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ABSTRACT

In the last years, many studies were able to iden-
tify associations between common genetic variants
and complex diseases. However, the mechanistic bi-
ological links explaining these associations are still
mostly unknown. Common variants are usually as-
sociated with a relatively small effect size, suggest-
ing that interactions among multiple variants might
be a major genetic component of complex diseases.
Hence, elucidating the presence of functional rela-
tions among variants may be fundamental to identify
putative variants’ interactions. To this aim, we devel-
oped Polympact, a web-based resource that allows
to explore functional relations among human com-
mon variants by exploiting variants’ functional ele-
ment landscape, their impact on transcription fac-
tor binding motifs, and their effect on transcript lev-
els of protein-coding genes. Polympact character-
izes over 18 million common variants and allows
to explore putative relations by combining cluster-
ing analysis and innovative similarity and interaction
network models. The properties of the network mod-
els were studied and the utility of Polympact was
demonstrated by analysing the rich sets of Breast
Cancer and Alzheimer’s GWAS variants. We identi-
fied relations among multiple variants, suggesting
putative interactions. Polympact is freely available at
bcglab.cibio.unitn.it/polympact.

INTRODUCTION

Common genetic variants in the form of Single Nucleotide
Polymorphisms (SNPs) and Small Insertions and Deletions
(INDELs) are the most frequent forms of DNA polymor-
phisms. SNPs and INDELs are supposed to be the largest
source of phenotypic variation across individuals. Although
common variants are mostly located outside of gene coding
regions and seem to have no direct consequences on protein

sequences and phenotypes, genome-wide association stud-
ies (GWAS) identified thousands of them associated with
complex traits and diseases (1). Despite expression quan-
titative trait loci (eQTL) studies have broadly shown that
non-coding variants modulate gene expression (2), there
are still limited examples of clear mechanistic models link-
ing common variants and biological functions (3,4) and the
functional role of most of them remains largely unknown.
Indeed, most variants identified in GWAS studies have low
effect size, suggesting that individual variants have a small
impact on the heritability of complex traits and diseases
(5). In addition, complex traits and diseases are often af-
fected by many genes. Overall, this suggest that the interac-
tion among common variants may play an important role
and could represents a major genetic component of com-
plex diseases (6).

Advances in high-throughput technologies, especially
those based on next-generation sequencing (NGS), have
generated a huge amount of genomic datasets of different
types. Several databases and web applications have been de-
veloped upon these datasets to annotate genetic variants,
providing effective platforms for the exploration of their
functional properties. Some of these resources are focused
on specific aspects of SNPs and INDELs like SNP2TFBS
(7), which annotates how variants’ alleles may affect tran-
scription factors (TFs) motifs, or HACER (8), which al-
lows to explore how non-coding variants in active enhancers
may modulate gene expression. Other resources instead, like
RegulomeDB (9), HaploReg (10) and the recent VARAdb
(11), provide extensive annotations of common variants by
integrating ChIP-seq data, chromatin accessibility and in-
teraction data, TFs motif changes, eQTLs and GWAS data.
Although these resources provide important information to
investigate the functional role of single variants, none of
them allows to aggregate information of multiple variants,
limiting hence their applicability to investigate to what ex-
tent different variants may be involved in the modulation of
same genes or genes involved in same biological processes.
Tools and frameworks to explore functional relations and
links among multiple variants are indeed needed and fun-
damental to help identifying putative variants’ interactions.
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To overcome these limitations, we developed Polympact,
a computational resource and framework which allows to
investigate the presence of functional relations among mul-
tiple variants. On the one side, Polympact characterizes over
18 million common, mainly non-coding, variants by com-
bining: (i) cell line and tissues regulatory elements data; (ii)
the landscape of changes observed in transcription factors
binding sites (TFBS) scores; (iii) the association of genetic
variants genotype with the expression of protein coding
genes in various healthy human tissues. On the other side,
Polympact provides a novel framework to explore func-
tional relations among a set of queried variants, combin-
ing clustering analysis, a network model describing simi-
larities which also includes community detection features,
and an additional network model which integrates all func-
tional annotations computed and collected in Polympact to
explore in detail interactions among variants and genes.

We believe that Polympact could become a useful and ef-
fective computational platform to investigate the potential
impact of multiple common genetic variants in human dis-
eases and biological processes.

MATERIALS AND METHODS

Collection of genetic variants

We collected genetic variants information from dbSNP
version 151 (12) using version hg19 as human reference
genome. We kept all common variants with Minor Allele
Frequency (MAF) greater or equal than one percent, con-
sidering the general population frequencies available from
1000 Genomes Project (13) or the TOPMed (14) data. Over-
all, we collected 18 683 752 genetic variants composed by 14
810 175 SNPs and 3 873 577 INDELs.

Functional annotation of genetic variants

ChIP-seq data from ENCODE (15) and RoadMap (16)
projects (as available in March 2018) were retrieved. We
collected data for 9074 narrow peak experiments and 1395
broad peak experiments on 42 tissues and 238 cell lines,
annotating 755 functional elements divided between 724
transcription factors and 31 histone marks. Then, using
the BEDTools intersect module (17) with default parame-
ters, we checked, for each collected variant, if its genomic
position fell within a functional peak in all replicates of
a given TF/histone mark specific experiment. Overall, we
annotated all the variants by the number of experiments
that supports a TF or histone mark in a cell line/tissue. We
also annotated variants based on functional marker data
available from CONREL (18), a resource we recently devel-
oped which provides an extensive collection of consensus
promoters, enhancers and active enhancers across 38 tissue
types.

Impact of genetic variants on binding motifs

We retrieved 5424 TFBS consensus motifs in the form of
position frequency matrices (PFM) from Transfac Profes-
sional (19), Hocomoco (20), Homer (21) and Jaspar (22)
and 552 human RNA binding protein (RBP) consensus mo-
tifs from RBPDB database (23). Extending an approach we

previously proposed and used in (24), for each variant we
performed an extensive motif search using a pattern match-
ing approach, considering a 30 bp flanking window around
the variant and using the TESS computational tool (25).
RBP motifs were used to characterize only UTR variants.

