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Abstract: In this work, bacterial cellulose (BC)-based polymer derived from a symbiotic culture of
bacteria and yeast (SCOBY) are optimized as both electrodes and electrolytes to fabricate a flexible
and free-standing supercapacitor. BC is a multifunction and versatile polymer. Montmorillonite
(MMT) and sodium bromide (NaBr) are used to improve mechanical strength and as the ionic source,
respectively. From XRD analysis, it is found that the addition of MMT and NaBr has reduced
the crystallinity of the electrolyte. Most interaction within the electrolyte happens in the region
of the OH band, as verified using FTIR analysis. A maximum room temperature conductivity of
(1.09 ± 0.02) × 10−3 S/cm is achieved with 30 wt.% NaBr. The highest conducting SCOBY-based
electrolytes have a decompose voltage and ionic transference number of 1.48 V and 0.97, respectively.
The multiwalled carbon nanotube is employed as the active material held by the fibrous network of
BC. Cyclic voltammetry shows a rectangular shape CV plot with the absence of a redox peak. The
supercapacitor is charged and discharged in a zig-zag-shaped Perspex plate for 1000 cycles with a
decent performance.

Keywords: EDLC; supercapacitor; bacterial cellulose; biopolymer; green energy; electrolyte

1. Introduction

Cellulose is a natural and abundant polymer with excellent mechanical properties [1].
Various sources of cellulose, e.g., plant, animal, and bacteria, have been employed in
different industries such as cosmetic, pharmaceutical, textile, bioadhesive, and mucoadhe-
sive drug delivery systems [2]. Among all kinds of cellulose, bacterial cellulose (BC) has
gained considerable attention in electrolyte application due to its unique characteristics,
for instance, high aspect ratio, formability, eco-friendliness, excellent mechanical strength,
flexibility, and ability to act as an ion conductor [3]. BC has ether groups (–C–O–C–) in
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its structure, which is almost similar to polyethylene oxide (PEO). Glucose monomers
are connected via –C–O–C– functional groups in the nanofiber structure of BC [4]. This
kind of structure is beneficial for dissolving salts. Each oxygen in the structure of BC has
electron lone pairs, which will form a dative bond with salt [5]. The properties of BC can
be modified by polymer blending. The efficiency of polymer synthesis typically depends
on the method of culturing. In static culture, it is crucial to monitor the pH level. The
development of acids as products of the metabolism of microorganisms can decrease the
effectiveness of synthesis [6].

Li et al. [7] reported that blending BC with PEO has improved the thermal stability
and mechanical strength of the film. The formation of dendrites has to be the main problem
in energy devices study, especially for lithium batteries. The authors also stated that the
BC presence in electrolytes could eliminate the growth of dendrites on the surface of the
electrodes. According to Yue et al. [8], the gel polymer electrolyte system of sulfonated BC-
polyaniline has achieved 5.2 × 10−3 S cm−1. The authors claimed that the decomposition
of polyaniline film increased when it was reinforced with BC. The preparation of BC plays
a vital role in achieving high-conducting polymer electrolytes. Sabrina et al. [9] concluded
that polymer electrolyte from freeze-dried BC has a larger porous structure and ionic
conductivity than oven-dried BC. Luo et al. [10] reported electrical double-layer capacitors
(EDLC) comprising BC, acetylene black, and activated carbon as the electrode. The author
claimed that BC could form a free-standing film that can avoid using the current collector,
reducing the overall weight and price.

The presence of BC gives hope in fabricating the current demand for abnormal-shaped
energy storage devices. EDLCs are one of the capable energy storage devices that can
provide high power density with fast charge–discharge cycles while being pliable. Ions
undergo an adsorption/desorption process on the surface of carbon electrodes; thus,
bending the EDLC might affect their performance [11]. The unique characteristics of
EDLCs are a long life cycle, rapid charging/discharging process, high power density, and a
straightforward and safe fabrication method [12]. In EDLC devices, many types of carbon
have been incorporated as electrode materials, for instance, graphite [13], aerogel [14],
carbon nanofibers [15], carbon nanotube [16], and activated carbon [17]. Carbon nanotube
(CNT) has been extensively studied among these carbons due to their excellent electron
mobility and mechanical properties. Typically, CNT will form a porous network that is
beneficial for the movement of ions [18]. CNT can form a hydrogen bond or van der Waals
force with polymer, thus providing flexible film. Hence, CNT is a vital material to fulfill the
needs of modern society.

