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Tracing contacts to evaluate 
the transmission of COVID‑19 
from highly exposed individuals 
in public transportation
Caio Ponte1, Humberto A. Carmona2, Erneson A. Oliveira1,3,4*, Carlos Caminha1, 
Antonio S. Lima Neto5,6, José S. Andrade Jr.2 & Vasco Furtado1,7

We investigate, through a data-driven contact tracing model, the transmission of COVID-19 
inside buses during distinct phases of the pandemic in a large Brazilian city. From this microscopic 
approach, we recover the networks of close contacts within consecutive time windows. A longitudinal 
comparison is then performed by upscaling the traced contacts with the transmission computed from 
a mean-field compartmental model for the entire city. Our results show that the effective reproduction 
numbers inside the buses, Rebus , and in the city, Recity , followed a compatible behavior during the first 
wave of the local outbreak. Moreover, by distinguishing the close contacts of healthcare workers in 
the buses, we discovered that their transmission, Rehealth , during the same period, was systematically 
higher than Rebus . This result reinforces the need for special public transportation policies for highly 
exposed groups of people.

Human mobility is crucial to understanding the COVID-19 pandemic since the Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) is disseminated individual to individual via droplet and airborne 
transmissions1. Considering that non-pharmacological interventions, such as social distancing and isolation, 
still represent fundamental measures to control the COVID-19 outbreak, the nature of SARS-CoV-2 dissemina-
tion also unveils the need to understand the role of the space where interaction between people occurs. There is 
consensus that superspreading events, which are usually investigated through contact tracing models2–7, are more 
likely to happen in indoor environment, as substantiated by previous studies of indoor contagion in hospitals8,9, 
restaurants10, offices11, and even on cruise ships12,13. However, the relation between the microscopic level of 
contagion in indoor environments and the macroscopic observables, such as the numbers of cases and deaths 
at the city scale or the populations of compartmental models14–19, remains unclear.

Public transportation is one of the main forms of commuting, playing an important role in the pace of life in 
cities20, specially in epidemics21–26. In spite of the fact that some cities have adopted social distancing and sanitary 
protocols on public transportation to control the COVID-19 outbreak, it is common that buses or subways get 
crowded at rush hour, mainly in the developing countries. In recent months, some studies have been proposed 
to establish the safety of public transportation regarding the indoor COVID-19 contagion27–33. To the best of 
our knowledge, however, none of these studies have considered the possibility of a comparative analysis based 
on a two-fold perspective, namely, the dynamic of people’s movement in a city and the dynamic of the virus 
dissemination within vehicles of public transport.

Here, we define two data-driven mathematical models based on concepts of complex networks and non-
linear dynamics in order to foster the understanding of the role public transportation plays in the COVID-19 
pandemic. We use data about people’s movement on buses and COVID-19 infections in the city of Fortaleza, a 
large Brazilian metropolis with a population of 2.67 million people. From March to December 2020, Fortaleza 
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recorded officially 88,983 cases and 4,620 deaths of COVID-19, achieving the peaks of 3,414 cases on May 1 and 
of 230 deaths on May 1134. At the microscopic scale, we define a contact tracing model to estimate the trans-
mission within city buses and, at the macroscopic scale, a compartmental model is employed to estimate the 
transmission in the entire city. The main contribution of our study is a comparative analysis between these two 
distinct modeling approaches through the combination of daily epidemiological and mobility data during the 
first 9 months of the local COVID-19 outbreak, and through different social distancing restriction regimes. One 
specially relevant aspect of this work is the fact that we are able to trace within the public transportation vehicles 
(i.e., indoor environments) two groups of people, one of them with a higher exposure to the virus in comparison 
to the other. This allows us to shed light on potentially dangerous superspreading events in public transportation.

