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Understanding the brain differences present at the earliest possible diagnostic age for
autism spectrum disorder (ASD) is crucial for delineating the underlying neuropathology
of the disorder. However, knowledge of brain structural network changes in the early
important developmental period between 2 and 7 years of age is limited in children
with ASD. In this study, we aimed to fill the knowledge gap by characterizing age-
related brain structural network changes in ASD from 2 to 7 years of age, and identify
sensitive network-based imaging biomarkers that are significantly correlated with the
symptom severity. Diffusion MRI was acquired in 30 children with ASD and 21 typically
developmental (TD) children. With diffusion MRI and quantified clinical assessment,
we conducted network-based analysis and correlation between graph-theory-based
measurements and symptom severity. Significant age-by-group interaction was found
in global network measures and nodal efficiencies during the developmental period of
2–7 years old. Compared with significant age-related growth of the structural network in
TD, relatively flattened maturational trends were observed in ASD. Hyper-connectivity
in the structural network with higher global efficiency, global network strength, and
nodal efficiency were observed in children with ASD. Network edge strength in ASD
also demonstrated hyper-connectivity in widespread anatomical connections, including
those in default-mode, frontoparietal, and sensorimotor networks. Importantly, identified
higher nodal efficiencies and higher network edge strengths were significantly correlated
with symptom severity in ASD. Collectively, structural networks in ASD during this
early developmental period of 2–7 years of age are characterized by hyper-connectivity
and slower maturation, with aberrant hyper-connectivity significantly correlated with
symptom severity. These aberrant network measures may serve as imaging biomarkers
for ASD from 2 to 7 years of age.

Keywords: autism spectrum disorder, brain development, structural network, hyper-connectivity, early childhood,
symptom severity
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INTRODUCTION

Autism spectrum disorder (ASD) is characterized by deficits in
social communication and interactions, repetitive patterns of
behaviors, and restricted interests (Constantino and Charman,
2016). The age range of 2–7 years is a critical developmental
period for understanding ASD as it is a time frame immediately
after the earliest possible ASD diagnosis around 2–3 years
of age based on current clinical diagnostic methods (Ozonoff
et al., 2010). However, nearly all the current literature on brain
structure and function in ASD focuses on late childhood periods
after 7 years of age (e.g., Keown et al., 2013; Supekar et al.,
2013; Payabvash et al., 2019), or adolescent and adult groups
(e.g., Rudie et al., 2013; Di Martino et al., 2014; Nomi and
Uddin, 2015). Recently, a few retrospective neuroimaging studies
included very young children before 2–3 years who went on to
be diagnosed with ASD (Levman et al., 2018, 2019; Shiohama
et al., 2021). Diffusion MRI studies on the important early
developmental period of 2–7 years in ASD are relatively scarce
and were conducted to investigate white matter microstructural
changes (e.g., Ben Bashat et al., 2007; Walker et al., 2012; Ouyang
et al., 2016). Since ASD has numerous implications for patient
function and integration in society, early interventions for ASD
immediately after its diagnosis at around 2 years of age are more
likely to reduce symptoms and to positively affect long-term
neurodevelopment (Zwaigenbaum et al., 2015). Current lack of
understanding about ASD in the age range of 2–7 years limits
potential approaches for early intervention.

Connectomics, a framework to comprehensively map brain
organization into a network (Bullmore and Sporns, 2009), has
been applied to studying a variety of brain disorders (van den
Heuvel and Sporns, 2019). Topological properties of complex
brain networks can be quantified with graph theoretical analysis.
The network is represented as nodes of a graph with connecting
edges based on measures of connectivity. A growing body
of literature suggests that ASD is associated with alterations
in multiple interconnected brain systems rather than isolated
regions (e.g., Minshew and Williams, 2007; Rudie et al., 2013;
Uddin et al., 2013; Nomi and Uddin, 2015). Meanwhile, large-
scale brain systems affected in ASD may underlie patients’
complex phenotype of behavioral impairments. For instance,
prior studies reported that the aberrant brain connectivity
of the default mode network (DMN) is likely linked to
social deficits in ASD (e.g., Assaf et al., 2010; Lynch et al.,
2013). Using connectome analysis to systematically delineate
alterations in brain organization of ASD may contribute to
understanding its underlying neuropathology and identifying
sensitive network-based imaging biomarkers that are correlated
with its symptom severity.

Heterogenous patterns of aberrant brain connectivity,
characterized by both hyper- and hypo-connectivity, have
been reported in prior studies on ASD (e.g., Keown et al.,
2013; Rudie et al., 2013; Supekar et al., 2013; Uddin et al.,
2013; Di Martino et al., 2014; Li et al., 2014; Nomi and Uddin,
2015). Specifically, brain hyper-connectivity is more common
in children with ASD, while hypo-connectivity is prevalent
in adolescents and adults with ASD compared to typically

developing (TD) individuals (Keown et al., 2013; Supekar
et al., 2013; Uddin et al., 2013). The discrepancies between
findings of hyper- and hypo-connectivity are likely dependent
on altered age-related trajectories associated with ASD in
different developmental stages (e.g., Uddin et al., 2013; Ouyang
et al., 2017). With connectomic analysis as an effective tool to
probe brain organizational changes, characterizing age-related
brain network and connectivity changes in ASD in different
developmental stages may elucidate the non-uniform changes
associated with ASD. Structural networks, usually constructed
by white matter (WM) bundles traced with diffusion MRI
(dMRI) tractography, serve as the structural substrate of brain
functional organization. So far, the majority of the network and
connectivity research in ASD has adopted functional magnetic
resonance imaging (fMRI) approaches (e.g., Keown et al., 2013;
Supekar et al., 2013; Uddin et al., 2013; Di Martino et al., 2014;
Nomi and Uddin, 2015). Relatively few studies have investigated
structural network changes in children with ASD (e.g., Rudie
et al., 2013; Li et al., 2014). To our knowledge, none of the
structural network studies were focused on early childhood of
2–7 years. Understanding of brain structural networks in ASD
in this early developmental period of 2–7 years may shed light
on initial structural connectional configurations that can evolve
into both hyper- and hypo-connectivity organizations across
different developmental stages and provide a structural basis for
functional network alterations.

