For LP,

the altitude is 300–3000 m, the MAT is 3.7–14.0˚C, and the MAP is ~110–860 mm, and this

plateau belongs to the dry with cold semi-arid climate (Bsk) and snow with dry winter climate

(Dwa) [25–27]. The vegetation types were distributed from the southeast to northwest with

warm forest, warm forest grassland, warm typical grassland, and warm desert grassland [28].

The MP, in a cold semi-arid climate (Bsk) [27, 29], is within a typical temperate continental cli-

mate (Dwb), with an MAT of −1.7–5.6˚C and an MAP of 90–433 mm [30]. From east to west,

there are forests, forest grasslands, meadow grasslands, typical grasslands, desert grasslands

and deserts [31].

Transects setup

Grassland transects across the TP, LP, and MP were spread out along the precipitation gradi-

ent. There were 10 sites set up from east to west on each plateau. Sites 1–3 were in meadows,

sites 4–7 were in steppes, and sites 8–10 were in deserts (Fig 1, S1 Table). All sites for grassland

investigation were selected from natural grasslands with little human activity or grazing. To

enhance the comparability among the three transects, the classification of grassland vegetation

types was relatively simple (S1 Fig), which differed from the professional vegetation grassland

classification system that emphasizes differences among vegetation groups in different regions

[32, 33]. Two 50-m paralleled splines within the site were setup as repetitions, with four plots

evenly arranged within each spline.

The transect on the TP spanned ~1600 km at an altitude of 4104–4938 m. The transect on

the LP spanned >800 km at an altitude of 804–1714 m. The transect on the MP spanned >900

km at an altitude of 144–1272 m. (No specific permission was requirement for these locations

to conduct field investigation for the aim of natural science in China, because these lands are

public and these investigations did not involve endangered species.).

Field survey

The field investigation was carried out in the peak plant growth period from July to August. In

each plot (1 m × 1 m), we first collected litter and standing litter. Then we estimated the total

coverage and average height and measured the plant height, sub-coverage, and abundance of

species. Finally, we collected the aboveground parts of different plant species. A total of 260

species, 152 genera, and 48 families were collected. The samples were oven dried at 85˚C and

to a constant weight to calculate the aboveground biomass (AGB). Soil samples were also col-

lected using soil drills from each plot. After air-drying at 25˚C, we removed plant roots, gravel,

and other debris, passed the samples through a 2-mm soil sieve, and ground them using a ball

mill (MM400, Retsch, Haan, Germany).

Data sources

Aboveground net primary productivity. AGB was obtained through plot survey in the

late growing season of the grassland. For herb plants, AGB was considered as ANPP, and for

shrub plants, we use the linear equation from Chen et al. [34]:

lnðANPPÞ ¼ b� lnðAGBÞ þ a ð1Þ

ANPP ¼ a � AGBþ b ð2Þ
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where both a and b are constants, and the constant values are different in different regions or

shrub communities. This series of equations did not consider the shrub age, which will lead to

the underestimation of ANPP.

Climate data. The climate data was extracted from online datasets based on the longitude

and latitude. The MAT and MAP data were derived from the National Earth System Science

Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn).

The Aridity data came from the Global-Aridity and Global-PET Database [35] of Consortium

for Spatial Information of the Consultative Group on International Agricultural Research

(https://cgiarcsi.community/data/global-aridity-and-pet-database/).

Nutrient data. Soil nutrient data are obtained from the actual measurement of soil sam-

ples. The soil total N was measured by elemental analyzer (Vario MAX CN, Elementar, Ger-

many), and the soil total P and soil total K were measured by a microwave digestion system

(MARS Xpress, CEM, Matthews, USA) and an inductively coupled plasma emission spectrom-

eter (ICP-OES, Optima 5300 DV, Perkin Elmer, Waltham, MA, USA).

Data analysis

For the geographical distribution of ANPP, multiple comparisons (Duncan’s test, α = 0.05)

were used to test the significance of ANPP differences in different regions and grassland types.