Among the log-likelihood-ratio-based scores provided by
TESS we used the score La, which represents the log-odds
ratio of the match, and the score Lm, which represents the
maximum possible log-odds ratio. TFBS and RBP scores
(hereafter referred to as binding motifs scores) were com-
puted considering both the reference genome sequence and
the sequence modified with the variant alternative allele.
For each motif, significance of scores was determined com-
paring the calculated scores against a motif-specific refer-
ence distribution of scores computed across random ge-
nomic sequences. For motifs shorter than 11 nucleotides we
enumerated all the possible nucleotide combinations, while
for longer motifs we extracted 1 000 000 random sequences
from the hg19 human reference genome. Considering all
positive scores obtained across all motifs tested at the spe-
cific genetic variants, score ratios La/Lm were calculated
and normalized considering the average of La/Lm ratios
and the average of length-specific La/Lm ratios.

Overall, motif matches at the specific genetic variant lo-
cus were retained when: (i) the match overlaps the genetic
variant; (ii) the score for the reference allele or the score for
the alternative allele was at least six (TESS default param-
eter) for TFBSs and two for RBPs (which motifs are gener-
ally smaller); (iii) the score P-value for the reference or the
alternative allele calculated against the motif-specific refer-
ence distribution is smaller than 0.001; (iv) the normalized
La/Lm score ratio for the reference or alternative allele is
>0.5.

Retained variants were classified as a ‘match’, when the
difference between the score computed on the reference se-
quence and the alternative sequence was <10%, and as a
‘change’, when this difference was equal or >10%. Instead,
we call an ‘addition’ when the alternative allele score is posi-
tive (and respects all the other thresholds) and the reference
allele score is negative, while a ‘deletion’ is called in the op-
posite case. When the analysed genetic variant is a small in-
sertion and the motif match starts inside the added genomic
sequence, we call it an ‘addition’ in all cases. Examples of
considered cases are provided in Supplementary Figure S1.

Integration of TCGA and GTEx projects data

Genotype and transcriptomic information from either
TCGA (26) and GTEx (27) datasets were collected and ex-
amined. We conducted the analysis across 15 different hu-
man tissues for which genotype-expression normal match-
ing samples were provided, including breast, brain, uterus,
lung, liver, cervix, prostate, pancreas, stomach, esophagus,
thyroid, skin, ovary, colon and bladder. Specifically, geno-
type and normal RNA-seq samples from each tissue were
processed and analysed separately according to the tissue-
specific data availability from TCGA and GTEx, generating
a unique (GTEx/TCGA) combined dataset when data from
both resources were present. A comprehensive list of all pro-
cessed tissues and the amounts of tissue-specific samples is
reported in Supplementary Table S1.



Nucleic Acids Research, 2022, Vol. 50, No. 3 1337

RNA-seq data from TCGA and GTEx projects

Tissue-specific RNA-seq data from either TCGA normal
(non-tumor) samples or GTEx samples were downloaded
from the Recount2 (28) project data portal and processed
as follows: raw count matrices were extracted and filtered
to retain only protein-coding genes according to GRCh38-
v25 Human Gencode annotation (www.gencodegenes.org).
Tissue-specific TCGA and GTEx RNA-seq samples were
combined into a unique matrix and genes having RPKM
≥0.5 in at least the 10% of the samples were considered as
expressed and hence retained in the downstream analyses.
Normalized gene counts were then obtained using edgeR
(29) followed by a voom-quantile normalization function
(30) to correct for both technical and biological variability
across samples. Tissue-specific TCGA and GTEx combined
data was further normalized using ComBat (31) to adjust
for the source-specific batch effect generated in the merging
step.

Genotype data from TCGA and GTEx projects

Tissue-specific raw TCGA genotype calls were
downloaded from TCGA legacy data portal
(portal.gdc.cancer.gov/legacy-archive) and converted
into the common PLINK (32) file format (MAP/PED)
retaining only genotypes with a score lower than 0.1.
PED files underwent a first pre-filtering step to remove
duplicate SNPs and discard variants with a call rate
smaller than 0.75. MAP/PED files were then converted
into more readable GEN/SAMPLE format using Gtool
(well.ox.ac.uk/∼cfreeman/software/gwas/gtool.html).
Chromosome-separated GEN files were then analysed
with SHAPEIT v2 (33) to infer haplotype structure and
optimize genotype content information for the imputation
process. Variants were imputed using IMPUTE v2.3.2 (34)
against a reference panel built from 1000 Genomes Project
data. Imputed TCGA genotype calls were intersected
with imputed GTEx genotype data obtained from dbgap
(phs000424.p7.v2) and samples with overall call rate <0.9
were excluded. Only variants with MAF greater or equal
than 1% were finally retained.

Ancestry analysis

Ancestry analysis was performed using EthSEQ (35).
For each tissue-specific TCGA/GTEx integrated genotype
data, a selection of random 10% common variants with
MAF >5% (about 700 000) were selected and used to run
EthSEQ using a reference model built from 1000 Genomes
Project data. The first three principal components of the
PCA analysis performed by EthSEQ, which effectively de-
scribe the major populations structure (36), were extracted
from EthSEQ results.

Association of genetic variants genotype with transcript levels

Tissue-specific associations between variants genotypes and
genes transcripts were calculated using the following model
of linear correlation:

E ∼ β0 + β1G + β2A + β3S + β4PC1 + β5PC2 + β6PC3

where E is the transcript level of a gene, β0 is the intercept
coefficient, G is the genotype of a genetic variant, A is the
individual’s age, S is the individual’s sex and PC1, PC2 and
PC3 are the first three EthSEQ principal components. Each
genetic variant was tested against all the genes expressed
in the tested tissue using three different association mod-
els: additive, dominant, and recessive. In the additive model
we grouped samples in three different genotype classes: ref-
erence homozygous, heterozygous and alternative homozy-
gous. In the dominant model we combined the heterozygous
samples with alternative homozygous while in the recessive
model heterozygous are combined with reference homozy-
gous. Age, sex and the three PCA terms were included to
correct biases toward genes whose expression changes dur-
ing life, variants that are more common in a sex with to re-
spect to the other and effects on transcript that are due to
individuals’ ancestry. We tested a variant for the association
only if the genotype had at least 3 samples in each geno-
type class. P-values for the associations were obtained by
a two-tailed t-test on the genotype coefficient β1 under the
null hypothesis that β1 is equal to zero. For each variant and
model, P-values were corrected using Benjamini-Hochberg
method considering all tested genes as multiple hypothesis.
Only associations with a corrected P-value less than 0.005
were considered for further analysis.