In this study, we aimed to characterize age-related brain
structural network changes in young children with ASD from 2
to 7 years of age, and to identify sensitive network-based imaging
biomarkers that are significantly correlated with the symptom
severity during this early developmental period. Based on our
previous findings of flattened WM microstructural changes
quantified by dMRI microstructural measures in children with
ASD from the same age range (Ouyang et al., 2016), we
hypothesized aberrant hyper-connectivity and slower maturation
of structural networks in children with ASD during this same
age period. Diffusion MRI was acquired to map the brain
structural connectome in 30 children with ASD and 21 TD
children. All brain structural networks were constructed with
dMRI tractography. We compared graph-theory-based network
measurements between TD and ASD individuals and delineated
age-related characteristics and alterations of these network
properties. We also conducted correlations between graph-
theory-based network measurements and symptom severity in
children with ASD.

MATERIALS AND METHODS

Children With Autism Spectrum Disorder
and Children With Typical Development
All participants were children recruited at Beijing’s Children’s
Hospital. The study was approved by the institute Research Ethics
Committee, and informed/parental consent was obtained. Thirty
male children with ASD aged 2.33–7.00 years (4.15 ± 1.42 years)
and 21 male TD children aged 1.99–5.96 years (3.90 ± 1.11
years) participated in this study. TD children at the time of
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MR imaging were referred for seizures with fever (n = 9),
intermittent headache (n = 10), and strabismus (n = 2). All TD
children had normal neurological examinations documented in
their medical records. The exclusion criteria for TD consisted
of known nervous system disease or a history of psychiatric,
neurodevelopmental, or systemic illness. Children with ASD
were not receiving any CNS-active medications before the
MRI studies. The diagnosis of ASD was established using
the Autism Diagnostic Interview-Revised (ADI-R) (Lord et al.,
1994), Childhood Autism Rating Scale (CARS), Clancy Autism
Behavior Scale (CABS) (Clancy et al., 1969), and Autism Behavior
Checklist (ABC) (Krug et al., 1980), and confirmed based on
expert opinion according to Diagnostic and Statistical Manual
of Mental Disorder criteria (American Psychiatric Association
[APA], 2013). All diagnoses were performed by two experienced
pediatricians with 11 and 12 years of experience in clinical
neuropsychology, respectively. These clinical assessments were
not performed in TD. Detailed demographics and clinical
characteristics of participants are provided in Table 1. Thirty
children with ASD have been reported in a prior article
(Ouyang et al., 2016) focused on atypical WM microstructure
in ASD, whereas in this study we examined completely different
brain properties (i.e., the brain macrostructural network) using
completely different analysis (i.e., graph-theory analysis and
network-based statistics) in a mostly overlapped ASD cohort and
a larger TD cohort.

MRI Data Acquisition
All children were scanned using a 3T Philips Achieva MR
System with sedation. Axial diffusion MRI data was acquired
with the anterior-posterior commissure (AC-PC) line parallel to
the phase-encoding direction. Single-shot, echo-planar imaging
(EPI) sequence was used with Sensitivity Encoding parallel
imaging scheme (SENSE, reduction factor = 2.5). Eight-
channel SENSE head coil was used. Other imaging parameters

TABLE 1 | Demographics and clinical assessments of participants.

Parameter Children with ASD
(n = 30)

Children with TD
(n = 21)

Age (years) mean ± SD 4.15 ± 1.42 3.90 ± 1.11

Median (min-max) 3.50 (2.33–7.00) 3.84 (1.99–5.96)

Gender (male/female) 30/0 21/0

Clinical assessment score

Autism behavior checklist (ABC)

Total score 94.39 ± 7.41 –

Sensory 8.03 ± 3.03 –

Relating 30.97 ± 4.56 –

Stereotypes and object use 9.81 ± 4.23 –

Language 27.29 ± 2.51 –

Self-help and social 18.23 ± 2.90 –

Autism diagnostic interview (ADI-R) 52.77 ± 6.92 –

Childhood autism rating scale (CARS) 41.03 ± 3.79 –

Clancy autism behavior scale (CABS) 18.03 ± 1.96 –

Data are presented as mean ± standard deviation. All of the scores are raw values.
ASD, autism spectrum disorder. TD, typically developing.

were as follows: repetition time (TR) = 7.96 s, echo time
(TE) = 83 ms, field of view (FOV) = 256 × 256 mm2,
imaging matrix = 128 × 128, voxel size = 2 × 2 × 2 mm3,
slice number = 70 covering the entire brain without a slice
gap. Diffusion weighting was encoded along 30 independent
directions, and b-value was 1,000 s/mm2. The acquisition
was repeated twice to improve signal-to-noise ratio (SNR),
resulting in a scan time of 11.5 min. T1-weighted magnetization-
prepared rapid gradient-echo (MPRAGE) image was also
acquired. Imaging parameters for MPRAGE were as follows:
TR/TE = 8.34/3.83 ms, flip angle = 12◦, FOV = 256 × 256 × 160
mm3, voxel size = 1 × 1 × 1 mm3. T1-weighted images
(T1w) have superior gray and white matter contrast for cortical
parcellation. Visual inspection was conducted for all MRI data
by the pediatric radiologists (Y.P. and H.C.), and no apparent
motion artifacts were found.