Ordinary least squares was used to check the response rate (intensity) of ANPP to environ-

mental factors in various regions. Furthermore, standardized major axis analysis was used to

test the significance of the difference in response rates between different regions. We used

stepwise regression to obtain the main master model of ANPP, and then compared the simula-

tion deviation caused by simple integration. The initial model included MAT, MAP, Aridity,

N, P, K parameters. On the basis of the species productivity matrix of sites, canonical corre-

spondence analysis was used to interpret the ANPP based on environmental factors. Data anal-

ysis was performed by R-3.5.2 [36−38], and charts were drawn in PowerPoint 2010 and R-

3.5.2. The significance test level was P < 0.05.

Results

Spatial variation in grassland ANPP

The grassland ANPP of three plateaus ranged from 14.44 ± 2.96 g m–2 yr–1 to 175.16 ± 99.87 g

m–2 yr–1. The ANPP of each transect showed a significant upward trend with longitude from

west to east (Fig 2a). The average of ANPP on LP was 109.10 ± 16.76 g m–2 yr–1, which was sig-

nificantly higher than that on the MP (66.71 ± 11.11 g m–2 yr–1) and TP (57.02 ± 10.59 g m–2

yr–1) (Fig 2b). Among different grassland types, the ANPP on all plateaus showed the following

similar trend: meadow > grassland > desert (Fig 2c).

Regional specificity of grassland productivity response to climate and

nutrient changes

The response of ANPP to changes in climate (Fig 3a) and nutrients (Fig 3b) were mostly posi-

tively correlated, reflecting that high temperature and humid promote productivity. Further-

more, there were significant differences in the intensity of vegetation productivity response to

environmental factors in different regions (Fig 4), and the response was closely related to the

main limiting factors in each region.

The response intensity of ANPP with MAP on the MP (0.431) was significantly higher than

that on the LP (0.235) and TP (0.197). Therefore, MP had a stronger precipitation response

specificity, corresponding to precipitation limitation in this region. Owing to the limitation of
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Fig 2. The distribution pattern of grassland aboveground net primary productivity (ANPP) between Mongolian Plateau, loess Plateau,

and Tibetan Plateau. The error line is one times the standard error. Different letters (a, b, c, d, e) indicate significant difference (p < 0.05).

https://doi.org/10.1371/journal.pone.0240238.g002

Fig 3. The relationship of aboveground net primary productivity (ANPP) to climate factors and soil nutrient among different regions.

Solid line shows that ANPP was significantly correlated with environmental factors (p < 0.05). MAT, mean annual temperature; MAP, mean

annual precipitation.

https://doi.org/10.1371/journal.pone.0240238.g003
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excessively low temperature, the response of ANPP on the TP to the environment was overall

low, which in turn leads to its non-specificity temperature response. The LP showed a strong

response specificity in MAT, N and P, and especially N, indicating that the changes in ANPP

were closely related to nutrient limitation.

Comprehensive regulation of environmental factors on grassland

productivity modified by limiting factors

After filtering the autocorrelation factors, each regional environmental factor presented differ-

ent models to controlling ANPP (Table 1). When the total data from the three regions were

considered, ANPP showed a master model of MAT, MAP, and N, reflecting the overall regula-

tion of temperature, precipitation, and nutrients. After the regions were screened, the main

master model of each region was different and was closely related to the main limiting factors

Fig 4. Changes in the response intensity of aboveground net primary productivity (ANPP) to climate factors and soil nutrients among the

different regions. The response intensity is the slope of the linear fitting equation between ANPP and environmental factors; the error line

represents one times of standard error; � represents the significance of the two regions, �p< 0.05; ��: p<0.01; ���: p< 0.001. MAT, mean annual

temperature; MAP, mean annual precipitation.

https://doi.org/10.1371/journal.pone.0240238.g004

Table 1. The master model of aboveground net primary productivity (ANPP) controlled by environmental factors in different regions.

Region Model Adj.R2 p

Mongolian Plateau ANPP = -88.54910� + 8.22961 MAT + 0.40518�� MAP 0.7105 0.0054

Loess Plateau ANPP = -92.659� + 14.114� MAT + 6.060 N + 927.095 P 0.8915 <0.001

Tibetan Plateau ANPP = 23.1177� + 3.1529�� N 0.7184 0.0012

Total ANPP = -17.71743 +5.51664���MAT + 0.17237�� MAP + 1.47000 N 0.7046 <0.001

Initial factors include: MAT, mean annual temperature; MAP, mean annual precipitation; Aridity; N; P; and K

� represents the significance of the regression coefficient, �p < 0.05;

��: p<0.01;

���: p < 0.001

https://doi.org/10.1371/journal.pone.0240238.t001
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on each plateau. The ANPP of the MP was comprehensively regulated by MAT and MAP, but

on the LP, ANPP was regulated by MAT, N, and P, and on the TP, ANPP was regulated by N.