Variants similarity network

Given a variant v, let G be the set of genes annotated in
Polympact having transcript levels associated with v. Now,
let Iv be the set of pairs such that:

Iv ⊆ G × {+,−}
where a gene g is associated with ‘+’ when the variant al-
ternative allele increases the transcript level of g and with
‘−’ when the variant alternative allele decreases it. Now, the
similarity of two variants v1 and v2 in terms of transcript
level associations (denoted also as variantstranscripts simi-
larity) is defined as:

Stranscri pts (v1, v2) = Jaccard (Iv1 , Iv2 ) =
∣
∣Iv1 ∩ Iv2

∣
∣

∣
∣Iv1 ∪ Iv2

∣
∣

The function Smoti f s(v1, v2) is defined by applying the
same idea to binding motif alteration Polympact data (vari-
ants motifs similarity). Specifically, a gene is associated with
‘+’ when the variant alternative allele increases the binding
motif score and with ‘−’ when the variant alternative allele
decreases it.

Based on these definitions, we can define a similarity net-
work where the nodes are variants and two variants are con-
nected if and only if their transcripts (or motifs) similarity
is greater than zero. Since connected variants may have re-
lationships with common genes, we can use community de-
tection algorithms to identify groups of variants presenting
similar functional impact.

To study the similarity degree of variants’ pairs, we se-
lected for each tissue all variants associated with the tran-
script level of at least one gene. Then, we computed with
PLINK the sets of variants that are not in linkage disequi-
librium using a genomic window of size 250kb and using

http://www.gencodegenes.org
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0.1, 0.5 and 0.8 as r2 thresholds. Finally, for each thresh-
old, we built both variants transcripts and variants motifs
similarity networks.

Variant-gene network

Combining all data available in Polympact, we finally de-
veloped a model to describe the complex interaction land-
scape between a set of common genetic variants and genes.
We formalized this model as a variant–gene network, de-
fined as a directed bipartite graph where nodes are variants
or genes, and edges are relations we found between variants
and genes. Edges have a variant to a gene direction when the
variant associates to the transcript level of the gene, while an
edge has a gene to a variant direction when the gene binds
at the variant locus.

To analyse Polympact variant–gene networks, we con-
structed for each tissue the network using all variants as-
sociated with at least one transcript level. Then, we anal-
ysed the networks structures by finding the strongly con-
nected components and exploring centrality measures like
degree, betweenness and closeness. Finally, we enumerated
every possible 2-cycle in the network. All the analyses were
conducted using NetworKit (37).

Polympact database and web interface implementation

Polympact database is hosted on a MySQL version 5.7 con-
tainerized with singularity version 3.4. The web interface is
implemented in Python3 using the Django framework ver-
sion 3.0.5. The data visualization is obtained using Plotly-
Dash version 3.1 for the heatmaps and Cytoscape-js 0.1.1
for the networks. Community detection in similarity net-
works is performed using the Louvain algorithm (38).

RESULTS

Overview of Polympact data

Polympact characterizes (Figure 1) more than 18 million
common human genetic variants and allows for the explo-
ration of: (i) their functional properties, exploiting more
than 10 000 cell lines and tissue ChIP-seq experiments;
(ii) their impact on binding motifs scores, exploiting about
6000 TFBS/RBP consensus motifs; (iii) their tissue-specific
association with transcript levels, exploiting genotype and
RNA-seq data of >5000 human individuals. A summary of
the data contained in Polympact is reported in Figure 2.

More than 95% of the variants characterized by Polym-
pact are non-coding and annotated as intergenic or intronic
variants (Figure 2A). Specifically, 143 725 are annotated as
variants in the 3′ UTR, 12 362 in the 5′ UTR, 10 018 421
are intergenic, 210 232 are located in a transcription termi-
nation site, 82,826 are exonic, 7 899 469 are intronic, 84 127
in non-coding RNAs and 232 590 in promoters.

Regarding the functional characterization of the variants,
we found that 18 545 354 of 18 683 752 (99.26%) fall within
at least one ChIP-seq peak (18 485 601 fall in at least one hi-
stone mark peak and 18 409 488 in at least one TF peak con-
sidering both broad and narrow peak data) in at least one
tissue. As shown in Figure 2B, the majority of variants fall

within few peaks across all tissues with half variants falling
in two to three peaks in every tissue. In addition, 170 239
(0.9%) variants have a promoter annotation in at least one
cell-line/tissue, whereas 7 839 972 (42%) have an enhancer
annotation and 4 357 136 (23%) have an active enhancer
annotation.

With respect to the TFBS motifs analysis landscape, we
observed that >99.9% (18.678.853) of the variants cause at
least one putative change, addition or deletion of a tran-
scription factor. More specifically, 17 277 379 variants cause
at least a putative change, 7 724 608 cause at least one addi-
tion and 8 859 076 cause at least one deletion. About 59%
of the motifs analysis results are annotated as match, while
32% show a change in the score. Additions and deletions
account, respectively, for the 3% and 6% of the overall mo-
tifs analysis results (Figure 2C, left). The distribution of the
number of variants matching or altering a certain number
of motifs show that we have >2.5 million variants overlap-
ping 40−50 putative motifs that are annotated as matches,
changes, additions or deletions. The distribution is slightly
asymmetrical with very few variants that are associated with
only 1 to 10 motifs (Figure 2C right). Putative change, addi-
tion or deletion of RBP motifs was observed in 95 265 UTR
variants (66%), with 66 654 variants causing at least a puta-
tive change, 17 488 causing at least one addition and 27 412
causing at least one deletion.