Modeling approach
Contact tracing model.  We propose a contact tracing model using two datasets that relate bus validations 
to COVID-19 confirmed cases during the periods of social isolation, lockdown, and economic reopening in the 
city of Fortaleza, Ceará, Brazil (see “Methods”). Our model is a network based on Potentially Infectious Contacts 
(PICs), in which bus passengers during their infectious period—according to subsequent diagnosis of COVID-
19—have shared the transport for a certain amount of time with other passengers, the latter in their exposed 
period—also according to subsequent COVID-19 diagnosis. Precisely, the proposed network is composed of 
vertices pi that represent the passengers diagnosed with COVID-19, and weighted directed edges ck = (pi , pj , τij) 
that represent PICs. For each edge, the direction is assigned from an infectious passenger pi to an exposed pas-
senger pj , and the weight τij is defined as the estimated value of the ride time shared by pi and pj on the same bus, 
as shown in Fig. 1a. We calculate τij by superimposing the estimated ride times from pi and pj , considering the 
different moments of their boarding. Here, the epidemiological profile for COVID-19 transmission is character-
ized by the dates of the passengers’ Onset of Symptoms (OS). The infectious period corresponds to the days in 

Figure 1.   Proposed models for COVID-19 and spreading scenarios. (a) Potentially Infectious Contacts (PICs). 
We define a PIC when an infectious passenger pi (in red) and an exposed passenger pj (in yellow) share the same 
bus. The weight τij is the estimated value of the ride time shared by pi and pj . The time lines show the infectious 
(in red) and the exposed periods (in yellow) of each passenger, where each square represents one day. The time 
lines are built based on the Onset of Symptoms (OS). Precisely, the infectious period begins 2 days before OS 
and ends 12 days after OS, while the exposed period begins 14 days before OS and ends 2 days before OS. Other 
passengers (in gray), even though they have shared the same bus with pi , either were not notified as COVID-19 
cases or, however notified, they were not considered as PICs because they were not in their exposed period. (b) 
The SEIIR model. The total population of size N provides the susceptible population S (in blue). The susceptible 
individuals become exposed E (in yellow) at a time-dependent rate �(t) . The exposed individuals become 
infectious at a time rate σ . A fraction α of the infectious population is reported Ir (in red), while a fraction 
(1− α) is unreported Iu (in purple). The infectious individuals that recover, reported or not, become recovered 
R (in green) at a time rate γ . Finally, it is assumed that a fraction φ of the removed population γ Ir deceases Dr 
(in dark gray).
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which a passenger diagnosed with COVID-19 can transmit the virus, initiating 2 days before OS and ending 12 
days after OS. The exposed period refers to the time window during which the passenger can get the virus and 
maintain it latent until the infectious period. In this context, the exposed period begins 14 days before OS and 
ends 2 days before OS, i.e., the infectious and the exposed periods have a width of 14 and 12 days, respectively, 
and they do not overlap35–37. Furthermore, if there is more than one PIC related to an exposed passenger pj , we 
consider solely the edge with the largest value of τij . It is important to notice that, by crossing the datasets of bus 
validations and confirmed cases of COVID-19 in Fortaleza during the period from March to December 2020, 
we are able to identify 5159 pairs of infectious and exposed passengers that rode the same bus on the same day. 
However, their associated values of τij could only be computed for 3023 (58.6%), due to missing information 
in the dataset of bus validations. From these pairs, we obtain that the network of PICs corresponds to a forest 
composed of 213 trees with a total of 530 vertices (infectious passengers) and 317 edges (PICs). From all vertices 
found, 97 were identified as healthcare workers (see “Methods”). The Centers for Disease Control and Preven-
tion (CDC) recommends that any contact tracing strategy for COVID-19 should consider the concept of Close 
Contacts (CCs)38, i.e., anybody who has been for at least 15 min within 6 ft ( ≈ 2 meters) of an infectious person. 
Since buses are small, enclosed, and they have a great tendency to get crowded at rush hours, we define the CCs 
in the network of PICs only considering the time condition τij > τc , where the threshold τc = 15 min. Applying 
this criterion to the network of PICs, we find that the network of CCs is composed of 154 trees with a total of 360 
vertices (infectious passengers) and 206 edges (CCs). In this case, 75 vertices were identified as healthcare work-
ers. In order to understand the COVID-19 spreading in public transportation, we define the effective reproduc-
tion number for the contact tracing model, Rebus , as the expected number of secondary cases produced by a sin-
gle (typical) infection. Precisely, it accounts for two contributions in relation to who is spreading the disease: one 
due to reported infectious individuals, Rebusr  , and another due to unreported infectious individuals Rebusu  . Here, 
we assume that the fraction of newly reported to newly unreported cases generated by a typical reported infec-
tious individual remains invariant during time. This is equivalent to consider the value of Rebusr  proportional to 
the average number of outdegrees from the vertices in the network of CCs during a given time window, 〈dCCsout 〉,