This zig-zag-shaped perspex plate is employed to test the supercapacitor’s perfor-
mance with irregular shapes instead of flat shapes. This design enables the SCOBY-based
supercapacitor to be useful in electronic applications that require irregular shapes, such as
curved, wearable, miniaturized, portable, and flexible consumer electronics. Furthermore,
the materials and methods are abundant, inexpensive, and straightforward. Therefore,
large-scale production of this SCOBY-based supercapacitor is possible in the future. In this
work, BC, NaBr, and MMT are used as the polymer host, ion provider, and filler, respec-
tively. BC is also used in the electrodes as the polymer matrix with hydroxyl multiwalled
CNT (MWCNT-OH) as the active material.

2. Materials and Methods
2.1. Materials

Carbon nanotubes and sodium dodecyl sulfate were obtained from Sigma–Aldrich
(Saint Louis, MO, USA). The source of cellulose is a type of bacterial cellulose (BC) hydrogel.
BC will degrade naturally in pH 5 and must be filtered and washed with deionized
water before being used. The weight-average degree of polymerization (DPw) of bacterial
cellulose remained in the range of 14,000 of 16,000 during cultivation at pH 4, but at pH 5,
the DPw decreased from 16,800 to 11,000. Figure 1 shows the fresh BC and degraded BC.
Sodium bromide was purchased from SYSTERM.
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Figure 1. Fresh and degraded BC.

2.2. Preparation of BC-NaBr-MMT (BXD) Electrolytes

For bacteria cellulose-based electrolytes (BXD), 0.05 g montmorillonite and 3.0 g
bacterial cellulose were sonicated for 30 min in 50 mL of deionized water. Next, the sample
was stirred using magnetic stirring for 24 h (60 ◦C/700rpm). The next step was Buchner
funnel filtration, and the BXD sample was left to dry for 30 min before the inclusion of 0 to
50 wt.% sodium bromide. The final sample was left to dry for 24 h at room temperature.
Electrolyte with 0, 10, 20, 30, 40, and 50 wt.% NaBr was named as BXD, BXD10%, BXD20%,
BXD30%, BXD40%, and BXD50%, respectively.

2.3. Characterization of BC-NaBr-MMT Electrolytes (BXD)

HIOKI 3532–50 LCR impedance spectroscopy was set from 50 Hz to 50 MHz to study
the effect on frequency of the ionic conductivity (σ). The BXD was pressed in between two
stainless steel surfaces of a Teflon case. The σ was obtained via the following equation:

σ = t/(ARB) (1)

Here, RB is the bulk resistance of the electrolyte. The thickness (t) of BXD film was
measured and maintained using a Mitutoyo micrometer screw gauge. The electrochemical
stability window of BXD films was analyzed using linear sweep voltammetry (LSV) analysis.
In this part, the potential was swept linearly from 0 to 3 V. This analysis was conducted
using a Digi-IVY DY2300 potentiostat at a slow scan rate of 10 mV/s. The dominancy of
ions as an ionic conductor was confirmed using transference number analysis (TNM). The
ionic (tion) and electronic (telec) and transference number (TNM) were analyzed using the
V&A instrument DP3003 digital DC power supply, which is in series with a multimeter for
current monitoring. The working voltage for the polarization process was 0.2 V. The analysis
was performed at room temperature where tion can be obtained via the given equation:

tion = (Ii−Is)/Ii (2)

where stabilized and initial currents are denoted as Is and Ii, respectively. In order to verify
the crystallinity of BC and CNT, X-ray diffraction (XRD) analysis was conducted using
Bruker Model X-Ray Diffractometer Bruker Model. The range in this study was from 10◦

to 100◦ at a step size of 0.002◦. X-ray of 1.5406 Å wavelengths were generated by a Cu
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Kα source. The selected XRD data were then deconvoluted using Origin 9.0 software via
Gaussian function to determine the degree of crystallinity (χc). χc can be calculated using
the following equation:

Xc = (Ac/At) × 100% (3)

Here, Ac and At are area of crystalline region and total area, respectively.

