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The determinant of periodicity in 
Mycoplasma pneumoniae incidence: 
an insight from mathematical 
modelling
Ryosuke Omori1, Yukihiko Nakata2, Heidi L. Tessmer1, Satowa Suzuki3 & Keigo Shibayama3

Until the early 1990s, incidences of Mycoplasma pneumoniae (MP) infection showed three to five year 
epidemic cycles in multiple countries, however, the mechanism for the MP epidemic cycle has not 
been understood. Here, we investigate the determinant of periodicity in MP incidence by employing 
a mathematical model describing MP transmission dynamics. Three candidates for the determinant 
of periodicity were evaluated: school-term forcing, minor variance in the duration of immunity, and 
epidemiological interference between MP serotypes. We find that minor variation in the duration of 
immunity at the population level must be considered essential for the MP epidemic cycle because 
the MP cyclic incidence pattern did not replicate without it. Minor variation, in this case, is a less 
dispersed distribution for the duration of immunity than an exponential distribution. Various lengths 
of epidemic cycles, including cycles typically found in nature, e.g. three to five year cycles, were also 
observed when there was minor variance in the duration of immunity. The cyclic incidence pattern 
is robust even if there is epidemiological interference due to cross-immune protection, which is 
observed in the epidemiological data as negative correlation between epidemics per MP serotype.

Mycoplasma pneumoniae (MP) is a bacterium that causes bacterial pneumonia in humans and is a com-
mon cause of respiratory bacterial infection1. The most distinctive epidemiological feature of MP is its 
periodicity. In Denmark, the U.S., and Japan, three to five year cycles were observed up to the early 
1990s2,3. Especially in Japan, the incidences of MP infection showed a clear four year epidemic cycle 
until the early 1990s, and so was commonly called “Olympic disease” among clinicians (Fig. 1a). These 
periodicities disappeared for reasons which are currently not well understood. A decline in MP inci-
dence rates were observed with the widespread use of macrolides antibiotics4, but in recent years a 
macrolides-resistant strain of MP has emerged and macrolides-resistant MP cases have increased dras-
tically5. With the drastic rise in macrolides-resistant MP cases, the need to be able to predict MP prev-
alence is growing. Understanding the dynamics of MP epidemics in the past is essential to predicting 
the prevalence in the future. However, the mechanism of oscillation in past MP epidemics has yet to be 
explained.

Many mechanisms of periodicity have been hypothesized to explain the oscillation of MP epidem-
ics6–13. Among them is a seasonally-forced transmission rate. Most MP cases are observed among 
school children14 and also exhibit complex epidemic cycles as observed in other childhood diseases15,16. 
Mathematical models demonstrate that school-term forced transmission rates explain multi-annual 
dynamics in childhood diseases12,15,16. Other candidate mechanisms are the distribution of the infectious 
period, the distribution of the duration of immunity, and the latent period. Most mathematical models 
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describing transmission dynamics of infectious diseases assume that the distribution of the sojourn time 
between host infection states follows an exponential distribution, however, conclusions and interpreta-
tions derived from mathematical modelling would be changed by using different assumptions for the 
distribution of the sojourn time17,18. Previous studies show that the dynamics become much more com-
plex if the sojourn time follows a distribution pattern which is less dispersed than an exponential distri-
bution19–23. Epidemiological interference is also a candidate mechanism of MP epidemic periodicity. MP 
is classified into two distinct serotypes with negative correlation between epidemics of different serotypes 
being observed (see Fig.  2a,b in Kenri et al. 20083). This negative correlation suggests epidemiological 
interference between serotypes by cross-immune protection. Epidemiological interference itself does not 
induce sustained oscillation of the epidemic curve24, however, it affects the epidemic dynamics and can 
change the periodicity of epidemics triggered by other mechanisms15,25. As the effect of cross-immune 
reactions on the epidemic cycle of MP was not previously understood, we delve into the topic here.
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Figure 1. MP incidence in Japan. (a) Time series data of weekly MP cases per sentinel in Japan from 1981 
to 2015. The figure shows the number of reported primary atypical pneumonia cases until March 1999 and 
MP cases after April 1999 due to the change in the law for reporting infectious diseases. The data were 
collected from nationwide sentinel clinics and integrated by the Infectious Diseases Surveillance Center, 
National Institute of Infectious Diseases, Japan (http://idsc.nih.go.jp/index.html). (b) Annual detection rate 
of serotype I among all reported MP cases with the four-year moving average. (c) Time series data of yearly 
cases per serotype from 1976 to 2005. The data shown in (a) were collected from the whole area of Japan 
while most data shown in (b,c) were collected from Kanagawa prefecture in Japan.