The constant of proportionality χ involved in this relation will be explicitly computed through the calibration 
between the contact tracing and the compartmental models. Each consecutive time window has a width of 22 
days and a step size of 5 days. We emphasize that our model has an intrinsic time delay regarding the consolida-
tion of Rebusr  that can reach ≈ 53 days. This value is associated to the time delay in the consolidation of COVID-19 
dataset ( ≈ 15 days) and to the superposition of the maxima of two infectious periods and one exposed period.

Compartmental model.  We also adopt a compartmental model to describe the transmission of COVID-
19 in order to estimate the levels of infection of the pathogen in Fortaleza. Here, we propose a SEIIR model 
that distinguishes the populations of Susceptible, Exposed, Infectious (reported or unreported), and Removed 
(recovered or deceased) individuals, as shown in Fig. 1b. Our model is inspired by the SEIIR model proposed 
by Li et al.16. The reported infectious population Ir corresponds to the number of individuals that had the SARS-
CoV-2 infection confirmed by the health system. The unreported infectious population Iu comprises the comple-
ment of Ir, i.e., individuals that were infected with COVID-19 but remained unknown to health authorities. We 
assume that the large majority of the reported infectious individuals are symptomatic cases, in contrast to the 
population of unreported infectious individuals—of which the large majority is assumed to be of asymptomatic 
cases. Given this fundamental assumption and considering the recent finding that asymptomatic people are 42% 
less likely to transmit the SARS-CoV-2 than symptomatic ones39, we define that the transmission rate for the 
unreported infectious population Iu is reduced by a dimensionless factor of µ in relation to the parameter β that 
represents the transmission rate for the reported infectious population Ir . In this context, the time-dependent 
rate at which the susceptible population S becomes the exposed population E is given by

(1)Rebusr = χ�dCCsout �.

(2)�(t) = β
(Ir + µIu)

N
,

Table 1.   Initial model parameters on March 24.

Parameter Mean/value Variance

Transmission rate ( β(0) , days−1) 1.0 0.3

Relative transmission rate ( µ(0)) 0.5 0.1

Fraction of reported ( α(0)) 0.15 0.05

Exposed to infectious rate ( σ (0) , days−1) 0.23 0.05

Removal rate ( γ (0) , days−1) 0.28 0.05

Mortality ratio ( φ(0)) 0.08 0.01

Number of particles (P) 300

Cooling factor (a) 0.93

Cooling factor (b) 0.93
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where N is the total population of Fortaleza, taken as constant, being approximately equal to 2.67 million people. 
A fraction α of the exposed individuals is presumed to become reported infectious at a rate σ , and the comple-
mentary fraction (1− α) to evolve to unreported infected at the same rate. Also, both reported and unreported 
infectious population are assumed to become part of the removed population at the same rate γ . We also keep 
track of the fraction φ of the removed reported infectious population evolving to death, so that the reported 
deceased population Dr increases at a rate of φγ Ir . The following system of coupled differential equations rules 
our model:

The total population N = S + E + Ir + Iu + R + Dr is conserved. Furthermore, it can be readily shown16 that 
the effective reproduction number Recity is given by

Note that in the particular case that S ≈ N  and all the infectious population are reported, meaning α = 1 , 
the value Recity reduces to the traditional value R0 = β/γ . From Eq. (9), we can identify Recityr = (β/γ )(S/N) 
as the average number of secondary infections due to contagion with reported infectious individuals, while 
Re

city
u = µ(β/γ )(S/N) is the effective reproduction number due to contagion with unreported infectious indi-