2.4. Preparation of BC-CNT Electrodes (BXC)

BC (3.0 g) was filtered using manual filtration. An amount of 0.05 mg of hydroxyl
(MWCNT-OH) (conductivity, S = 107 S/m) was dispersed in 20 mL of deionized water to
prepare the MWCNT solution. BC and MWCNT-OH were then blended with deionized
water using a magnetic stirring process for 24 h at 45 ◦C until the homogenous solution
was obtained. The homogenous BXC solution was then vacuum-filtered using a Buchner
funnel. Finally, the prepared BXC nanocomposites electrodes were peeled off and dried
at ambient temperature for further characterization. Figure 2 shows the prepared BXD
electrolyte and BXC electrodes from bacterial cellulose.
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Figure 2. The formed (a) BXD electrolyte, (b) BXC electrode, and (c) bent BXC electrode.

2.5. Construction of Full Bacterial Cellulose-Based EDLC

The EDLC was prepared by sandwiching the BXD electrolyte between two identical
BXC electrodes. Aluminum was cut into the desired shape and placed on top and bottom of
the top and bottom BXC, respectively. The EDLC was then vacuumed, sealed, and packed
in nonconductive plastic wraps. The packed EDLC was placed in a zig-zag-shaped perspex
plate where part of the aluminum foil stuck out on the side. This part was connected
to the Neware battery cycler and potentiostat for charge–discharge analysis and cyclic
voltammetry, respectively. The fabricated EDLC is shown in Figure 3.

2.6. Characterization of Full Bacterial Cellulose-Based EDLC

Cyclic voltammetry analysis was selected to verify any redox reaction in the potential
range used in this work. Digi-IVY DY2300 potentiostat was used for this analysis with
many scan rates at 10, 20, 50, and 100 mV/s. Apart from that, CV enables us to identify the
specific capacitance (Ccyc) of the fabricated EDLC using the following equation:

Ccyc =
∫

I(V)dV/2mx(Vf − Vi) (4)

where x stands for the scan rate and m is the mass of active material, which, in this case,
is the mass of CNT. Vi and Vf are the initial and final voltage, respectively. I(V) is the
area of the CV plot using the final and initial voltage as the maximum and minimum
value, respectively. The area of the CV plot was determined using OriginPro software.
The NEWARE battery cycler with a current density of 0.143 mA/cm2 was set to test the
charge–discharge properties of the constructed EDLC. Important parameters of the EDLC,
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for instant specific capacitance (Cs), equivalent series resistance (ESR), power density (Pden),
and energy density (Eden):

Cs = i/gm (5)

ESR = Vdrop/i (6)

Eden = (CsV2)/2 (7)

Pden = V2/(4mESR) (8)

where g stands for the gradient of the discharge part, Vdrop stands for the potential drop,
and i is the working current, which is 1 mA.
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plastic wrap.

3. Results
3.1. BC-NaBr-MMT (BXD) Electrolytes Study
3.1.1. Ionic Conductivity Analysis of the Bacterial Cellulose Electrolytes

A polymer electrolyte must possess a high ionic conductivity just to be an efficient
ion conductor in an EDLC. The conductivity must be at least ~10−3 S/cm. As shown in
Figure 4, mixing BC and MMT produces a low conductive film with a conductivity of
(1.24 ± 0.01) × 10−9 S/cm. This value lies between an insulator and a conductor. High
conductivity is obtained with more amount of NaBr. As salt is added, instead of the
cellulose matrix, the matrix is filled with Na+ and Br−, which will be beneficial for the
adsorption or intercalation process in the energy devices [19].

As a consequence, high ionic conductivity is obtained. The maximum conductivity
achieved is (1.09 ± 0.02) × 10−3 S/cm with 30 wt.% NaBr. However, adding more salt
is not always the best way to improve conductivity. This is due to limited complexation
sites in the polymer matrix [20]. In a crowded space of polymer matrix, free ions tend to
recombine and recrystallized, which block the ionic pathway causing a significant drop
in ionic conductivity value. In addition, recrystallized salt can reduce the performance of
the EDLC, especially power density. Thus, this explains the drop in ionic conductivity as
40 wt.% and 50 wt.% NaBr is employed in the BC-MMT polymer matrix.
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3.1.2. Crystallinity Analysis of the Bacterial Cellulose Electrolytes