http://idsc.nih.go.jp/index.html
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Figure 2. Epidemic cycles with varied infectious periods and latent periods. Short latent and infectious 
periods are required for epidemic cycles longer than one year (the periodicity of school terms). The latent 
and infectious periods for MP are both 2 to 3 weeks. Black denotes annual epidemic cycles and white 
denotes epidemic cycles longer than one year. To explore the possibility of oscillation the epidemic cycles 
were calculated with varied b from 1.1 to 17.0 (the estimated b for measles cases in the U.K. is 1.727). Mean 
duration of immunity is assumed to be 7 years.
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In this paper, we assessed whether three mechanisms commonly used in mathematical models to 
describe the oscillation of the epidemic curve can, in fact, explain the periodicity of MP epidemics. 
These three mechanisms are: i) school term-forced transmission; ii) epidemiological interference by 
cross-immune reaction; and iii) minor variation in latent, infectious, and immunity periods. We began 
by analyzing whether i) and ii) are sufficient to explain MP epidemic periodicity within a simple SEIRS 
model. We then employed an SEIRS model with time delay for the assessment of a special case of iii), 
in which there is a constant duration for the latent, infectious, and immunity periods. Subsequently we 
assessed a more general case of iii) with individual-based Monte Carlo simulation.

Results
Epidemic periodicity when the sojourn time of each infectious state follows an exponential 
distribution. In this section, we assumed that the distribution of sojourn time of each infectious 
state follows an exponential distribution, and assessed the effect of cross-immune reaction and seasonal 
fluctuation of transmission rate on the oscillation of the epidemic curve using a deterministic model 
whose parameters are described in Table 1. If the transmission rate is constant over time and there is no 
cross-immune protection, there is no oscillation of the epidemic curve at equilibrium because endemic 
equilibrium is always stable, if it exists. Even if there is cross-immune protection, oscillation as seen in 
MP epidemics does not always exist if the transmission rate is constant over time24.

School-term forcing. With respect to seasonality in the transmission rate, one possible explicit 
mechanism for the MP periodicity is the school term because most MP cases are observed among school 
children. The difference of behavior in school children, e.g. contact and movement between school terms 
and school holidays, is proposed as the cause of seasonality in the incidence of infectious diseases. The 
change in transmission rates between school terms and holidays is commonly referred to as ‘school-term 
forcing’26. Previous studies show that school-term forcing can explain the seasonality of measles epidem-
ics well16.

So far, studies employing either SIR or SEIR models which take into account host birth and death 
rates reported that the periodicity of epidemics triggered by seasonally-fluctuating transmission rates 
is closely related to the basic reproductive number, R0, the length of the infectious period, and the 
amplitude of seasonally-fluctuating transmission rates15,16,25,27. Intermediate values of R0 are required 
for multi-annual epidemic cycles, while small or large R0 can induce only annual cycles27. Keeling et 
al. 200116 reported that a short infectious period is required for sustained long-cycle oscillation of the 
epidemic curve. With respect to the amplitude of seasonally-fluctuating transmission rates, annual cycles 
are observed when the amplitude is small, and multi-annual cycles emerge when the amplitude is suf-
ficiently large15,25.