Difference between regional specificity and simple regional integration

In each region, the contribution of climate factors and soil nutrients to grassland ANPP was

72.56% on average. This wad 75.22% on the MP (Fig 5a), 71.53% on the LP (Fig 5b), and

70.93% on the TP (Fig 5c). After simply integrating the data of the three regions, the contribu-

tion of climate and soil nutrient factors was only 27.18% (Fig 5d), indicating that the three pla-

teaus may have different or even divergent productivity response to changing environment

conditions.

Comparing the fitting errors of the integrated model and the regional model (Fig 6a), the

absolute and relative deviations of the regional model were considerably lower than those of

the integrated model (Fig 6b), especially on the LP. Among them, the relative deviation of the

MP, LP and TP decreased by 31.76%, 17.22%, and 2.23%, respectively.

Discussion

Regional variation in grassland ANPP

Within each plateau, ANPP showed a gradual upward trend as the longitude increased (Fig 2).

Comparatively, ANPP first increased and then decreased as TP–LP–MP with the increase in

Fig 5. Environmental contribution of grassland aboveground net primary productivity (ANPP) among different regions by canonical

correspondence analysis. Climate factors were mean annual temperature (MAT), mean annual precipitation (MAP), and Aridity, and soil

nutrients were N, P, and K. The response variable was the biomass matrix of the species, and the explanatory variable was the environmental

factor matrix.

https://doi.org/10.1371/journal.pone.0240238.g005
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latitude. These results agreed with those reported by Jiao et al. [39] in Europe. Moreover, the

change trend of ANPP along the transect was consistent with the regional vegetation zonality,

which demonstrated that the design of the transect can successfully obtain the characteristics

of regional vegetation.

Compared with that on the TP and MP, the grasslands of ANPP on the LP was highest.

These results verified that, compared with nutrient limitation, temperature and precipitation

limitations have a greater effect on vegetation productivity on the TP and MP. The growth

inhibition caused by nutrient deficiency is more common in trees or shrubs [20] compared

with herb, so grassland shows higher ANPP. The grasslands on the MP were mostly affected

by the extreme arid climate [30], but precipitation extremes have declined in recent years [40].

The water stress due to extreme drought can easily result in water imbalance in grasslands

[40]. Most surviving plants present resource-conservative functional traits [41], such as higher

growth of underground roots [42] or an earlier-ending growing season [43], resulting in lower

ANPP. The extreme low temperature on the TP is a long-term stress factor, and the low pro-

ductivity is understandable. Low temperature can inhibit the activity of plant cell enzymes,

resulting in slower plant growth and limited organic matter accumulation during the short

period in which the soil thaws [44]. In addition, the alpine vegetation on the TP is more dwarf

Fig 6. Fitting comparison between aboveground net primary productivity (ANPP) of the regional model and integrated model. Dotted

line ± 20%, indicating the range of ANPP measured value fluctuation by 20%; � represents the significance of the two regions, �p< 0.05; ��:

p<0.01; ���: p< 0.001; ns, no significant difference. MP, Mongolian Plateau; LP, Loess Plateau; TP, Tibetan Plateau.

https://doi.org/10.1371/journal.pone.0240238.g006
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[45], and grows in a unique high-density "straw felt" pattern, allowing plants to gather together

for warmth.

Specific performance and response mechanisms of ANPP to environmental

changes modified by the main limiting factors

It is important to explore the response mechanism of ANPP to global change, and regional lim-

iting factors may be the key to understanding the productivity response mechanism [46, 47].

Regional characteristics can be showed by comparing large-scale transects, and the regional

vegetation productivity regulatory mechanisms maybe not easily change. For example, along

these transects, ANPP had significant linear relationships with environmental factors, irrespec-

tive of the plateaus (Fig 3), although the response intensity of grassland ANPP in different

regions was also significant different (Fig 4). Among them, the response intensity of ANPP

with changes in K was not significant, although there were differences among region [48].