In addition to high ionic conductivity, a good biopolymer electrolyte must be amor-
phous or have a low crystallinity to be useful in energy storage applications. Figure 5
shows the XRD spectrum for BC, MMT, and BXD electrolytes with various weight per-
centage of NaBr from 2theta of 10◦ to 100◦. It can be seen that MMT has three distin-
guishable crystalline peaks at 2theta = 17.6◦, 26.6◦, and 28.5◦. These obtained crystalline
peaks of MMT are comparable to other reported MMT works [21,22]. The MMT peaks at
2theta = 17.6◦, 26.6◦, and 28.5◦ in this work correspond to d-spacing of 5.08 Å, 3.35 Å, and
3.03 Å, respectively [22]. Meanwhile, BC has crystalline peaks at 14.6◦ with a shoulder peak
at 17.0 and at 2theta = 22.9◦. The peaks at 14.6◦ and 17.0◦ belong to the crystal lattice plane
of (11 0) and (110), respectively. These peaks are common native peaks for a cellulose, and
thus these outcomes are almost similar with other studies [23–25].
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When BC is blended with MMT (BXD0%), all crystalline peaks of BC and MMT are
suppressed to a lower intensity. This is a proof of interaction between polymer chain with
MMT via hydrogen bond. As 30 wt.% NaBr is added, most crystalline peaks become smaller
and less sharp, signifying an improvement in the amorphous structure of the electrolyte.
As the weight percent of NaBr goes beyond 30 wt.%, sharp crystal peaks can be seen in
the XRD spectrum of BXD40% and BXD50%. New peaks that appeared in BXD40% and
BXD50% correspond to the typical crystal peaks of NaBr, which are comparable to other
NaBr work [26]. This explains the drop in conductivity value as 40 and 50 wt.% are added
as portrayed in Figure 4.

The deconvolution method was performed on the selected samples to verify the
pattern of crystallinity as MMT and NaBr were added into BC polymer matrix. Figure 6
shows the deconvoluted XRD pattern of BC, BXD0%, and BXD30%. BC in Figure 6a shows
several sharp and narrow crystalline peaks along with two broad amorphous peaks. This
is a typical structure of semicrystalline materials. The χc is tabulated in Table 1. As MMT
is added into BC polymer chain, the intensity of crystalline peaks of BC are observed to
decrease and become smaller. Several crystalline peaks belong to MMT appeared in the
deconvoluted XRD pattern of BXD0% (Figure 6b). The slight drop in degree of crystallinity
can be seen in Table 1 as MMT is added. This signifies that the addition of MMT enhanced
the amorphousness of BC film. In Figure 6c, the intensity of all crystalline peaks of MMT
and BC decrease with the introduction of 30 wt.% NaBr, which indirectly reduces the χc
and improves amorphousness of the film.

Table 1. Degree of crystallinity of selected samples.

Sample χc (%)

BC 33.5
BXD0% 27.3
BXD30% 10.9

3.1.3. Complexation within the Bacterial Cellulose Electrolytes

Typical polymer or cellulose has functional groups with lone pair electrons. This lone
pair electron is where most ions or particles can form complexation via a dative bond [27].
This interaction or complexation can usually be detected through shifting peaks in the FTIR
spectrum, as seen in Figure 7. The FTIR spectrum of MMT has several familiar peaks at a
wavenumber of 3628 cm−1, which belongs to the stretching vibration of silanol groups. In
comparison, 3416 cm−1 and 1634 cm−1 are attributed to the OH-adsorption peaks. Peaks
between 650 cm−1 to 1320 cm−1 are characteristic peaks of MMT. Peaks at 992 cm−1 and
792 cm−1 indicate the region of AlAlOH and AlMgOH bending vibrations, respectively.
The peaks of MMT in this work are comparable to other MMT works [28,29].