Moving to the association with transcript levels, unlike
eQTL analysis and similarly to what we have previously pro-
posed in (24), association of genetic variant genotypes and
transcript levels is here performed by testing each variant
against all protein-coding transcripts, to search for associ-
ation patterns that might be similarly shared across differ-
ent variants. We found 3 653 655 variants with a total of 6
451 090 associations across fifteen tissues and three asso-
ciation models. Of these, 1 037 712 were additive associa-
tions, 2 555 425 were dominant and 2 857 953 were reces-
sive. As shown in Figure 2D, thyroid was the tissue with the
highest number of variants displaying associations (N = 873
525) and bladder the one with the lowest number (N = 63
448). Although the median value of associations per vari-
ant is one, the mean value is pretty variable across tissues
(minimum 5.6 for uterus and maximum 104.2 for skin) in-
dicating the presence of variants strongly enriched for as-
sociations. Indeed, as shown in Supplementary Table S2,
while the 75th percentile of the tissue-specific variants as-
sociations distributions indicates an average number of as-
sociations per variant that is <3, when considering the 95th
percentile, we observe an average value of 97 associations,
which rapidly increases to 1171 associations when we con-
sider the 99th percentile of the tissue-specific variants as-
sociation distributions. Skin was the tissue with the highest
number of total identified associations, while uterus was the
tissue with the lowest number (Supplementary Figure S2).
As expected, most (∼99%) of these associations are puta-
tive trans associations. Although our approach differs from
standard eQTL analysis, we checked to what extent the pu-
tative cis associations we found are similar to the landscape
of cis associations reported by GTEx eQTL data. Focus-
ing for simplicity on a subset of tissues, we took the in-
tersection between the variants characterized in GTEx and
Polympact, and computed the fraction of cis associations in
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Figure 1. Polympact data and services. Polympact is implemented integrating common variants information and genotypes, ChIP-seq data, TFBS and
RBP motifs and genotype/transcript level data retrieved and integrated from several databases. Data are filtered for high quality characteristics and stored
in a MySQL database. Polympact offers an intuitive web interface providing visual reports and an innovative network visualization. It is also accessible
programmatically through a REST API.

Polympact by selecting, similarly to GTEx, variants within
one megabase of distance from the modulated gene in the
selected tissues. We found a good concordance with about
60% of our cis associations that are also reported in GTEx
and preserving in all cases the association direction (Sup-
plementary Figure S3).

Database and web interface

Polympact offers a web interface accessible through a web
browser that can be used to query the resource by selecting
the variants of interest and the preferred parameters setting.
The only mandatory parameter is the list of variants IDs
(in the form of rsids or strings with the variant position,
reference and alternative alleles) while all the others are op-
tional. The resource offers two search modes: quick and ad-
vanced search for both similarity and interaction analysis
modes. The quick search is available from the home page
(Supplementary Figure S4A) and retrieves the data for the
requested variants using the default parameters (all tissues,
all motifs effects and all associations models). In the ad-
vanced search page (Supplementary Figure S4B) a selec-
tion tree can be used to select a specific tissue of interest
or a selection of specific cell lines available for that tissue.
Using checkboxes, it is possible to specify the peak file for-
mat for the ChIP-seq data (narrow and/or broad peaks), the
model used in the genotype/transcript association analysis
(additive, dominant and/or recessive models) and the type
of binding motifs results (match, change, addition and/or

deletion). In addition, the corrected P-value threshold for
the genotype/transcript association analysis (default 0.005)
and the normalized difference in binding motifs scores (de-
fault 0) can be set to further filter displayed genetic vari-
ants results. Of note, only for a subset of selectable tissues
the genotype/transcript association analysis data is avail-
able and the cell-line selection is exploited only for the anal-
ysis of functional elements.

Polympact similarity analysis provides an interactive in-
terface to explore the similarity network of queried variants’
effects on transcripts levels (Figure 3A) or on binding mo-
tifs scores. Computed network communities are highlighted
and each single community can be selected to perform an
in-depth interaction analysis.

Polympact interaction analysis provides first a graphical
representation, in the form of a heatmap, to explore func-
tional relationships among the queried variants, separately
for the functional elements, the binding motifs score alter-
ations, and the transcript level associations. The heatmaps
are accessible through, respectively, the ‘Functional Ele-
ments’, ‘Transcript Levels’ and ‘Motif Binding Scores’ tabs
(Figure 3B–D) and are clustered using hierarchical cluster-
ing in a way that variants with similar characteristics are
represented closer in the visualization. All the data is also
reported in a tabular form and can be filtered and down-
loaded in various file formats. The ‘Markers’ (Figure 3E)
tab provides additional insights into the regulatory role of
the genomic regions spanning the variants and highlights
links to our external resource CONREL to visualize the
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Figure 2. Summary of the data contained in Polympact. (A) Annotations for the different types of variants stored in Polympact. (B) Percentiles of the
distribution of the number of variants overlapping a ChIP-seq peak in various tissues. (C) Types of binding motifs results and distribution of the number
of motifs overlapping a variant for match, change, addition and deletion types. In small, a zoom of the major distribution part. (D) Number of variants
associated with a transcript level in additive, dominant and recessive models in different tissues.

variant and its genomic context into a genome browser
view. The variant–gene network model is accessible from the
‘Network’ tab (Figure 3F) where genes are reported in yel-
low and variants have colours representing their functional
marker annotations across the cell lines/tissues selected.
Edges are red if the variant alternative allele increases the
binding motif score or is associated with increased tran-
script level; they are blue if the variant alternative allele
decreases the binding motif score or is associated with de-
creased transcript level.

Properties of similarity networks

Using Polympact data, similarity networks considering all
variants’ pairs were created for 15 tissues. Networks based
on binding motifs scores focused only on effects classified as
addition or deletion, considered more relevant from a func-
tional perspective. On average 1.5% (N = 1 241 691 365) of
all possible variants’ pairs had a positive Stranscri pts similar-
ity and 0.4% (N = 367 267 669) had a positive Smoti f s simi-
larity. Comparable results were obtained when high linkage
disequilibrium (LD) variants were filtered (Supplementary
Table S3 and S4). Analysis of similarity values distributions
across the networks revealed specific properties. Focusing
for example on the breast tissue transcripts similarity net-
work, but comparably for all other tissues, the distribution
of Stranscri pts values was multimodal with a range of peaks

located across the overall range [0,1] and the highest peak
located in value one, representing perfect similarity (Figure
4A). As shown in Figure 4B, most similarities located in the
highest peak were, as expected, from variants’ pairs associ-
ated with a single gene; in spite of that, we observed a tail
of pairs involving tens of genes. Concordant distributions
were obtained when correcting for linkage disequilibrium,
demonstrating that a large fraction of similarities are not
due to LD. Results obtained considering the distribution of
Smoti f s similarity values were comparable (Figure 4C, D),
further demonstrating the presence of a vast range of vari-
ants’ pairs not in LD sharing common functional relations.