We examined the effect of school-term forcing on MP epidemics. However, when parameters were 
set for MP as shown in Table 1 and the amplitude of school-term forcing b =  1.7 as the estimated b for 
measles in the U.K.27, the four year cycle was not observed. The results of previous studies are not compa-
rable with our results due to the difference in model structure (with vs. without waning immunity), three 
possibilities can be considered for the reason why school-term forcing cannot explain the MP epidemic 
cycle; i) R0 of MP is out of range for multi-annual cycles, ii) the infectious period of MP is too long to 
induce multi-annual cycles, and iii) the amplitude of school-term forcing is not large enough to cause 
multi-annual cycles. With respect to R0, we explored the epidemic cycle using varying R0, from 1.5 to 
20.5, however only annual cycles were observed. In terms of latent period and infectious period, we also 
explored the epidemic cycle with varying latent periods and infectious periods from 3 to 25 days. We 
observed multi-annual cycles when both the latent and infectious periods were sufficiently short (white 
regions in Fig. 2c). The length of the epidemic cycle is close to the length of the cycle of the fluctuating 

Symbol Description Baseline value Reference

R0 Basic reproductive number 1.7 28

me Mean latent period 21 days 30

mi Mean infectious period 21 days 30

mr Mean duration of immunity 7 years (2–10 years) 32

σe
2 Variance of latent period me

2 Assumed

σi
2 Variance of infectious period mi

2 Assumed

σr
2 Variance of immunity duration Varied Assumed

α Infectiousness reduction rate by 
cross-immune protection Varied Assumed

1/μ High risk age group duration 15 years Assumed

Table 1.  The parameter values used in our simulations.
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transmission rate (an annual cycle) when the latent or infectious periods are large, as observed in MP 
epidemics (latent period =  2 to 3 weeks and infectious period =  2 to 3 weeks for MP) (Fig.  2c), thus 
school-term forcing does not explain the periodicity of MP (i.e. four years), which is much larger than 
the school term cycle (i.e. one year). Regarding the amplitude of school-term forcing, we explored the 
epidemic cycle when the strength of the school-term forcing, b, was varied from 1.1 to 17 (this range 
includes realistic b values, as the estimated b for measles in the U.K. is 1.727), however, school-term 
forcing always produces annual cycles with MP parameter settings, i.e., latent period =  2 to 3 weeks and 
infectious period =  2 to 3 weeks (Fig. 2).

Epidemiological interference. Epidemiological interference between strains by cross-immune pro-
tection is known to change the periodicity of epidemics25. A combination of cross-immune protection 
and school-term forcing may explain the MP epidemic cycle. We also examined whether the presence 
of both seasonally-forced transmission rates and cross-immune protection can capture the MP epidemic 
cycle. By varying the strength of cross-immune protection (with a range from 0 to 1), mean duration of 
immunity (with the range from two to ten years), and the ratio of transmission rates from school days 
to holidays, b, (with a range from 0.1 to 20), only annual cycle oscillation was observed. Even when both 
cross-immune reaction and seasonally-forced transmission rates were taken into account, the four-year 
epidemic cycle of MP was not explained, nor was it observed within our model.

Epidemic periodicity when the sojourn time of each infectious state follows a non-exponential 
distribution. Without cross-immune protection. We investigated the contribution of minor variance 
in three sojourn times, i.e. the latent period, the infectious period, and the duration of immunity. For 
the sake of simplicity, we assumed variance of the sojourn time is either zero (delta) or mean-squared 
(exponential). Minor variance in the duration of immunity is critical for the oscillation of epidemics 
(Table 2). On the other hand, variance in the length of the latent and infectious periods is not important 
for oscillation. Furthermore, the mean of the length of the latent and infectious periods is also not sen-
sitive to the oscillation in long-term MP transmission dynamics (please see Supplemental Information 
Figure S1a,b for the details). This analysis was conducted using a deterministic model.