Meanwhile, for BC, typical cellulose peaks are located at 3340 cm−1, 2900 cm−1, and
1630 cm−1. These peaks correspond to OH stretching vibration, C-H stretching, and C=O
vibration, respectively. Peaks located at 1160–1060 cm−1 belong to C-O stretching [30,31].
As BC and MMT are blended, the pattern of the FTIR spectrum appears more similar to BC,
with the OH peak at 3340 cm−1 owing to the high amount of BC compared to MMT. C=O
of BC at 1630 cm−1 is now at 1638 cm−1 with a slight change in the intensity. This verifies
the interaction between BC and MMT via hydrogen bond. By referring to the FTIR peak
of BXD30% (highest conductivity), OH peaks shifted to a new wavenumber of 3404 cm−1.
The addition of salt changed the intensity and location of C=O to 1616 cm−1. This indicates
that ions from the salt interacted with the BC polymer chain.
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3.1.4. Surface Morphology of the Bacterial Cellulose Electrolytes

The surface morphology of BC, MMT, and selected electrolyte with NaBr is shown in
Figure 8. BC in Figure 8a shows an entangled structure and random multiweb distribution.
There are many spaces and gaps between BC fibers that allow insertion of other compounds
into the BC matrix, which enhances the BC properties [32]. The diameter of the BC fiber is
between 57 and 192 nm. Jia et al. [33] and Pal et al. [34] reported that the diameter of BC
fiber was 71 nm and 100 nm, respectively. Thus, our BC has almost similar size distribution
with other BC-based works.

Figure 8b depicts the surface of MMT where it has a sheet structure along with large
leaf-like crystals forming a dense aggregate. As MMT is added into BC matrix (Figure 8c),
the diameter of BC fibers reduces to 34.76 from 57.95 nm. The gap between BC fibers is
filled by MMT particles. Small MMT particles can penetrate into BC matrix, while large
MMT particles accumulate at the surface of BC fiber. The existence of OH groups in both
BC and MMT can lead to weak organic–inorganic hydrogen bonding interactions. This
signifies the interaction between MMT and BC structures. Similar observations are obtained
in other MMT-BC-based works [35]. In Figure 8d, particles from NaBr salt are embedded
in the structure of BC-MMT matrix. The impregnation of NaBr further reduces the size of
the BC fiber to 26.05 from 41.61 nm. Ions from the salts form dative bonds with oxygen
containing functional groups in BC and MMT, causing the unraveling of the BC fibers
network. The result is comparable with Zhou et al. [36], where a similar phenomenon was



Polymers 2022, 14, 3196 10 of 18

obtained as BC was doped with sodium alginate. The outcomes from FESEM analysis are
consistent with the trend in XRD and FTIR analyses.
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3.1.5. Contribution of Ions and Electrons in The Bacterial Cellulose Electrolytes

It is well known that in an EDLC, ions interact with the surface of carbon electrodes
through electrostatic force. In this study, Na+ and Br− are the dominant charge-exporting
species, and electrons are the less dominant charge exporter. It is crucial to verify the
contribution of ions to the overall conductivity. This can be obtained by conducting
polarization on the electrolyte with constant working voltage where the changes in current
flow are being monitored simultaneously. The TNM plot of BXD30% is illustrated in
Figure 9. A high current of 23.7 µA can be seen just when the process started. At this early
stage, ions and electrons are driven toward the stainless steel electrodes, thus providing a
high current value. In less than 10 s, a drastic drop in the current value can be observed.
As soon as ions reach the surface of stainless steel, ions form electrostatic force with
the electrodes.

Ions cannot pass through stainless steel, and only electrons can flow through stain-
less steel. This explains the low current reading of 0.7 µA beyond 10 s. This is where
the polarization process starts when we observe a stable and constant current reading.
With all this information from TNM analysis, tion and telec for BXD30% are 0.97 and 0.03,
respectively. This value is comparable to other polymer-Na salt-based electrolyte systems.
Shetty et al. [37] reported that carboxyl methylcellulose-NaNO3 had a tion of 0.97. According
to Bhargav et al. [38], the presence of sodium salt in PVA provided a series of tion between
0.954 and 0.974.
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Figure 9. Polarization curve of BXD30% at a working voltage of 0.20 V.