Properties of variant–gene networks

For each tissue, we created a variant–gene network consid-
ering all the variants associated with at least one transcript
level in that tissue, and studied the topology of the net-
work by exploring the number of connected components,
the distribution of centrality metrics and the embedded 2-
cycles. Each tissue network showed a similar topology, con-
sisting of a single strongly connected component and many
isolated nodes (Supplementary Table S5). Degree central-
ity distributions highlighted across all tissues a heavy tailed
power law or a log-normal distribution with a likelihood ra-
tio test propending for the log-normal distribution (Figure
5A, Supplementary Figure S5). Betweenness centrality dis-
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Figure 3. Polympact web interface. (A) Polympact similarity network model built from transcript association data. Each node represents a variant and two
variants are connected if and only if they have a similarity greater than zero. (B) Histone marks and transcription factor ChIP-seq peaks overlapping in
the genomic region of the variant. (C) Binding motifs scores. Red annotates variants that are increasing the binding score of the motif while blue annotates
variants reducing it. (D) Genotype to transcript level associations. Alternative alleles lowering the transcript level are depicted in blue while alternative
alleles increasing it are depicted in red. (E) CONREL marker annotations in the genomic region of the variant. (F) Polympact variant–gene network model.
Genes are coloured in yellow while variants are in blue if they are annotated as putative enhancers or in green otherwise. Edges from a variant to a gene
represents an association to transcript levels and are blue if the transcript are reduced and red if transcript levels are increased. Edges from a gene to a
variant represent binding motifs changes and are red if the binding score is increased and blue if it is decreased.

tribution showed instead that, for each tissue, a large num-
ber of nodes do not participate in the network connections
being the nodes outside the strongly connected component
(Figure 5B). In particular, most tissues follow a similar dis-
tribution suggesting a conserved topological structure with
bladder tissue showing a shift in the distribution, probably
due to the low number of nodes in the network. Inspection
of closeness centrality also showed a conserved distribution
among tissues with a peak in zero, where all the nodes not
belonging to the strongly connected component are located,
and a second peak near 0.25, which contains the nodes in
the main connected component (Figure 5C).

We then focused on variant gene network cycles, which
are structures involving relations between variants and
genes. Specifically, we focused on variants associated with
the transcript level of a TF that are also modifying the bind-
ing motif score of the same TF, forming a 2-cycle in the
network. Cycles are of particular interest because they may
underlie the presence of positive or negative feedback loops
between variants and transcription factors. We observed 2-
cycles in every tissue (Figure 5D) from a maximum of 17 522
in lung to a minimum of 2283 in bladder. By investigating
the possible functional impact of 2-cyles we found that vari-
ants involved in 2-cycles are enriched in functional markers
(P-value = 1.7e−76, Supplementary Table S6).

Case studies

To explore the utility of Polympact, we considered a first
case study based on cancer risk GWAS common vari-
ants and a second case study based on Alzheimer’s disease
risk GWAS common variants (Supplementary Tables S7
and S8).

Cancer risk GWAS variants

2657 variants related to cancer were retrieved from the
GWAS catalogue (1), of which 2370 were present in Polym-
pact.

We first explored the landscape of functional annotations
across the loci identified by the GWAS risk variants. After
computing the extent of linkage disequilibrium across the
2370 variants using the Ensembl REST API (39), we iden-
tified 1958 LD blocks; we considered pairs of variants with
an r2 >0.5 to be LD. Then we built 100 random GWAS sets
where a single variant is randomly selected from each LD
block, hence obtaining 100 sets of 1,958 GWAS variants
that are not in LD. We also created 100 sets of 1958 random
variants selected among all variants in Polympact (exclud-
ing the 2370 GWAS variants) and preserving the distribu-
tion of minor allele frequency of the GWAS variants.
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Figure 4. Analysis of variants similarity networks. (A) Distribution of variants similarity values in the breast transcripts similarity network. (B) Cardinality
of the union of associated transcripts for each interacting pair stratified by similarity range and LD filtering. (C) Same as (A) but with variants motifs
similarity values. (D) Same as (B) but with variants motifs similarity values.

We then counted for each GWAS and random variant the
number of overlapping marker regions and compared the
distribution of counts in the GWAS variants sets with re-
spect to the random variants sets. As shown in Figure 6A
and Supplementary Figure S6A, markers of promoters, en-
hancers, active enhancers together with a subset of histone
marks result enriched in the GWAS sets with respect to the
random sets (P-value < 0.01), clearly supporting the obser-
vation that variants associated with cancer risk have an ac-
tive functional role.

Being the number of risk variants reported in the GWAS
catalogue not uniformly distributed across the different can-
cer types, we decided to further explore risk variants func-
tional properties by focusing only on a single cancer type.
Specifically, we selected the richest subset of 853 GWAS
variants that are associated to breast cancer risk, 808 of
which are characterized in Polympact. Of those, 58 vari-
ants are associated with at least one transcript level with
445 total unique associations, of which 71 (∼16%) are cis-
associations. Out of the 808 variants, we identified 653 LD
blocks and we generated as previously 100 random sets of
653 GWAS variants (not in LD) and 100 random sets of
653 random variants. Also in this case, markers of promot-

ers, enhancers, active enhancers and a selection of histone
marks resulted enriched in the GWAS variants sets with
respect to the random variants sets (P-value < 0.01, Fig-
ure 6B and Supplementary Figure S6B). In addition, more
than 30 genes known to be implicated in cancer were found
to have enriched transcription factor functional peaks in
the GWAS variants sets with respect to the random vari-
ants sets and/or binding motifs that are changed, added or
deleted by GWAS variants alternative alleles (Figure 6C).
In particular, the estrogen receptor ESR1 and the onco-
gene ZNF217 are both enriched for functional peaks in the
GWAS variants and have binding motifs that are signifi-
cantly impacted by a subset of the same variants. Interest-
ingly, focusing more generally on all transcription factors
(not only cancer genes) that have this dual characteristic,
we found a set of genes that enrich (40) for pathways re-
lated to hormone synthesis, estrogen signalling and breast
cancer (Figure 6D), overall supporting the implication of
breast cancer GWAS variants in cancer relevant biological
processes.