On the MP, the response intensity of ANPP with changes in MAP was much higher than

that on the LP and TP. Previous studies have demonstrated that precipitation is the main fac-

tor affecting ANPP in arid and semi-arid regions [49], and semi-arid grasslands are highly sen-

sitive to fluctuation in precipitation [50]. After filtering the autocorrelated factors, ANPP was

comprehensively regulated by the MAT and MAP (Table 1), being specified by aridity (Fig 4).

Temperature is important for enzyme activity to promote plant photosynthesis [51] and more

efficiently utilize precipitation and soil nutrients.

On the LP, grassland ANPP had a specific response to temperature and nutrients (Fig 4),

and was comprehensively regulated by MAT, N, and P (Table 1). Owing to severe soil erosion

and nutrient loss on this plateau [52], plants must rapidly respond to changing nutrients. The

vegetation of LP was considered to be close to the threshold of regional water resources carry-

ing capacity [53]. Compared with grassland, forest was the main body that affects the balance

of water use [54]. Therefore, the precipitation limitation of grassland vegetation may not be

strong. Temperature may directly affect plant metabolism and transpiration [55], further influ-

encing the rate of photosynthesis and the absorption of water and nutrients by roots. Further-

more, the sensitivity to temperature can alleviate the growth limitation due to nutrient

deficiency [28].

On the TP, the response intensity of ANPP to environmental changes was overall low (Fig

4), reflecting the overall suppression of plant growth under extremely low temperatures [56].

As the important water source of China and even Asia, the TP is not water limited [57, 58],

and soil nutrients are mostly stored in an organic state [59]. However, too low temperature

may depress soil N mineralization, resulting in an apparent limitation of available N [60].

When autocorrelated factors were filtered, the strong regulation of soil N content was shown

(Table 1). Under long-term low temperature stress, alpine plants have evolved a variety of

adaptive strategies, such as dense villi and stolon or mat-like growth [61]. This shows that,

under long-term adaptation, cold-tolerant herbs grow well on TP and have formed stable

plant physiological characteristics. Although the grasslands of the TP are more sensitive to

warming, at the regional scale, the vegetation rejuvenation period has not significantly

advanced [62] and the optimal length of the growing season has shortened [23]. Moreover, the

warming and drying trend in the western region [63] have no significant effect on grassland

productivity.

Regional limiting factors should be emphasized during regional integration

In a simple integration of different regional data, the effect of environmental factors on ANPP

greatly decreased (Fig 5), and the fitting bias of the simple model increased (Fig 6). This
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evidence reveals that differences in environmental regulatory mechanisms are common

among different macrosystems. Owing to the differences in the environmental conditions of

different macrosystems, a simple model is not sufficient for reflecting the whole system, and

regional limited factors should be emphasized. Therefore, to efficiently estimate productivity,

we not only need to judge regional characteristics [6, 64–66] to establish a model but also to

consider more information regarding the key limiting factors on, e.g., regression trees and

neural networks.

We are far from identifying the main limiting factors at the regional level because few stud-

ies have been reported on this subject. A more complete theoretical foundation is needed to

further discuss the temporal and spatial scale of limiting factors. Furthermore, how to deter-

mine the main limiting factors at regional scale is dependent upon the environmental parame-

ters collected in a specific study. In the present study, data on regional vegetation, being

simply reflected in the transect survey, may have inherent errors due to the selection of sites

and the influence of investigation time. In practice, the setup of the plateau transect basically

follows the existing transect proposed and established by previous researchers [67, 68]. The

present study is the first, to our knowledge, to attempt to systematically compare these tran-

sects. In the future, more systematic transect surveys can be carried out using a consistent pro-

tocol, even covering different fields (e.g., plants, animals, microorganisms, and soil) and

different data collection scales (e.g., ground, remote sensing, lidar, models, and flux).

Conclusion

There are significant regional differences in the response of grassland productivity to changing

environment conditions, and the main limitation factors in different regions can modify the

regulatory mechanisms. The response of ANPP to changing environments on the LP, MP and

TP was mostly related to the specific limiting factors in each region but has different mecha-

nisms driving the response rate and direction. When using the model to simulate grassland

ANPP at a large scale, the regional limiting factor, as a breakthrough point, should be empha-

sized to improve its simulation accuracy. In future, the comparative transects are not only

ideal for exploring the response mechanism of productivity but also represent a research plat-

form for multidisciplinary integration (e.g., plants, animals, and microorganisms). This is also

expected to be important for the verification of regional limiting factors.
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