Data Preprocessing
Diffusion MRI data preprocessing including eddy current and
motion correction, tensor fitting, and estimation of diffusion
MRI-derived measures was conducted with DTIStudio (Jiang
et al., 2006). Specifically, eddy current distortion and head motion
were corrected by registering all raw diffusion weighted images
(DWIs) to a b0 image using a 12-parameter (affine) automated
image registration (AIR) algorithm (Woods et al., 1998; Mori
and Tournier, 2014). Few motion artifacts were observed in the
dMRI datasets. Head motions in dMRI data were quantified
for all subjects using the methods described in the literature
(Ouyang et al., 2016) and in Supplementary Material. As shown
in Supplementary Figure 1, few motion artifacts were observed
in both TD and ASD subjects with DWI volume-by-volume
translation less than 0.5 mm and rotation around 0.12 degrees for
all subjects. There were no significant differences in translation
(p = 0.719) and rotation (p = 0.227) between ASD and TD
groups. There were no significant correlations between age and
translation (p = 0.672) or rotation (p = 0.373) in this cohort,
either. Standard tensor fitting was conducted to generate dMRI-
derived metrics, including fractional anisotropy (FA).

Network Construction
The two fundamental elements of a network, nodes and edges,
were defined using the following procedures to construct an
individual structural network.

Network Node Definition
Network nodes of each subject in the native dMRI space were
obtained by transferring their parcellated cortical regions from
their native T1w space (Figures 1A–F). Briefly, contrasts of
individual subject’s T1w image (Figure 1D) and b0 image
(Figure 1A) in their native dMRI space were used to drive
linear registration with a transformation matrix T. T1w image
of each subject (Figure 1D) was parcellated into 68 cortical
gyri (Figure 1E and Supplementary Table 1) using Freesurfer
software (Fischl et al., 2004) with Desikan–Kiliany atlas (Desikan
et al., 2006). Visual inspection was conducted for Freesurfer
cortical parcellation by the pediatric radiologists (Y.P. and H.C.)
to ensure the parcellation quality as well as to make sure there
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FIGURE 1 | Flowchart of brain white matter (WM) structural network construction. Each subject’s b0 image (A) from diffusion magnetic resonance imaging (dMRI)
was aligned to the subject’s T1 weighted image (T1w, D) with the transformation matrix T. (B,C) Shows dMRI tractography results in the subject’s native dMRI space.
The subject’s cerebral cortex from T1w was parcellated into 68 regions based on Desikan-Kiliany atlas (E). The cortical ribbon (E) was then dilated by 8 mm with
in-house program to get through the dense white matter zone for initiating fiber tracking and transferred into the subject’s native dMRI space (F) with the inverse
transformation of T (T−1). With delineation of network edges (C) and nodes (F) in the native space, connectivity matrix (G) and network graph (H) were established.
The flowchart demonstrates analysis of a representative subject.

were no clearly misregistered gyral labels across all subjects
in automatic cortical parcellation. The inverse transformation
(T−1) was used to warp the individual’s cortical parcellations
(Figure 1E) into individual native dMRI space. The 68 cortical
regions of interest (ROIs) with 34 ROIs in each hemisphere
(see Supplementary Table 1 for detail) represented 68 nodes
of subject’s structural network (Figure 1). Of note, parcellated
cortical ribbon in the dMRI space was dilated by 8 mm toward
the deep WM direction (Figure 1F), using an in-house code to
penetrate superficial WM and reach deep WM to initiate fiber
tracking (Jeon et al., 2015). All registrations were performed using
the SPM8 package1.

Network Edge Definition
Network edge was defined as the number of fiber streamlines
connecting two regions (Figure 1F). A brain structural network
(Figure 1H) was constructed for each participant, represented
by a symmetric 68 × 68 connectivity matrix (Figure 1G).
Network edges were defined with reconstructed whole brain
white matter fibers. Whole-brain tractography was performed
within a brain mask derived from the subject’s b0 image, using
diffusion MRI Brute-force deterministic fiber tractography (Mori
et al., 1999; Huang et al., 2004) in Diffusion Toolkit.2 In this
approach, a streamline was initiated from each voxel of the brain
mask. Due to relatively low FA in brains of young children,
FA threshold was set to 0.15 and angle threshold was 40◦ for
tractography (e.g., Zhao et al., 2019). Only reconstructed fibers
with two end points located in the pair of dilated cortical
regions, network nodes (Figure 1F), were kept to define network
edges (Figure 1C). Number of fiber streamlines (FN) connecting
two regions was defined as edge weight (wij). To remove
spurious connections, we used a minimum threshold of fiber
streamlines number (wij = 5) between two regions. As a result,

1https://www.fil.ion.ucl.ac.uk/spm/software/spm8/
2http://trackvis.org/

we constructed a weighted structural network (Figure 1H) for
each subject, represented by a symmetric 68 × 68 connectivity
matrix (Figure 1G).

Network Analysis
A brain structural network graph G (Figure 1H) is composed by
N nodes and K edges. Both global and regional network measures
were calculated to provide a summarized scalar for topological
characterization of individual brain structural network. Both
global and regional network measures were quantified with
graph-theory approaches. These network measures characterize
the topological organization of brain structural network.
Specifically, the following global graph measures were calculated:
network strength, global and local efficiency (Eg and Eloc),
and shortest path length (Lp) (Rubinov and Sporns, 2010).
For regional properties, we calculated nodal efficiency of each
node (Rubinov and Sporns, 2010). Based on nodal efficiency,
we identified network hubs in both groups, as a node with
efficiency that was at least 1 standard deviation larger than
averaged nodal efficiency across all nodes. All network analysis
was performed using GRETNA software (Wang et al., 2015),
and results were visualized using BrainNet Viewer software (Xia
et al., 2013). Detailed definitions of these network properties,
including network strength, global and local efficiency (Eg
and Eloc), shortest path length (Lp) (Rubinov and Sporns,
2010), nodal efficiency Enodal, and hub, are described in
Supplementary Material.