To analyze the detailed effect of minor variance in the duration of immunity, we also used a sto-
chastic model to investigate the relationship between the oscillation of the epidemic and non-zero, 
but small, variance in the duration of immunity. The strength of oscillation of the epidemic curve 
is measured by the coefficient of variation, CV (see Methods). Weak oscillation shows small CV 
and strong oscillation shows large CV (top panels in Fig.  3c). Our simulation results show the 
smaller the variance in the duration of immunity, the larger the CV (bottom panel in Fig.  3c). 
Threshold-like behavior in the variance of the duration of immunity for the oscillation of epidemics 
was also observed. Since CV for the MP epidemic in Japan from 1982 to 1990 is 0.73, the intermedi-
ate variance in the duration of immunity between zero (constant immunity duration) and the square 
of its mean (immunity duration following an exponential distribution) can explain MP epidemic 
dynamics.

Not only sustained oscillation in MP epidemics, but also multi-annual epidemic cycles not explained 
by school-term forcing, are observed with minor variance in the duration of immunity (Fig.  3b). The 
epidemic cycle depends on both the mean and the variance in the duration of immunity.

With cross-immune protection. Even if MP serotypes interfere with each other by cross-immune protec-
tion, the periodicity of epidemics is determined by variance of the duration of immunity as similar to a 
stochastic model which disregards cross-immunity; the smaller the variance, the stronger the epidemic 
oscillation (Fig.  4). Various epidemic cycles, including three to five year cycles observed in Denmark, 

Distribution of 
sojourn time in the 

class e

Distribution of 
sojourn time in the 

class i

Distribution of 
sojourn time in the 

class r Oscillation

Scenario 1 Exponential Exponential Exponential No oscillation

Scenario 2 Delta Exponential Exponential No oscillation

Scenario 3 Exponential Delta Exponential No oscillation

Scenario 4 Delta Delta Exponential No oscillation

Scenario 5 Exponential Exponential Delta Oscillate

Scenario 6 Delta Exponential Delta Oscillate

Scenario 7 Exponential Delta Delta Oscillate

Scenario 8 Delta Delta Delta Oscillate

Table 2.  The distribution of the sojourn time in class r determines the oscillation of MP epidemics. 
“Exponential” denotes exponential distribution and “Delta” denotes delta distribution.
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the U.S., and Japan, were observed. The effect of the mean duration of immunity and the strength of 
cross-immune protection on the epidemic cycle are less clear than the variance of the immunity period 
(Fig. 5).

Discussion
In this study, we assessed which assumptions in theoretical studies of childhood diseases are required 
to explain MP epidemic periodicity. Our results show that minor variation in the duration of immunity 
is essential to capturing MP epidemic periodicity, and also suggest that ordinary differential equations, 
ODE, are not suitable for describing MP epidemics. Oscillation of the epidemic curve is robust even if 
there is epidemiological interference due to cross-immune protection, which is observed as negative 
correlation between epidemics per MP serotype.

Both the epidemic cycle and the shape of the epidemic curve, i.e. the coefficient of variation, are 
less sensitive to the strength of cross-immune reactions. At the same time, the cycle of dominant strain 
shift is sensitive to cross-immunity (Fig.  6b–d). Previous studies show that stronger cross-immunity 
causes longer periodicity for dominant strain shifting12. MP epidemics in Kanagawa prefecture, Japan in 
1976–1991 show 16 to 20 year cycles for dominant strain shift (Fig. 1b)3. Long periodicity for dominant 
strain shift, which takes the duration of four to five MP epidemic cycles, suggests strong cross-immunity 
between strains. Indeed, our results showed similar tendency for the relationship between strength of 
cross-immunity and the cycle of dominant strain shift. Short timespan dominant strain shifts (with 
duration of one to two epidemic cycles) are observed if cross-immunity is weak (Fig. 6b–d). This result 
suggests that the strength of cross-immunity can be estimated from the time between switching domi-
nant strains.