viduals. Finally, the SEIIR model is used here as a core model within the Iterative Ensemble Kalman Filter 
(IEnKF) framework (see “Methods”). This approach allows us to investigate the time evolution of the effective 
reproduction number Recity by inferring the mean parameters of the SEIIR model and initial populations (see 
Figs. S1 and S2 of the Supplementary Information). The IEnKF framework is systematically applied to running 
windows of 22 days, with step size of 5 days, starting from March 24 to November 9, 2020. We use as observable 
the cumulative number of deaths by SARS-CoV-2 reported daily by the health authorities. For the first window, 
the reported values of daily cases, C(0) , and confirmed deaths by SARS-CoV-2 infections, D(0) , are used to estimate 
the mean value for the exposed E(0) ≈ C(0)/(ασ) ≈ 4, 982 and deceased populations, D(0) ≈ 1 . The mean and 
variance of the initial values for the model parameters adopted for the first window are listed in Table 1 along 
with the corresponding variances. These values are similar to the best-fit model posterior estimates in reference16. 
In order to minimize the sensibility from the initial conditions, for each window, we run 10 different trials with 
parameters and subpopulations drawn from normal distributions with the corresponding variance. After using 
IEnKF to estimate the values of all model parameters for the first window, the factor Recity is calculated at its 
center. These parameters and all populations obtained by numerical integration of Eqs. (3)–(8) are then used 
as initial guesses for the second window, except for the deceased population, D(0) , for which the mean value is 
estimated from the reported confirmed deaths by SARS-CoV-2 infections at the beginning of each window. The 
same procedure is then repeated for the third and subsequent windows.

Results and Discussion
Figure 2a shows the normalized moving averages of bus validations of individuals that got COVID-19, including 
healthcare workers. We note that healthcare workers that came into contact with SARS-CoV-2 during the studied 
period did not reduce their bus rides as much as other passengers. In addition, their normalized moving averages 
of bus validations are getting closer to each other again as the economic reopening progresses. The inset of Fig. 2a 
shows the daily bus validations, which gradually started to increase in the economic reopening. Figure 2b,c show 
the daily numbers of cases and deaths, respectively, following the same previous normalization and stratification.

The representativeness of the dataset of COVID-19 confirmed cases on buses is assessed comparing the 
daily numbers of infectious individuals within those vehicles and in the entire city, as shown in Fig. 3. The 
daily number of infectious individuals is computed taking into account the 14 days that the individuals remain 
infectious, i.e., each individual who tested positive for COVID-19 counts up to 14 times, once per day, for the 
infectious curve. Figure 3a,b show the daily numbers regarding all infectious passengers and those infectious 
passengers who are healthcare workers, respectively. Similarly, the daily numbers of infectious individuals and 

(3)
dS

dt
= −�S,

(4)
dE

dt
= �S − σE,

(5)
dIr

dt
= ασE − γ Ir ,

(6)
dIu

dt
= (1− α)σE − γ Iu,

(7)
dR

dt
= (1− φ)γ Ir + γ Iu,

(8)
dDr

dt
= φγ Ir .

(9)Recity =

[

α
β

γ
+ (1− α)µ

β

γ

]

S

N
.
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infectious healthcare workers of the entire city are shown in Fig. 3c,d, respectively. While the first and second 
waves of the epidemic can be clearly identified in both curves shown in Fig. 3a (infectious passengers) and Fig. 3c 
(infectious individuals), only highly attenuated peaks during the second wave period can be visualized in the 
corresponding curves for healthcare workers, as shown in Fig. 3b,d. We conjecture that the explanation for this 
behavior may be twofold. First, due to the high contagion of healthcare workers during the first wave, this group 
of people may have achieved a large percentage of immunity, as compared to the rest of the population. Second, 
efficient Personal Protective Equipment (PPE) became more available in hospitals after the first wave. The results 
in Fig. 3e show that the percentage of infectious passengers with respect to all infectious individuals in Fortaleza 
was higher than 1% during most of the epidemic period. Finally, the evolution in time of the fraction between 
infectious passengers and infectious individuals in the city who are both healthcare workers is shown in Fig. 3f.