Statistical Analysis
Network-Based Statistic
To localize specific altered structural network edges strength
in ASD, we used a network-based statistic (NBS)3 approach
(Zalesky et al., 2012) with age as covariate to identify between-
group differences in pairwise edge (or connection). The NBS

3https://nitrc.org/projects/nbs
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analysis was performed in three steps. First, a threshold of
p < 0.05 (before correction) was used to yield t statistic (two-
sample t-tests) matrix of suprathreshold connections, among
which any connected components and their size (the number
of connections) were determined. Second, a nonparametric
permutation approach (10,000 permutations) was used to
estimate statistical significance of observed component sizes
in the un-corrected connection matrix, controlling family
wise error. Briefly, in each permutation, all participants were
randomly shuffled into two groups, and two-sample t-tests
were recomputed to examine group differences in network
edges after controlling for age. The same primary threshold
(p < 0.05) was used to produce suprathreshold connections
among which the size of the maximal connected component
was recorded. This permutation approach derived the empirical
null distribution of connected component size for estimating
the significance of observed component sizes. Finally, for a
connected component of size N found in the real grouping
of control and ASD, its corrected p-value was determined
by finding the proportion of the 10,000 permutations for
which the maximal connected component was larger than
N. Interconnected subnetwork components with a corrected
p < 0.05 were considered statistically significant.

Between-Group Differences
To examine between-group difference in global and nodal
network properties, a general linear model (GLM) was performed
with age as covariate.

Age-by-Group Interaction
To assess age-related alteration in global network properties
and nodal efficiency, the age-by-group interaction term was
added into GLM as the main effect with age and group as
covariates. If interaction effect was significant, rates of age-
dependent trendline in network measures would be significantly
different between groups.

Correlation With Clinical Assessments
For the network nodes or edges with significant group
differences, relationships between network properties and clinical
assessments in ASD were explored using GLM with network
measures as dependent variables and clinical assessments
(Table 1) as independent variables. Subject age was treated as
confounding covariate in the GLM models.

All GLM analyses were performed in R statistic-software
(version 3.5.1).4 For global network measures, a p < 0.05 was
considered significant. For regional network metrics, multiple
comparisons were corrected with false discovery rate correction
within each hemisphere (p < 0.05). To capture more subtle
differences in group comparisons of regional network metrics,
we used a less strict false-discovery rate (FDR) correction
for multiple comparisons within a hemisphere instead of
the whole brain.

4https://r-project.org

RESULTS

The demographic and clinical assessment data for children with
ASD and TD are shown in Table 1. There was no significant
difference in median age between ASD and TD (Wilcoxon rank-
sum test, p = 0.8). Assessed clinical scores of 30 children with ASD
ranged from 79 to 107 (mean± sd: 94.39± 7.41) for total score of
ABC scale, 41–67 (52.77± 6.92) for ADI-R, 36–50 (41.03± 3.79)
for CARS, and 14–22 (18.03± 1.96) for CABS (Table 1).

Flattened Age-Related Characteristics of
Structural Network in Autism Spectrum
Disorder at Whole-Brain, Global Level
Both TD and ASD groups showed significantly age-related
increases in global efficiency (TD: r = 0.75, p < 0.0001; ASD:
r = 0.39, p = 0.03), local efficiency (TD: r = 0.73, p = 0.0002;
ASD: r = 0.40, p = 0.03), network strength (TD: r = 0.75,
p < 0.0001; ASD: r = 0.44, p = 0.01), and decrease in network
shortest path length (TD: r = −0.73, p = 0.0002; ASD: r = −0.36,
p = 0.05) from 2 to 7 years old (Figure 2A). However, the growth
rates of global network measures were significantly slower in
ASD compared with TD, revealed by age-by-group interaction
analyses (Figure 2A, global efficiency p = 0.006, network strength
p = 0.009, local efficiency p = 0.01, and shortest path length
p = 0.0005). Overall, from 2 to 7 years of age, children with ASD
exhibited a significant hyper-connectivity pattern across multiple
global network measures, including increased network strength
(t = 2.597, p = 0.012), increased global efficiency (t = 3.161,
p = 0.003), and decreased shortest path length (Lp, t = −3.34,
p = 0.002) (Figure 2B). We also investigated motion effects on
age-by-group interaction and group comparison results at the
global level and found that the above findings were not affected
after statistically controlling for motion estimates in dMRI scans
in the statistical analyses, as shown in Supplementary Tables 2, 3.

Flattened Age-Related Trends of Nodal
Efficiency in Structural Network of
Autism Spectrum Disorder at Regional
Level
Network hub regions, serving pivotal roles for communication
between any pairs of network nodes, were identified for both ASD
and TD groups (Figure 3A, left and central panels). Similar hub
distributions, with core regions mainly in the frontal and parietal
cortices, were found for both groups. Specifically, the bilateral
caudal middle frontal gyrus (cMFG), Isthmus cingulate cortex
(IsC), precuneus cortex (PCUN), superior frontal gyrus (SFG),
and superior parietal cortex (SPC) are common hubs for both
groups. The left superior temporal gyrus (STG) was identified as
hub only in TD children.