A previous study showed positive correlation between the mean duration of immunity and epidemic 
cycles21. However, this tendency was not clearly visible in our results. This lack of a clear relationship 
observed in our results may be caused by an occurrence of switching between attractors. Previous the-
oretical studies show multiple solutions for epidemic cycles with a fixed mean duration of immunity 
even if there is no epidemiological interference from cross-immune reactions21. Our simulations also 
confirmed these results of multiple epidemic cycles as shown in Figures S2. This warrants future work 
on the possible existence of conditions of multiple attractors and transitions between them.

Figure 3. The impact of variance in the duration of immunity on MP epidemics. (a) The distribution 
of the immunity duration with mean =  6 years and varied variance. We assumed Δ t =  1/200 years. (b) The 
relationship between variance in the duration of immunity and the epidemic cycle. The dashed line shows 
the 4 year cycle observed in Japan. (c) Variance in the duration of immunity determines the oscillation of 
the epidemic curve.
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To predict MP prevalence per serotype, the estimation of the immunity duration distribution is essen-
tial. However, degeneracy of the epidemic cycle, i.e. the existence of multiple attractors, suggests the 
difficulty involved in the estimation of the mean duration of immunity solely from prevalence time-series 
data. In addition to multiple attractors, transmission dynamics are complicated by epidemiological inter-
ference between serotypes. The prevalence for each serotype is necessary to fully capture the dynam-
ics, however, serotype information was not reported except for a few studies, as shown in Fig.  1c and 
Nguipdop-Djomo et al. 201328. A possible strategy for estimating the mean duration of immunity would 
be to use the age-specific sero-prevalence for each serotype. The simplest catalytic model frequently used 
for epidemiological parameter estimation from serological data is not applicable for MP because of the 
periodicity of the epidemics. Extrapolation of time-series data of prevalence may enable us to estimate 
both the mean and the variance of the duration of immunity.

In this study we did not take into account the realistic age structure of the host population, while a 
previous theoretical study showed that age structure may explain sustained oscillation of the epidemic 
curve24. Age structure is unlikely to be essential for MP epidemic periodicity, because disappearances 
of oscillation in MP prevalence were observed at similar timing in different countries. Synchronization 
of similar changes of age structure in different countries at similar timing is required to explain the 

Figure 4. The impact of epidemiological interference by cross-immunity on the oscillation of the 
epidemic curve. The strength of the cross-immune reaction is denoted by α; α =  0 means no cross-immune 
reaction and α =  1 means perfect protection by cross-immune reaction. The coefficient of variation, CV, 
of the number of people infected with any strain was measured. CV is a measure of the variation in the 
number of infected individuals over time.
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disappearance of the MP epidemic periodicity, however this is unrealistic. Disappearances of oscillation 
in MP incidence may be explained better by the change in the distribution for the duration of immunity 
due to widespread use of macrolide antibiotics in those countries.

Throughout this study we assumed a constant fraction of infections become symptomatic over time. 
R0 from Nguipdop-Djomo et al. 201328 was used in our analysis as the baseline scenario and is estimated 
from sero-prevalence. Our results for MP prevalence use the sum of symptomatic and asymptomatic 
cases. If the proportion of infections that become symptomatic is the same over time, MP periodicity is 
independent from the symptomatic case rate.

In summary, minor variation in the duration of immunity at the population level is the most likely 
determinant of the periodicity of MP epidemics. If the distributions of latent, infection, and immunity 
periods follow exponential distribution, epidemic cycles longer than one year were not reproducible, even 
if both seasonal forcing of transmission (school-term forcing) and cross-immune protection were con-
sidered as the driving forces of multi-annual epidemic cycles11,15,16,25,29. In short, only non-exponentially 
distributed variation in the duration of immunity produced multi-annual epidemic cycles. The cyclic 
incidence pattern induced by minor variation in the duration of immunity is robust even if there is 
epidemiological interference due to cross-immune protection. Since small variance in the duration of 
immunity can induce complex dynamics, more detailed analysis is required to understand MP epidemic 

Figure 5. The impact of epidemiological interference on the MP epidemic cycle. The epidemic cycle 
for the number of people infected with any strain was measured. The dashed line shows the 4-year cycle 
observed in Japan.
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dynamics; even though the analysis of the compartmental model with non-exponential distributed 
sojourn time is an analytically challenging issue.