To further characterize the functional role of breast can-
cer risk GWAS we analysed all the 808 variants using the
Polympact transcripts similarity network created with stan-
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Figure 5. Analysis of variant–gene networks. (A) Log–log plot of the degree centrality distribution of the breast variant–gene network. (B) Betweenness
centrality distribution of the variant–gene network across tissues. (C) Closeness centrality distribution of the variant–gene network across tissues. (D)
Number of 2-cycles across tissues.

dard parameters and focusing on breast tissue. We found
10 unique network communities (Figure 3A). Out of them,
we selected 4 communities associated with genes CASP8,
MAN2C1, BTN3A2 and ARL17A which are all reported in
literature as possibly involved in cancer. The CASP8 net-
work community contains the two variants rs1830298 and
rs3769821. In particular, the variant rs1830298 is 60 kb far
away from the variant rs3769821, which is annotated as an
intron variant of CASP8. Variant rs1830298 alternative al-
lele reduces the binding score of NR2C2 hormone receptor
while rs3769821 decreases the binding score of the tumor
suppressor IRF1 (Figure 7A); both variants have the GWAS
catalogue reported risk allele (allele C) that is strongly asso-
ciated with a decrease in the CASP8 transcript levels (Fig-
ure 7BC). Of note, our integrated TCGA and GTEx dataset
from which the associations were computed is composed
by individuals with mainly European (75%) and African
(16%) ancestry, populations were the two variants have re-
spectively moderate (r2 ∼ 0.5) and low (r2 ∼ 0.2) linkage
disequilibrium. Inspection of transcript levels at all vari-
ants genotype combinations (Figure 7D) revealed that ho-
mozygous alternative genotype (TT genotype for both vari-
ants) is needed to sustain on average high CASP8 transcript

level. In particular, a first decrease of CASP8 levels is ob-
served in presence of the risk allele C in at least one variant
(e.g. when at least one variant has heterozygous genotype)
and a further decrease is observed when at least one variant
has homozygous CC genotype. These results, together with
the genotype combinations observed from phased data re-
trievable from the 1000 Genomes Project data (Supplemen-
tary Figure S7) strongly suggest a putative interaction effect
that rs1830298 and rs3769821 have in maintaining a high
level of CASP8 transcript, which is lost in individuals car-
rying the breast cancer risk allele in at least one of the two
variants.

The MAN2C1 network community (Figure 7E) includes
SNP rs8027365 (PTPN9 intron variant, risk allele A) and
the small deletion rs59356490 (intergenic variant, risk al-
lele deletion not present) located 120 kb away and they are
not reported to be in LD. Both variants modulate additively
the transcript level of MAN2C1 (Figure 7F−H) and variant
rs59356490 has a functional annotation for POLR2A and
ESR1 and overall it deletes 23 TFBS motifs. The combina-
tion of the two variants shows an additive trend where the
highest transcript level is reached when both variants are
present.
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Figure 6. Pan-cancer and breast cancer GWAS analysis. (A) GWAS variants associated to all cancer types annotated as enhancers, active enhancers and
promoters compared with random sets of variants. (B) Same as A) but with GWAS variants associated to breast cancer risk. (C) Cancer related TFs
over-represented in breast cancers GWAS variants with respect to random sets in ChIP-seq data and TFBS motif alterations. Red P-values <0.01, blue
P-values >0.01, white no data. (D) Cancer related terms resulting from the gene set enrichment analysis on all transcription factors over-represented for
ChIP-seq and with TFBS motif alterations.

The BTN3A2 network community contains 6 vari-
ants: rs13195401, rs13198474, rs17598658, rs34546498,
rs55834529 and rs68006638 and they are all associated with
a decrease in transcript level for BTN3A2 gene in the dom-
inant model. Among them we selected the pair rs13195401
(annotated as BTN2A1 non-sense variant, risk allele G) and
rs13198474 (annotated as SLC17A3 5′ UTR variant, risk
allele G) having the lowest LD (r2 = 0.49) in the general
population (Supplementary Figure S8). The combination
of the two effects shows a trend where the decrease is small
when only the variant rs13195401 is present, the decrease is
higher when only the variant rs13198474 is present, and the
highest decrease in the transcript level is reached when both
variants are present.

Finally, we analysed the network community of ARL17A.
The two variants in this community are rs2532263
(KANSL1 intron variant, risk allele G) and rs4763
(ARHGAP27 3′ UTR variant, risk allele G) and both
are associated with an increase of ARL17A, LRRC37A.
LRRC37A2 and CRHR1 genes transcript levels. For all
genes the variants have a full additive effect similarly to
MAN2C1 (Supplementary Figure S9).

Interestingly, we also found that the variant rs8050871,
located in a region annotated as active enhancer, has a cis
effect on the transcript level of gene ZNF23 causing a de-
crease in its transcript level. The variant also deletes a bind-
ing motif for the same TFs creating a loop (a 2-cycle) in the
variant gene network. Overall, this suggests that the variant
is possibly involved in a regulatory positive feedback loop,
potentially inducing dynamic instability.

Alzheimer’s disease GWAS variants

1044 common variants related to Alzheimer’s disease were
retrieved from the GWAS catalogue, 810 of which were
present in Polympact.

To highlight the utility of Polympact in identifying more
putative functional relations, we analyzed the 810 variants
exploiting the transcripts similarity network computed on
the brain tissue. We identified 4 network communities and
focused only on the 3 ones composed by variants that are
not in high LD.

The first community contains variants rs199499 and
rs7207400, that are reported in the GWAS catalogue as as-
sociated to trait Alzheimer’s disease in APOE ε4- carriers
and that present a low LD in the general population (r2 =
0.18) and moderate LD (r2 = 0.52) in the European popu-
lation. The second community is formed by three variants,
rs113260531, rs7225151 and rs80257887, that are reported
as associated to trait Alzheimer’s disease or family history
of Alzheimer’s disease; the first two variants are located on
chromosome 17 and are in moderate LD (r2 = 0.67) while
the third variant is located on chromosome 19.

Finally, the last community is formed by variants
rs7963314 and rs79926713, associated with trait Alzheimer’s
disease and Late-onset Alzheimer’s disease and are located
on two different chromosomes.