Similar to global network properties, significant age-by-group
interactions were found in nodal efficiency across seven brain
regions (Figure 3A, right panel, all p < 0.006), including bilateral
SPC, left IsC, left SFG, left PCAL, right supramarginal gyrus
(SMG), and right temporal pole (Tpole). Four regions were
network hubs (i.e., bilateral SPC, left IsC, and left SFG) and
displayed as yellow nodes in Figure 3A (right panel). Scatter
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FIGURE 2 | Flattened age-related characteristics of structural network in ASD
at whole-brain, global level. (A) Scatter plots show the age-dependent
trendlines of global measures for ASD (red) and TD (blue) groups. Significant
age × group interaction effects were found for all global measures (all
p ≤ 0.01 in black). Eg, global efficiency; Eloc, local efficiency; Lp, shortest
path length. * 0.01 ≤ p < 0.05; ** p < 0.01. (B) Bar charts show the group
differences in global network measures between ASD (red) and TD (blue)
groups after removing the effect of age. Bars and error bars represent the
fitted values and standard deviations, respectively.

plots clearly show initial high nodal efficiencies in children with
ASD, with subsequent flattened and slower development. Nodal
efficiencies of structural networks in TD children significantly
increased with age from 2 to 7 years old (Figure 3B, all p < 0.008).
However, relatively flattened age-dependent trendlines of nodal
efficiency were observed in ASD, indicating an atypical slower
maturation of the structural network based on nodal efficiency.
The correlation r and p-values from linear regression between age
and nodal efficiency for both groups are provided in Figure 3B.
Similarly, Supplementary Table 3 demonstrates that motion did
not contaminate the significant age-by-group interaction in nodal
efficiency found in this study.

Hyper-Connectivity of Structural
Network of Autism Spectrum Disorder at
Regional Level
Children with ASD also exhibit a hyper-connective pattern in
structural networks at the regional level. This hyper-connective
pattern is reflected by higher nodal efficiencies in ASD and
involves multiple brain subnetworks across several network hub
regions (Figure 4A). Significantly higher nodal efficiencies were
found in 7 hub regions (i.e., bilateral cMFG, bilateral SPC,
bilateral PCUN, and right IsC) and 5 non-hub regions [i.e., left
caudal anterior cingulate cortex (cACC), left posterior cingulate
cortex (PCC), left parahippocampal gyrus (PHG), left Tpole,
and right precentral gyrus (PrCG)] (Figure 4A and Table 2,

corrected p < 0.05, and Supplementary Table 2 after motion
adjustment). Notably, among these hyper-connective regions,
bilateral cMFG, bilateral PCUN, left PCC, and right IsC are
key regions of functional default-mode network. Left cACC and
right PrCG are critical regions of frontoparietal and sensorimotor
networks, respectively.

Significantly higher strength of network edges between
widespread brain regions also indicates hyper-connectivity
in structural network in ASD (Figure 5). When compared
with TD, children with ASD showed significantly increased
connection strengths in 61 network edges connecting 51
nodes, widely distributed across the whole brain (Figure 5A,
p < 0.05 corrected). Higher edge strengths were found in
many connections between network hubs demonstrated as yellow
nodes in the circle view of Figure 5A, including but not
limited to the connections between left cMFG and left PCUN
(L.cMFG-L.PCUN), between right IsC and right PCUN (R.IsC-
R.PCUN), and between bilateral SPC. Supplementary Figure 2
demonstrates that motion did not contaminate the significantly
higher strength of network edges between widespread brain
regions in ASD found in this study.

Hyper-Connectivity in Autism Spectrum
Disorder Correlated With Symptom
Severity
We further examined the relationship between widely observed
hyper-connectivity of structural networks in ASD and symptom
severity. Among the 12 nodes with significantly higher nodal
efficiency in ASD, two were positively correlated with symptom
severity (Figure 4B, p < 0.05). Specifically, nodal efficiencies
from right IsC of functional default-mode network (r = 0.47,
p = 0.008) and right PrCG of sensorimotor network (r = 0.44,
p = 0.015) in ASD were significantly correlated with the ABC
and CABS scores, respectively. In addition, five connections
with higher edge strength in ASD were positively correlated
with their symptom severity (Figure 5B, p < 0.05). Particularly,
L.cMFG-L.PCUN (r = 0.39, p = 0.03) and R.IsC-R.PCUN
(r = 0.57, p = 0.001), connections within functional default-
mode network, significantly correlated with ABC and CARS
scores, respectively. Connection between left and right rostral
middle frontal gyrus (L.rMFG-R.rMFG), as part of frontoparietal
network, was significantly correlated with CARS score (r = 0.39,
p = 0.03). Other sensorimotor network related connections
between right PrCG and right SPC (R.PrCG-R.SPC; r = 0.40,
p = 0.03), and between left banks superior temporal sulcus (BSTS)
and the left Tpole (L.BSTS-L.Tpole; r = 0.54, p = 0.002) were
significantly correlated with ABC and CABS scores, respectively.
These findings between clinical scores and nodal efficiency or
edge strength demonstrate the significant association between
hyper-connectivity from aberrant structural network of ASD and
severity of symptoms.