Methods
From MP clinical observations, symptoms appear two to three weeks after infection, and continue for an 
additional two to three weeks30. The latent period may be different from the incubation period, but as 
the latent period is not known, we assumed the latent period to be the same duration as the incubation 
period (me =  3 weeks). Based on the natural history of MP, the whole population can be classified by 
infection state: susceptible s, exposed e, infectious i, recovered r. Re-infection with Mycoplasma pneumo-
niae is frequently observed, suggesting waning acquired immunity, so we employed the SEIRS model.

The age distribution of MP infection peaks in children and young adults14. For the sake of simplic-
ity, we focused only on the prevalence among the populations of children and young adults. We also 
assumed a constant host population; the rate of birth and outflow of host by death or aging are the same, 
μ. As a result, we focused on a 15 year range for the high risk age group (1/μ =  15 years).

Compartmental models in epidemiology, such as the SIR model, are described by ordinary differential 
equations which assume the sojourn time in each compartment follows an exponential distribution. To 
relax this strong assumption, we assume that the sojourn time in infection state x, τx, follows a gamma 
distribution Gx,
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where mx and σx
2 are the mean and variance of τx, and Γ  is the gamma function. If σx

2 =  mx
2, the distri-

bution of τx is equal to the exponential distribution and the system is equivalent to a system described by 
ordinary differential equations. If σx

2 =  0, the distribution of τx is equal to the delta distribution and the 
system is equivalent to a system described by delay differential equations with a fixed delay. To analyze 
the impact of σx

2 on the dynamics of MP epidemics, we explored the system with varying σe
2, σi

2, and σr
2 

with ranges from 0 to me
2, mi

2, and mr
2, respectively. When τe, τi, and τr follow an exponential distribu-

tion (σe
2 =  me

2, σi
2 =  mi

2, σr
2 =  mr

2), the time series change of each compartment is described as follows:

Figure 6. The impact of epidemiological interference on the cycle for dominant strain shift.  
(a) Illustrates the relationship between the cycle for dominant shift and the epidemic cycle on the MP 
epidemic with mr =  8 years, log10[σr

2] =  − 0.60 and α =  0.6. (b–d) show the cycles for dominant strain shift 
with varied strength of cross-immune protection α.
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The integral term in equation (3) describes the proportion of those who lose immunity per unit time 
at time t; namely, the transition from compartment r to compartment s at time t. When the sojourn time 
follows a non-exponential distribution, the transition rate to the next compartment depends on the 
sojourn time at the current compartment. To calculate the transition to the next compartment (compart-
ment s), it is necessary to calculate the transition of individuals per elapsed sojourn time at the current 
compartment (compartment r). The proportion of individuals belonging to compartment r with elapsed 
sojourn time at compartment r, τr, is given by the product of the initial proportion of transition from 
compartment i, τ( − )i t

m r
1

i
, the transition probability per unit time to compartment s at sojourn time 

τr, Gr(τr), and the survival probability at the sojourn time τr, exp(− μτr). The parameter values used in 
this paper are summarized in Table 1. The transmission rate, β, is derived by solving R0 =  1.7 for each 
parameter set. The basic reproduction number, R0, is given by
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R0 of the SEIRS model is defined by the expected number of secondary cases from a single exposed 
individual in a fully susceptible population31, and can be decomposed to the product of the transmission 
rate β, the survival probability of initially exposed individuals exp(− μa), and the probability that an 
initially exposed individual has infectiousness after a unit time elapsed since the infection (here τ can be 
interpreted as the elapsed time since the infection when the initially exposed individual leaves compart-
ment e and enters compartment i), i.e., belongs to compartment i, ∫τ( ) 
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a
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. For the 
analysis utilizing the assumption that the sojourn time follows an intermediate distribution between delta 
and exponential distributions, i.e., 0 <  σx

2 <  mx
2, we employed individual-based Monte Carlo simulation 

(IBM), the details of which are shown in the “Cross-immunity” section under Methods.