The first community variants are located on chromosome
17 and are about 1Mbp afar. Variant rs199499 is annotated
as intron variant of gene LRRC37A2 and is located about
800kB downstream to the gene MAPT, while rs7207400 is
annotated as intron variant of LINC02210-CRHR1. The
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Figure 7. Effect of variants on CASP8 and MAN2C1 transcripts. (A) Variant-gene network of the two variants rs3769821 and rs1830298. (B) Effect of the
variant rs3769821 on the transcript level of CASP8 gene under the additive model. (C) Effect of the variant rs1830298 on the transcript level of CASP8
gene under the additive model. (D) Combined effect of the two variants rs3769821 (first pair of nucleotides in the label) and rs1830298 (second pair) on
CASP8. (E) Variant-gene network of the two variants rs59356490 and rs8027365. (F) Effect of the variant rs59356490 on the transcript level of MAN2C1
under the additive model. (G) Effect of the variant rs8027365 on the transcript level of MAN2C1 under the additive model. (H) Combined effect of the
two variants rs59356490 (first pair of nucleotides in the label) and rs8027365 (second pair) on MAN2C1.
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Polympact network (Figure 8A) shows that both vari-
ants are increasing the transcript levels of LRRC37A,
LRRC37A2 and ARL17A. Interestingly, both variants are
increasing the binding of MYF6 and have an opposite effect
on the binding of TAL1. Also, rs7207400 creates new bind-
ing for MYCN and TCF4. Risk alleles (C for rs199499, T
for rs7207400) are strongly associated with decreased levels
of gene transcripts LRRC37A, LRRC37A2 and ARL17A
(Figure 8BC and Supplementary Figure S10ABDE). Geno-
type combinations (Figure 8D and Supplementary Figure
S10C, F) show that absence of risk allele for both vari-
ants is needed to guarantee the highest transcripts levels. A
first decrease in transcript levels is indeed observed when
one of the two variants has heterozygous genotype and
a second decrease is observed when one of the two vari-
ants has homozygous genotype for the risk allele. In ad-
dition, 1000 Genomes Project phased genotypes indicate
that risk variants are almost always present on the same al-
lele (Supplementary Figure S11). Overall, the data suggest
that both rs199499 and rs7207400 non-risk alleles are re-
quired in phase to sustain the highest levels of LRRC37A,
LRRC37A2 and ARL17A transcripts.

The second community is composed by variants located
on different chromosomes: chromosome 17 for variants
rs113260531 and rs7225151 (both annotated as upstream
variants for gene SCIMP, risk allele A) and chromosome
19 for variant rs80257887 (annotated as intron variant of
CEACAM20, risk allele A). The Polympact variant–gene
network (Figure 8E) shows that variants rs113260531 and
rs80257887 are significantly decreasing the binding scores
of RUNX3 and RREB1 and have alternative alleles as-
sociated with decreased HIST2H2AC gene transcript lev-
els. We selected variants rs7225151 over rs113260531 hav-
ing more alternative homozygous samples for further anal-
ysis. Specifically, a recessive effect is observed for variant
rs7225151 (Figure 8F) with AA genotype associated with
lower HIST2H2AC transcript level, while a dominant effect
is observed for variant rs80257887 (Figure 8G) with AA or
AG genotype associated with lower HIST2H2AC transcript
level. Notably, a reduction of HIST2H2AC transcript level
(Figure 8H) is evident in individuals carrying both AA risk
genotype for variant rs113260531 and AA or AG risk geno-
type for variant rs80257887.

Finally, we analysed variants rs7963314 and rs79926713.
Variant rs79926713 is located on chromosome 6 (anno-
tated as intron variant of SYNGAP1, risk allele T) while
rs7963314 is located on chromosome 12 (annotated as in-
tergenic, risk allele A). Variant rs79926713 is annotated
as promoter and is associated with an increase in tran-
script of gene PPP1R12A in the recessive models. Vari-
ants rs7963314 is instead associated in the modulation of
19 genes in the recessive model, including PPP1R12A gene
(Supplementary Figure S10GHIJ).

DISCUSSION

The study of common human genetic variants can pro-
vide insights into the biological cause of complex traits and
diseases. Although several databases and web applications
have been developed in the last decade to annotate and
characterize genetic variants, the aggregation of these in-

formation to identify variants links and interactions has
been largely unexplored. To this aim we developed Polym-
pact, a tool that enables the exploration and the analysis of
common genetic variants and their potential interactions
by exploiting the integration of a large variety of biologi-
cal data and analyses. Reasoning that variants’ interaction
could be identified by characterizing their impact and in-
volvement in the modulation of same genes or same bio-
logical pathways and processes, we first designed a work-
flow to uniformly characterize a large amount of common
variants based on specific functional properties retrieved
from well-known public databases. Then, on top of this uni-
form and homogenous annotations we developed a frame-
work to represent and explore variants functional relations.
More specifically, we combined genotype data together with
transcription factor and histone marks ChIP-seq peak data,
TFBS and RBP motifs data and transcriptomic profiling
via RNA-seq across multiple human tissues, and we imple-
mented a framework, provided as a dedicated web-server,
to systematically characterize variants and to explore the
landscape of variants functional relations through the com-
bination of clustering analysis and novel network models.

While the uniform characterization of variants provided
by Polympact was tailored with respect to the built cluster-
ing and network models, the resource we provide extends
and complements annotations provided by other databases.
Indeed, Polympact binding motifs data were determined
both for an extended number of variants and an extended
number/type of motifs. The recent SNP2TFBS tool (7), for
example, characterizes only around 3 million SNPs and uses
only Jaspar database (22). Of note, provided that variants in
UTRs can alter mRNA translation potential (41) also RBP
consensus motifs were included to characterize UTR vari-
ants. In addition, our functional characterization in terms
of regulatory elements uses our recent CONREL tool (18),
exploiting hence a novel tissue level functional annotation
of variants. Further, our genotype/transcript association
analysis approach well complements eQTL interaction data
and was already proven successful in characterizing and pri-
oritizing variants in terms of their impact on specific genes
or biological processes (24). Although we recognize that this
approach could limit the identification of moderate/weak
cis effects, a good concordance with GTEx cis-eQTL data
is shown, and overall we believe that enabling the identifica-
tion of trans effects is fundamental to unravel key features
of the architecture of complex diseases (42).

To characterize variants’ functional relations, we first in-
troduced the notion of similarity network, which allows for
the identification of variants that have common effects on
the level of the same transcripts or the binding score of the
same TFs/RBPs. In-depth analysis of the distribution of
variants’ pairs similarities across networks built from differ-
ent tissue data, revealed how these distributions are highly
conserved also when keeping only variants not in linkage
disequilibrium, supporting hence the presence of many in-
dependent variants that can possibly interact and further
highlighting a landscape of complex patterns in gene regu-
lation.