DISCUSSION

The present study found flattened age-related structural network
changes associated with ASD in children from 2 to 7 years

Frontiers in Neuroscience | www.frontiersin.org 6 February 2022 | Volume 15 | Article 757838

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-757838 February 10, 2022 Time: 12:2 # 7

Ouyang et al. Structural Network Development in Autism

FIGURE 3 | Flattened age-related trends of nodal efficiency in structural network of ASD at regional level. (A) Distribution of hub regions of the structural networks.
Three dimensional representations of hub region distributions in ASD (left panel) and TD (central panel) groups. Hub nodes are shown in yellow with node sizes
indicating their nodal efficiency values and mapped onto a cortical surface at the axial views. The red circle indicates the hub found in TD but not ASD group. Right
panel shows the nodes (hub regions in yellow, non-hub region in green) with a significant age × group (TD and ASD groups) interaction in nodal efficiency in a 3D
representation of structural network, with node size indicating the significance of interaction. Networks shown here were constructed by averaging WM connection
matrices of all subjects in each group at a sparsity of 15%. Network nodes are located according to their centroid stereotaxic coordinates. Network edge widths
represent connection strengths between nodes. (B) Scatter plots show the age-related trendlines in nodal efficiencies for ASD (red) and TD (blue) groups (all
age × group interaction p ≤ 0.01 in black). * 0.01 ≤ p < 0.05; ** p < 0.01. L, left hemisphere, R, right hemisphere. BSTS, banks superior temporal sulcus, cACC,
caudal anterior cingulate cortex, cMFG, caudal middle frontal gyrus, IsC, isthmus cingulate cortex, PCAL, pericalcarine cortex, PCC, posterior cingulate cortex,
PCUN, precuneus cortex, PHG, parahippocampal gyrus, PrCG, precentral gyrus, rMFG, rostral middle frontal gyrus, SFG, superior frontal gyrus, SMG,
supramarginal gyrus, SPC, superior parietal cortex, STG, superior temporal gyrus, Tpole, temporal pole.

of age and revealed a significant correlation between structural
network alterations and symptom severity. It sheds light on
the brain structural organizational alterations in children with
ASD in this critical and rarely studied developmental age of 2–
7 years, immediately after the earliest possible ASD diagnosis
based on current clinical diagnostic methods. Structural hyper-
connectivity in the pivotal default-mode, frontoparietal, and
sensorimotor networks underlies the flattened and slower
maturation of these structural networks in ASD. Consistent with
functions of the default-mode, frontoparietal, and sensorimotor
networks, hyper-connectivity in these networks was significantly
correlated with quantified symptom severity based on behavioral
assessment, complementing the existing structure-function-
behavior framework for ASD in early childhood. These network-
based hyperconnectivity in ASD over the studied age range may

serve as biomarkers potentially predicting the disorder outcomes
and setting the stage for possible early intervention.

Flattened Age-Related Structural
Network Changes and
Hyper-Connectivity in Children With
Autism Spectrum Disorder
Non-uniform brain connectivity findings across different age-
ranges support the need to delineate age-related characteristics
of structural networks in ASD. The pattern of widespread
hyper-connectivity in networks, with relatively slow age-
related progression, corroborates the previous microstructural
observation of higher WM integrity at an earlier stage and
subsequent slower WM maturation in ASD (Ouyang et al., 2016).
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FIGURE 4 | Hyper-connectivity in children with ASD of nodal efficiency
correlated with symptom severity. (A) Distribution of brain regions, left (L) and
right (R), with significantly higher nodal efficiency in children with ASD after
removing age effect. Regions with significant group difference (p < 0.05, false
discovery rate corrected within each hemisphere) were colored red with node
size indicating the significance of between-group differences in the nodal
efficiency. Networks shown here were constructed by averaging WM
connection matrices of all children with ASD at a sparsity of 15%. Regions
with a black box are identified network hubs. (B) Clinical correlations with
altered nodal efficiency. Scatter plots show the significant positive correlations
(p < 0.05) between nodal efficiencies from blue circled nodes in (A) and total
score of Autism Behavior Checklist (ABC) and Clancy Autism Behavior Scale
(CABS), respectively. * 0.01 ≤ p < 0.05; **p < 0.01. See legend of Figure 3
for abbreviations of brain regions.

During typical development from infancy to childhood,
WM maturation is characterized by increased WM FA
(Ouyang et al., 2019; Yu et al., 2020) and structural network
reconfiguration toward stronger and more efficient connectivity

(Huang et al., 2015). This pattern of structural development
facilitates neural information integration and transformation
across brain regions (Achard and Bullmore, 2007). Structural
hyper-connectivity found in 2–7-year-old children with ASD
is consistent with a previous structural network study of ASD
(Li et al., 2018). Enhanced WM microstructural properties with
higher FA values across WM bundles in young children with ASD
(e.g., Ben Bashat et al., 2007; Ouyang et al., 2016) may contribute
to the observed hyper-connectivity in their structural networks
as demonstrated by stronger network edges and higher network
efficiencies. The pattern of local or short-range hyperconnectivity
has been frequently suggested in the brains of individuals with
ASD (e.g., Courchesne and Pierce, 2005; Ouyang et al., 2017),
especially in younger age groups (e.g., Rudie and Dapretto, 2013).
Such pattern was even observed in neonates with high risk of
ASD (e.g., Ciarrusta et al., 2020). However, the progression from
hyper-connectivity observed in young childhood ASD to the
hypo-connectivity observed in other studies from adolescents
and adults with ASD implies a pattern of overall connectivity
decrease with development, relative to TD children (e.g., Rudie
et al., 2013; Di Martino et al., 2014; Nomi and Uddin, 2015).

Importantly, multiple network hubs exhibited significant
hyper-connectivity and atypical network property changes,
further indicating the crucial role of network hubs in information
transfer and their relative vulnerability in brain disorders
(Crossley et al., 2014). Given the evolution from hyper- to hypo-
connectivity, it is plausible that these atypical network hubs
revert into non-hubs with age. As such, the connectivity state
of these hubs may be helpful in anticipating the progression of
ASD pathology and symptoms. For instance, the left STG, or
primary auditory cortex, was a network hub for TD children,
whereas children with ASD did not have a network hub in
this location. This finding is supported by prior magnetic
encephalography (MEG) studies, which also revealed atypical
development of the primary auditory cortex in children with

TABLE 2 | Brain regions with significant group difference between TD and ASD in nodal efficiency.