3.1.6. Potential Limit Test for the Bacterial Cellulose Electrolytes

In this modern era, many technology or electrical appliances require a certain amount
of voltage. Thus, it is essential to know the potential stability of an electrolyte before the
EDLC fabrication process. Using a safe potential range can avoid the breakdown of the
polymer chain during the long charging and discharging process. The goal is to identify
at which potential the polymer electrolyte begins to oxidize or reduce and, thus, degrade.
This is sometimes called breakdown potential [39]. The LSV plot of the highest conducting
electrolyte is depicted in Figure 10. A stable current flow can be seen as the potential swept
linearly from 0 to 1.48 V. Thus, it is safe to say that stable polarization and charge-double
layer can be achieved in this potential region. The slope of the LSV plot is observed to
increase more as the potential reaches 2.2 V. Beyond this limit, more degradation happens
in the polymer matrix. This can reduce the performance of the EDLC.
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3.2. Full Bacterial Cellulose-Based EDLC Study
3.2.1. Important Storage Properties

The full SCOBY-based EDLC is successfully fabricated where the charge–discharge
curve of it is shown in Figure 11. The shape of the curves is a typical plot for an EDLC,
where it almost looks to be a triangle shape. It is noticeable that there is a vertical and
sudden voltage drop before the discharging process. This is due to the presence of internal
resistance in the EDLC. Apart from that, the linearity of the discharge slope, indirectly, tells
us that this EDLC has a capacitive behavior. Unlike EDLC, the pseudocapacitor or battery
will have a nonlinear discharge curve. The shape of 1000th curve is more triangle than the
15th and 1st cycles. This is normal because a supercapacitor needs a certain cycle number
before it reaches some stability.
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From the curve in Figure 11, various storage properties can be extracted where it
is shown in Figure 12. Figure 12a shows the specific capacitance, Cs, of the full SCOBY-
based EDLC. The Cs for the first is 7.44 F/g. The EDLC then experienced some specific
capacitance loss about 12.6% after 50 complete charge–discharge cycles. Beyond the 50th
cycle, the Cs seemed to be stable up to 1000 cycles, with an average Cs of (6.70 ± 0.10) F/g.
The trend of Cs is harmonized with the charge–discharge curve in Figure 10, where the
consistency and stability are verified, as 250th cycle has almost identical curve with 1000th
cycle. It is normal that a freshly fabricated EDLC has unbalanced performance within a
few initial cycles before stability can be achieved. The trend of Cs being slightly deviated
from consistent value is due to the internal resistance. Table 2 shows the reported EDLC
with various materials.

Table 2. Reported EDLCs with various polymer electrolytes and carbon electrodes.

Electrolyte Electrodes Cs (F/g) Cycles Reference

PMMA-LiBOB Carbon 0.52 50 [40]
Methylcellulose-NH4NO3 Activated Carbon 1.67 - [41]

PEO-Mg(Tf)2 + EMITf MWCNT-AB-PVdF-HFP 2.6–3.0 - [42]
PVA–LiClO4 Activated carbon 3.0 200 [43]

Chitosan-PEO-NH4SCN Carbon 3.8 - [44]

PVA-Dextran-NH4I Activated
carbon-AB-PVdF 4.2 100 [45]

BC-MMT-NaBr BC-MWCNT 6.7 1000 This work

Figure 12b illustrates the ESR of the SCOBY-based EDLC obtained from 1000 charge–
discharge cycles. ESR is an indicator of the internal resistance of the EDLC, which comes
from the gap between the electrolyte and electrode themselves, current collector, external
wires/clipper, and circuit. Electrode/electrolyte interaction also contributes to the ESR
value. Another important parameter, which is responsible for the drop voltage, is the
inclusion of PVDF to the EDLC electrode part, which is a good insulator. ESR for the first is
84.7 ohms. ESR of the EDLC seems to have fluctuated with the lowest and highest values
at 72.7 and 100.5 ohm, respectively, where the pattern is less stable than the trend of Cs.
Free ions tend to develop into ion triplets/pairs/aggregates at a fast charge–discharge rate
and high cycle number. These types of formations require a high current to transfer charges
and can block other free ions from reaching the surface of the electrodes [46,47].