School-term forcing transmission. The school year in Japan is divided into three terms: the first 
trimester is from 7 April to 18 July, the second trimester is from 1 September to 22 December, and the 
third trimester is from 7 January to 24 March for 2014. The length of semesters is similar between dif-
ferent years. As with previous mathematical models for school-term forcing26, we assumed transmission 
rates during semesters, βschool days, are constant over time and higher than that on other days, βholidays. To 
determine βschool days and βholidays, we introduce a parameter, b, describing the ratio of transmission rate 
between school days and holidays (i.e., b =  βschool days/βholidays), and a parameter, β, describing the annual 
average of βschool days and βholidays (i.e., β =  ([number of holidays in a year]βholidays +  [number of school days 
in a year]βschool days)/[length of a year]). Using β and b, βschool days and βholidays are given by
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β β

β β

=
+

,

=
+

.
( )

b
b

b

[length of a year]
[number of holidays in a year] [number of school days in a year]

[length of a year]
[number of holidays in a year] [number of school days in a year] 5

school days

holidays

Cross-immunity. To clarify the impact of cross-immunity on the epidemic dynamics of MP we 
expand the above model to incorporate a reduction of susceptibility due to previous MP infection. We 
assumed that acquired immunity from the infection with a strain reduces susceptibility to other strains, 
and this immune cross-protection decays with waning acquired immunity. When the prevalence of mul-
tiple strains interferes with one another via cross-immune protection, compartments for all combinations 
of infection states against all strains are required to capture the epidemic dynamics using deterministic 
models. For example, there are two serotypes and four infection states for each serotype (s, e, i, and r), 
therefore 42, or 16, compartments are required. Furthermore, when the sojourn time in each compart-
ment does not follow an exponential distribution, many more compartments are required and the model 
structure becomes much more complicated. To avoid complexity, we constructed an IBM describing 
co-circulation of two serotypes.

We considered a host population of two million and tracked the timing of transition between the 
infection states. The sojourn time in each infection state is determined using a gamma random number 
generator with the parameters σx

2 and mx
2. Transition of the infection state occurs after the lapse of 

determined sojourn time. Transmission probability is determined by the current infection state of each 
individual. If the individual does not have immunity to any strain, the transmission probability of strain 
x per unit time Δt is

β
( )

Δ ( )
I t

N
t 6

x

where Ix is the number of infected individuals with strain x and N is total number of hosts. In this study 
we set Δt =  1/200 year (≈ 1.8 days). The transmission probability of a strain for an individual is reduced 
by α if he has immunity against another strain. For the analysis of a model disregarding cross-immunity 
with arbitral σx

2 having a range of 0 <  σx
2 <  mx

2, IBM was used with α =  0. Birth, death, and outflow of 
hosts from the population by aging occur randomly with a given rate, μ.

Analysis of IBM results. In all analyses the IBM results during the first 200 years were discarded and 
the number of infected individuals during the next 500 years were recorded. The epidemic cycle and the 
cycle of dominant strain shift was measured by power spectral analysis with Fourier transformation. The 
epidemic cycle, in the presence of epidemiological interference by cross-immune protection, was meas-
ured based on field data regarding the number of people infected with any MP serotype. The strength of 
oscillation of the epidemic curve was measured by the coefficient of variation (CV) for the number of 
infected individuals over time, CV =  [standard deviation]/[mean].
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