Regions Category Enodal (mean ± SD) t-value p-value
(FDR corrected)

Children with TD Children with ASD

L.cMFG Hub 55.81 ± 9.93 65.84 ± 8.58 −3.838 0.0003

L.cACC Non-hub 39.85 ± 8.02 47.51 ± 6.68 −3.710 0.0005

L.PCC Non-hub 49.90 ± 8.37 57.98 ± 8.00 −3.533 0.0009

L.SPC Hub 77.90 ± 15.89 90.28 ± 10.56 −3.400 0.0013

L.PCUN Hub 57.20 ± 9.57 66.10 ± 9.27 −3.264 0.0020

L.Tpole Non-hub 46.68 ± 8.91 54.98 ± 8.85 −3.196 0.0025

L.PHG Non-hub 41.61 ± 6.27 47.01 ± 6.38 −2.949 0.0049

R.PrCG Non-hub 37.29 ± 7.70 45.14 ± 6.04 −3.957 0.0002

R.SPC Hub 76.26 ± 15.84 89.44 ± 10.48 −3.651 0.0006

R.PCUN Hub 56.49 ± 10.00 65.54 ± 7.88 −3.505 0.0010

R.IsC Hub 51.92 ± 9.54 59.65 ± 8.44 −2.938 0.0051

R.cMFG Hub 53.75 ± 10.72 61.19 ± 7.15 −2.898 0.0056

The regions with significant increased nodal efficiency (p < 0.05, corrected) are listed in ascending order by absolute t scores in each hemisphere. L, left hemisphere;
R, right hemisphere. Cortical regions were classified into hub and non-hub regions. FDR, false discovery rate. See Supplementary Table 1 for abbreviations of brain
regions.
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FIGURE 5 | Network Based Statistical (NBS) analysis reveals hyper-connectivity in children with ASD of edge strength that correlated with symptom severity.
(A) NBS components with significantly higher edge strengths in ASD (p-values < 0.05, NBS corrected) are shown in a circle view with the color of edges encoded by
the t-values from NBS analysis after removing age effect. Yellow nodes indicate hub regions in the structural network of ASD, and gray nodes indicate non-hub
regions. (B) Scatter plots show significantly positive correlations (p < 0.05) between altered edge strengths and clinical scores including ABC, CABS, and Childhood
Autism Rating Scale (CARS) scores. These edges were between blue boxed nodes shown in (A). L, left hemisphere; R, right hemisphere. * 0.01 ≤ p < 0.05;
**p < 0.01. See Supplementary Table 1 for abbreviations of nodes in (A). See legend of Figure 3 for abbreviations of brain regions.

ASD, as evidenced by a characteristic delay in their auditory
processing (Roberts et al., 2010). Aberrant age-related trends
of topological network properties, indicating an important
developmental discontinuity, may serve as a neural signature in
young childhood ASD.

The human brain network is reconfigured toward an optimal
global balance between information segregation and integration
during development (Huang et al., 2015; Cao et al., 2017),
resulting in the reorganization of the brain network architecture
from a relatively randomized configuration to a well-organized
one. When examining global network measures of structural
networks, we found that individuals with ASD had higher levels
of global efficiency and lower levels of shortest path length.
Global efficiency reflects the ability to integrate distributed
information between distant brain regions and is highly related
to long-range connections. Enhanced structural integrity of long-
range WM bundles found in ASD (e.g., Ouyang et al., 2016)
may contribute to making the brain networks more globally
integrated (Cao et al., 2017). Since a random network usually
has a short characteristic path length (Sporns, 2011), the altered
global network measures in ASD may suggest a less organized
or more random distribution of network connections. This is
consistent with previous network findings in children with ASD
(e.g., Rudie et al., 2013) as well as the increased randomness of
brain oscillations findings in resting-state fMRI of individuals
with ASD (Lai et al., 2010). Furthermore, structural networks
displayed similar levels of local efficiency across both groups in
our study. The local efficiency indicates the network segregation
capacity, which facilitates functional specialization. Our findings
suggest that the network integration and segregation in children
with ASD are not appropriately balanced during development.