Another vital storage property of an EDLC is energy density. It reveals how much
energy an EDLC can store per kilogram. Figure 12c reveals the Eden of the full SCOBY-based
EDLC throughout 1000 cycles. It is expected that the pattern of Eden is similar to Cs, where
the first cycle is 1.03 Wh/kg, and it undergoes about a 12.4% reduction after 50 cycles. The
Eden then achieved stability at an average of 0.93 Wh/kg until 1000 cycles. This portrays that
mobile ions in the EDLC experienced a consistent energy barrier after the 50th cycle. Unlike
Eden, Pden is how much energy can be transferred per kilogram. Pden for the constructed
EDLC is shown in Figure 12d, where the first released is 176.5 W/kg. In Figure 12b, the
Pden trend is harmonized with the ESR trend owing to their relation in the charge transfer
mechanism. By referring to Equation (8), Pden is highly influenced by ESR and inversely
proportional to it. The Pden fluctuated between 148.9 W/kg and 206 W/kg.
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3.2.2. Storing and Energy Storage Mechanism

Cyclic voltammetry is another excellent tool to check capacitive behavior, electrochem-
ical stability, and specific capacitance. CV analysis was performed for freshly fabricated
EDLC after 444 charge–discharge cycles and after 1000 charge–discharge cycles in order to
verify the pattern of the performance for charge–discharge. Figure 13 shows the CV plot of
the EDLC at fast and slow scan rates. In all CV plots, it can be observed that fresh EDLC has
a leaf-like shape CV plot. This tallies with the imperfect triangle-shaped charge–discharge
curve for the first cycle in Figure 11. As the cycle number increased to 444 and 1000, the CV
plot transformed into a rectangular-like shape. The rectangular-like shape CV plot indicates
that the EDLC holds a good capacitive characteristic [48]. At initial cycles, most ions in the
polymer matrix are in random distribution, thus, there is slower current response to voltage
reversal at each end potential. This explains the tail on the top right part of the fresh EDLC
CV plot. As the EDLC is charged and discharged for more cycles, proper charge-double
layer is achieved leading to a rapid current response to voltage reversal, consequently
altering the CV shape to a more rectangular shape.

Other than that, the EDLC is highly influenced by the scan rate. It is noticeable that the
shape of the CV plot changed to a leaf-like shape when using a high scan rate. Ions can form
a proper charge-double layer at a slower scan rate than a faster one, thus providing higher
capacitance as well as rectangular-shaped CV. At a fast rate, the flow of ions toward the
electrode is not stable. This causes some ions to recombine and form ion pairs/triplets. The
formation of ion pair/triplets blocks the conduction of ions, which increases the internal
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resistance. This explains the deviation of CV plots at high scan rate. Table 3 reveals that the
scan rates highly influence the specific capacitance.
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Figure 13. Cyclic voltammetry plot for the fabricated supercapacitor with a scan rate of (a) 10 mV/s,
(b) 20 mV/s, (c) 50 mV/s, and (d) 100 mV/s.

Table 3. The specific capacitance after a certain cycle numbers.

Specific Capacitance (Ccyc)
10 mV/s 20 mV/s 50 mV/s 100 mV/s

Fresh EDLC 2.67 2.31 1.68 1.07
After 444 cycles 2.76 2.43 1.72 1.05
After 1000 cycles 2.78 2.75 1.86 1.14

4. Conclusions

In conclusion, it is safe to claim that the web-like network bacterial cellulose (BC) de-
rived from SCOBY in this work is a multifunctional material. The BC presence contributed
to both the film properties of the electrolytes and electrodes. A free-standing, pliable,
and eco-friendly supercapacitor was successfully fabricated using polymer from bacterial
cellulose and multiwalled carbon nanotubes as the active material for polarization. The
optimum conductivity of the prepared BC-montmorillonite (MMT)-sodium bromide (NaBr)
electrolyte system was (1.09± 0.02)× 10−3 S/cm with the assistance of 30 wt.% NaBr. From
XRD analysis, the crystallinity of the electrolyte was reduced by blending BC and MMT and
adding a proper amount of NaBr. As verified using FTIR analysis, the most complexation
and interaction in the electrolyte system occurs in the hydroxyl region, where the peak
position shift was significant. The best conducting SCOBY-based electrolyte breakdown
and has ionic transference numbers at 1.48 V and 0.97, respectively. The constructed EDLC
has excellent and stable storage properties throughout the 1000 cycles. The average specific
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capacitance and energy density of the EDLC were 6.70 F/g and 0.93 Wh/kg, respectively.
The pattern of power density was highly related to the trend of the internal resistance of
the EDLC. The CV plot of the EDLC showed no evidence of redox reaction. Apart from
that, the performance of the EDLC is highly influenced by the scan rate.
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