Additionally, we introduced the notion of variant–gene
network, which provides a detailed network view of vari-
ants and genes interactions across different tissues integrat-
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Figure 8. Alzheimer’s disease GWAS variants analysis. (A) Variant-gene network of the two variants rs7207400 and rs199499. (B) Effect of the variant
rs7207400 on the transcript level of LRRC37A2 gene under the additive model. (C) Effect of the variant rs199499 on the transcript level of LRRC37A2
gene under the additive model. (D) Combined effect of the two variants rs7207400 (first pair of nucleotides in the label) and rs199499 (second pair) on
LRRC37A2. (E) Variant-gene network of the community formed by variants rs7225151, rs113260531 and rs80257887. (F) Effect of the variant rs7225151on
the transcript level of HIST2H2AC gene under the recessive model. (G) Effect of the variant rs80257887 on the transcript level of HIST2H2AC gene under
the dominant model. (H) Combined effect of the two variants rs7225151(first pair of nucleotides in the label) and rs80257887 (second pair) on HIST2H2AC.
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ing all Polympact data. In-depth analysis of these networks
built from different tissue data, revealed heavy-tailed degree
distribution highlighting the presence of regulatory hubs
(variants or TFs) in the network. We also analyzed the 2-
cycles present in the networks showing that variants form-
ing these type of loops are enriched for regulatory markers,
suggesting hence the possible presence of positive and nega-
tive feedback loops related to specific TFs. Overall, the anal-
ysis unravelled a complex topology and highlighted that our
variant–gene network can be a useful tool to detect and
analyse complex interaction patterns. Additional mesoscale
and group-centric metrics could be considered to further ex-
plore properties of these large networks (43).

Using the exhaustive list of common genetic risk vari-
ants available from the GWAS catalog, we then showed that
Polympact is able to highlight important features and func-
tional relations among disease risk variants in terms of their
functional genomic context, binding motifs alterations and
transcript level modulations.

Exploiting Polympact data we first showed that cancer
GWAS risk variants are enriched for regulatory elements
annotations, in line with previous studies (44–46). In ad-
dition, we found that the set of transcription factors with
functional peaks enriched for GWAS variants and having
binding motifs modified by the same variants have a sta-
tistically significant role in cancer-related pathways, sug-
gesting that GWAS variants may hence modulate down-
stream effects of oncogenic pathways. Specifically, focusing
on GWAS breast cancer risk variants we found a set of tran-
scription factors enriched in pathways specific to breast can-
cer and to response to hormone related pathways. This, in
line with previous observations made by us (24) and others
(47) in the context of other hormone driven cancers, sug-
gests that common genetic variants may modulate down-
stream effects of hormone signalling by altering the binding
of hormone receptors or hormone regulated genes, poten-
tially favouring the risk of developing cancer in only a sub-
set of individuals carrying a specific genetic makeup. No-
tably, our analysis highlighted ESR1 (estrogen receptor al-
pha), GATA3 gene which is known to influence response to
estrogen (48) and the well-known oncogene MYC. In par-
ticular, our data shows that GWAS variants associated with
breast cancer risk not only are enriched in regions that are
bound by the estrogen receptor but also tend to alter the
way in which ESR1 binds these regions.

Further inspection of the network models built by Polym-
pact on breast cancer GWAS variants revealed a putative
interaction between two variants that, when present on
the same allele, synergistically modulate the transcript level
of CASP8 gene, a key regulator of apoptotic response al-
ready shown to be downregulated in breast cancer (49,50)
and involved in cancer initiation when deficiently expressed
(51,52). Specifically, we have shown that CASP8 transcript
level is reduced when GWAS risk allele for at least one of
the two variants is present, with the lowest expression that
is observed when at least one of the two variants has a risk
allele homozygous genotype. This suggests that the pres-
ence of the GWAS risk allele may favour the evasion from
apoptosis, a well-known cancer hallmark, increasing hence
the risk of breast cancer initiation. Our findings are in line

with (53) where the authors show that the strongest asso-
ciations with breast cancer risk in the region come from
variant rs1830298 and that variant rs3769821 is an eQTL
for CASP8. Our results are consistent with the authors’ hy-
pothesis that one or more variants in the region are respon-
sible for the reduced expression in CASP8.

With respect to our results related with MAN2C1 gene,
it has been shown that the gene may inhibit the function of
tumor suppressor gene PTEN in breast and prostate cancer
(54) and another study found that the gene may have a pro-
tective role in cancer initiation with respect of progression
(55). In our analysis, each risk allele of variants rs8027365
and rs67079557 contribute to a reduction in the expression
of MAN2C1 transcript, suggesting hence a protective role
of MAN2C1 in breast cancer initiation.

In the context of breast cancer GWAS variants we also
found variant rs8050871, involved in a 2-cycle. The variant
is located in a putative active enhancer and simultaneously
associated with decreased transcript level of ZNF23 and de-
creased ZNF23 binding at the variant locus. Provided that
ZNF23 is a gene downregulated in cancer and associated
to inhibition of cell-cycle progression (56,57), the identified
feedback loop could potentially contribute to an enhanced
cellular proliferation and potentially an increased cancer
risk.

Searching for additional examples of multiple variants
functional relations, we studied GWAS variants associated
to Alzheimer’s disease and showed that absence of risk al-
leles for variants rs199499 and rs7207400 is necessary to
sustain the transcript level of several genes (LRRC37A,
LRRC37A2 and ARL17A) in the complex genomic region
17q21.31. This region, which hosts the Alzheimer related
MAPT gene (58,59), is known to have undergone an in-
version event during evolution (60) and to be associated
with abnormal tau protein deposit (61). Both rs199499
and rs7207400 variants were observed to modify the bind-
ing motif of TAL1 gene, which is known for its effects
on GABAergic neurogenesis (62). Variant rs7207400 also
creates a binding motif for the TCF4 transcription fac-
tor, involved in synaptic plasticity (63), and the well-known
MYCN gene, essential in neurogenesis.

We also found that specific rs113260531, rs7225151 and
rs80257887 variants risk allele patterns reduce the tran-
script level of HIST2H2AC, a histone protein shown to be
downregulated in brain blood vessels of Alzheimer’s dis-
ease mouse model (64). Variants rs7225151 and rs80257887
are in moderate LD (r2 = 0.6) while rs113260531 is lo-
cated on a different chromosome. Variants rs113260531 and
rs80257887 were also observed to decrease the binding score
of RUNX3, a transcription factor that is essential in the de-
velopment and fundamental formation of axons (65), and
RREB1, a regulator of glutamatergic axons death (66).

Overall, we have shown that Polympact represents a use-
ful tool to explore functional annotations and properties
of common genetic variants, leading not only to an effec-
tive characterization of single variants but also to an effec-
tive investigation of putative functional relations and poten-
tial interactions among multiple variants. We hence believe
Polympact might be broadly applied and used to generate
hypothesis about the biological causes of complex diseases.
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