Correlation of Hyper-Connectivity in
Autism Spectrum Disorder With
Symptom Severity
We established the relationship between severe ASD symptoms
and greater structural connectivity. This is consistent with
prior functional network research that discovered associations
between aberrant functional hyper-connectivity and symptom
severity in children with ASD (Keown et al., 2013; Lynch
et al., 2013; Supekar et al., 2013). Notably, structural hyper-
connectivity, which was significantly associated with symptom
severity in the present study, was found in regions or connections
in functional default-mode, frontoparietal, and sensorimotor
networks. Specifically, IsC, cMFG, and PCUN in Figures 4B, 5B
are critical hubs of the default-mode network. The default-
mode network is considered to play a critical role in self-
referential and high-order social cognitive processes, such as
Theory of Mind (Buckner et al., 2008). Impairments in this
type of mental process are part of the social-cognitive symptoms
that characterize ASD (Castelli et al., 2002). Existing research
indicates that disruptions in the default-mode network might
significantly contribute to social deficits in ASD across the age
span (e.g., Monk et al., 2009; Assaf et al., 2010; Lynch et al.,
2013; Uddin et al., 2013; Yerys et al., 2015; Padmanabhan
et al., 2017). For instance, functional hyper-connectivity in
IsC and PCC predicted social communication deficits in
children with ASD aged 7–12 years (Lynch et al., 2013), and
abnormal PCUN and cMFG functional connectivity significantly
correlated with the severity of social and communication
deficits in adolescents with ASD aged 11–20 years (Assaf et al.,
2010). Abnormal gray matter volumes potentially related to
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their symptom severity (Uddin et al., 2011) in default-mode
network areas were also reported in children and adolescents
with ASD. The association in Figure 5B between symptom
severity and the banks of superior temporal sulcus (STS)
connection might be attributed to social deficits in ASD as
well. STS, a multimodal association region involved in cortical
integration of both sensory and limbic information, has been
recognized as a key cortical area of the social brain (Adolphs,
2003). Anatomical and functional abnormalities in the STS are
highly implicated in ASD with social-interaction impairment
(Zilbovicius et al., 2006). The observed correlation between
structural hyper-connectivity in the frontoparietal network with
symptom severity in Figure 5B may be related to executive
dysfunction in the ASD population. The frontoparietal network,
also known as the central executive network, is involved in
highly adaptive cognitive control processes and is critical to
the completion of executive functions (Cole et al., 2014).
A meta-analysis of fMRI studies on executive functions in
ASD aged 7–52 years revealed that abnormal functional
connectivity in the frontoparietal network may underline
some executive dysfunctions such as rigidity, preservation, and
repeated behaviors, which are commonly seen in ASD (May
and Kana, 2020). Lastly, identified regions and connections
from the sensorimotor network in Figures 4B, 5B are likely
due to the motor abnormality in ASD. Previous studies have
demonstrated that motor impairments linked with ASD can
be observed as early as infancy (Landa and Garrett-Mayer,
2006) and are prevalent in children with ASD (Jansiewicz
et al., 2006). Disruption of functional organization within PrCG,
a key component of sensorimotor network, was related to
ASD diagnosis and to the severity of ASD traits in children
(Nebel et al., 2014). Taken together, our findings further
elucidate the structural connectional basis for these established
functional alterations and revealed the relationship between
altered structural connectivity and the phenotype of behavioral
impairments in ASD.

Limitations and Future Directions
We are aware of a few limitations for our study. First, dMRI-
based deterministic tractography was adopted to construct
network edges. There is potential loss of tracing existing fibers
in areas with fiber crossings. We have considered different
tractography algorithms in the construction of structural
networks in the aspects of connectome specificity and sensitivity.
Although deterministic methods yield sparse connectomes with
false negatives, more sophisticated probabilistic methods (e.g.,
Behrens et al., 2007) yield dense connectomes with low specificity
due to false positives (Zalesky et al., 2016). Given that only
single shell dMRI data with a b-value of 1,000 s/mm2 along 30
directions was acquired, we adopted deterministic tractography
in the current study. Since the same deterministic tractography
was applied to all subjects, false negatives in connectomes
across subjects were offset as relative connectome metric changes
instead of absolute connectome measures were focused on in this
study. Second, Freesurfer parcellation of individual T1w images
was used to define network nodes. Topological organization

of brain networks could be affected by different parcellation
strategies when defining network nodes (Zalesky et al., 2010).
Despite that choice of network nodes varying across studies,
Freesurfer parcellation has been widely used in previous brain
network studies (e.g., Dennis et al., 2013) and is able to reliably
define brain anatomic regions. Future studies with high-spatial-
resolution parcellation strategies in network analysis may further
evaluate the reproducibility of our findings. Third, we recognize
that atypical development of structural networks in ASD comes
from cross-sectional datasets. Future longitudinal studies are
warranted to confirm these findings and to fully characterize
developmental trajectories of structural network in ASD. Fourth,
we only examined the cortico-cortical structural connectivity but
not the cortical-subcortical connectivity, such as thalamocortical
connectivity. Given the critical role of the thalamus in
information processing and cortical functioning of the brain
(Sherman, 2016), more research focusing on systematically
examining thalamocortical connections is necessary for a more
comprehensive understanding of brain connectivity patterns
in young children with ASD (e.g., Nair et al., 2021). In
addition, considering ASD is more prevalent in males within
a general population (Loomes et al., 2017), current study only
involved male subjects. Although statistical significance was
detected in this study, we acknowledge that larger sample sizes
with more homogeneous age distribution and balanced male-
to-female ratio are needed for better characterizing such a
heterogeneous neurodevelopmental disorder. This work focused
on young children aged 2–7 years can also be extended in
the future to infants at risk for ASD under 2 years of age
for identifying sensitive imaging markers that can predict ASD
diagnosis and allowing early intervention at a time prior to
the age of diagnosis (Hazlett et al., 2017; Ouyang et al., 2020).
Specifically, changes in the brain have been observed in infants
at risk for ASD under 2 years of age (e.g., Wolff et al.,
2012; Hazlett et al., 2017), preceding clinical manifestations.
The changes in brain were also reported for infants under
2 years of age later developing ASD and identified through
retrospective study (e.g., Levman et al., 2018, 2019; Shiohama
et al., 2021). A machine learning model that leverages sensitive
imaging biomarkers may be capable of predicting the clinical
diagnostic outcome of individual infants before the development
of the full syndrome. The prediction makes early detection and
intervention possible and has a significant potential impact on
improving outcomes.

CONCLUSION

In conclusion, our results suggest that hyper-connectivity with
slower subsequent maturation of structural networks is a key
component of the underlying neurobiology of young childhood
ASD. These networks with hyper-connectivity are significantly
correlated with ASD symptom severity in the 2–7-year-old range.
Measurements of structural connectivity as indicated by network
efficiency and edge strength may serve as early predictors
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of abnormal developmental trajectories, thereby designating
patients with a need for more targeted early intervention.
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