The histogram of the values of τij for the network of PICs is shown in Fig. 4a. The obtained distribution is 
characterized by the average �τij�PICs ≈ 28 min. We find that CCs, defined by τij > τc = 15 min, represent about 
62% of the PICs, as shown by the Complementary Cumulative Distribution Function (CCDF) in the inset of 
Fig. 4a. For the network of CCs, the average of the shared ride times is �τij�CCs ≈ 39 min. Figure 4b shows the 
network of CCs taking into consideration the periods of social isolation, lockdown, and economic reopening. As 
depicted, it is composed of several trees, where the vertices represent bus passengers that were diagnosed with 

Figure 2.   Time series and moving averages of bus validations, COVID-19 cases, and COVID-19 deaths. Time 
evolutions of the normalized moving averages of (a) bus validations, (b) COVID-19 cases, and (c )deaths, for 
healthcare workers (in red) and all individuals (in black). The insets show their corresponding daily numbers. 
In (a), we note that healthcare workers that came into contact with SARS-CoV-2 during the studied period did 
not reduce their bus rides as much as other passengers. In addition, the normalized moving averages of bus 
validations of healthcare workers and of all individuals are getting closer to each other again as the economic 
reopening progresses. In (b) and (c), we find that both the normalized moving averages of cases and of deaths, 
respectively, for healthcare workers increased before those of all individuals until the lockdown regime. The 
windows of moving averages have 5 days of width for all curves. We normalized each moving average by its 
maximum. The vertical dotted lines represent the beginning of social isolation (State Decree 33,519), lockdown 
(State Decree 33,574), and economic reopening (State Decree 33,608) regimes imposed on March 20, May 8, and 
June 1, 2020, respectively. We also highlight, in light red, the lockdown period in the city of Fortaleza.
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COVID-19 and the edges correspond to CCs. Bus passengers identified as healthcare workers in the network 
are highlighted in red. The size of the vertices is proportional to their outdegrees.

At this point, we show that it is possible to perform a direct comparison between the computed values of Rebusr  
obtained from the contact tracing model for different time windows and the corresponding effective reproduction 
numbers Recity estimated from the compartmental model. First, it is reasonable to assume that Rebusr = Re

city
r  , as 

long as the population traveling by public buses can be considered as statistically equivalent, from an epidemio-
logic point of view, to the rest of the city. As a consequence of this assumption and using Eq. (9), we can write that

where the parameter ψ = [α + (1− α)µ]−1 depends on the time window used for model inference with the 
IEnKF technique. We now proceed with the comparison between contact tracing and compartmental models. 
In practical terms, this is achieved by upscaling 〈dCCsout 〉 to the numerical values obtained for Recity during the 

(10)Rebusr = ψRecity ,

Figure 3.   Representativeness of the dataset of COVID-19 confirmed cases on buses. The daily numbers of (a) 
all infectious passengers, (b) infectious passengers who are healthcare workers, (c) all infectious individuals 
in the entire city, and (d) infectious individuals who are healthcare workers in the entire city. For healthcare 
workers, we highlight an unexpected emergence of a single peak in the daily numbers of infectious individuals 
within buses and in the entire city, which contrasts to the first and the second waves of COVID-19. We 
conjecture that the explanation for this behavior may be the lack of Personal Protective Equipment (PPE) in 
hospitals during the first wave or the herd immunity of healthcare workers during the second wave. (e) The 
fraction of all infectious passengers. (f) The fraction of infectious passengers who are healthcare workers. These 
results show that the percentage of infectious passengers with respect to all infectious individuals in Fortaleza 
was higher than 1% during most of the epidemic period (dashed gray line). All solid lines represent moving 
averages with windows of 7 days.
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early period of the SARS-CoV-2 epidemic, before the restrictions of isolation and social distancing imposed by 
the State Government took effect. Considering Eqs. (1) and (10), we use the relation χ�dCCsout � = ψRecity and the 
numerical values of 〈dCCsout 〉 , ψ and Recity on the day that corresponds to the maximum of Recity during the first 
wave (April 8, 2020) to calculate χ ≈ 37 . This constant combined with the values of ψ from the inference with the 
compartmental model, and the values of 〈dCCsout 〉 from the contact tracing, both calculated for all time windows, 
are then used to obtain the entire curve of Rebus = (χ/ψ)�dCCsout � (see the time evolution of χ/ψ in Fig. S3 of 
the Supplementary Information). The value of χ can be understood as the product of two factors, χ = χrrχru . 
Assuming the equality between the proportions of CCs in the pairs of infectious and exposed passengers with 
existing and missing values of τij , we estimate χrr ≈ 1/0.586 ≈ 1.70 as a balance factor for possible missing CCs. 
The value of the remaining factor χru ≈ 21.76 expresses the sub-notification of the confirmed cases as well as 
our lack of knowledge on the transmission from reported to unreported infectious passengers, for which the 
factor (1− α)/α could be a lower bound (see Fig. S2 of the Supplementary Information for a sensitivity analysis 
of the model with parameter α ), approximately between 5 and 916. In an entirely similar fashion, by considering 
only reported infectious passengers that can be identified as healthcare workers, we can estimate their particular 
effective reproduction number as Rehealth = (χ/ψ)�dCCsout �

health with the same upscaling factor χ/ψ used for all 
infectious passengers and 〈dCCsout 〉

health is the average of the vertices outdegrees for healthcare workers.
In Fig. 5, we show the comparison between the estimates of Rebus and Recity from March to November 2020. 

Although the contact tracing and compartmental models are defined on different scales, the former on a micro-
scopic scale and the latter on a macroscopic scale, the two curves capture the same decreasing trend associated 
to both social isolation and lockdown periods. We note that Rebus consistently follows Recity during the local 
COVID-19 outbreak, except for a three-month period between the first and the second waves of daily cases. In 
this period, the Rebus decayed to undetectable standards despite the fact that the number of daily bus validations 
has increased (see Fig. 2a), i.e., our contact tracing model did not find any CC due to the low number of cases 
after the first wave. As also shown in Fig. 5, Rehealth was systematically higher than Rebus , which unveils that the 
healthcare workers played an important role in the transmission within buses during the first wave of COVID-
19 in Fortaleza. Furthermore, Rehealth remained undetectable even in the beginning of the second wave, in 
contrast to Rebus and notwithstanding the increase of the number of daily bus validations of healthcare workers, 
as shown in Fig. 2a. As shown in the inset of Fig. 5, the maximum ratio Rehealth/Rebus occurred soon after the 
lockdown period, since the hospitals were still overloaded due to the peak of cases at the beginning of May and 
the new daily infections were low in the beginning of the reopening period. We emphasize that the complement 
of Rehealth , due to non-healthcare workers, behaves similar to Rebus . We also emphasize that our results do not 
suffer any influence from the Brazilian vaccination program, since the first shots were applied in Brazil at the 
end of January 2021, i.e., after the period studied here.

Figure 4.   Shared Ride Time Histogram τij and Network of Close Contacts (CCs). (a) We show the weight 
distribution τij of the network of Potentially Infectious Contacts (PICs) in 15-minute-width bins. The average of 
the shared ride times of PICs is �τij�PICs ≈ 28 min. Applying the threshold τc = 15 min in the network of PICs, 
we define a network of Close Contacts (CCs). For the network of CCs, the average of the shared ride times is 
�τij�

CCs ≈ 39 min. The inset shows the Complementary Cumulative Distribution Function (CCDF) of τij . We 
find that the percentage of the edges with τij greater than τc = 15 min is ≈ 62% (dashed line), i.e., most part of 
PICs are CCs. (b) The vertices represent the bus passengers that were diagnosed with COVID-19 and the edges 
corresponds to the CCs each passenger had using the public transportation system in Fortaleza. The healthcare 
and non-healthcare workers are represented by red and gray vertices, respectively. The size of the vertices is 
proportional to their outdegrees.
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Conclusions
In summary, two epidemiological models have been used in this work to understand the transmission on public 
transportation during the COVID-19 outbreak in Fortaleza, Ceará, Brazil. Whilst the compartmental model 
accounts for the transmission in the entire city (macroscopic scale), the contact tracing model has been used to 
estimate the transmission inside city buses (microscopic scale) through the concept of CCs. Both models were 
fed with real data of bus validations and of COVID-19 confirmed cases and deaths. Our results show that Rebus 
consistently follows Recity during the local COVID-19 outbreak, except for a three-month period between the 
first and the second waves of daily cases. We conjecture that similar behaviors would be obtained if the indoor 
environment was another place with some degree of homogeneous mixing, e.g., offices, gyms, or schools. Fur-
thermore, the transmission from healthcare workers within buses until the end of July is characterized by a value 
of Rehealth persistently greater than Rebus . In other words, we have found that healthcare workers had transmitted 
more the disease than usual passengers on the buses of the city of Fortaleza during the first wave of COVID-19 
cases. Healthcare workers, even the non-frontline professionals, are more likely to get and, consequently, spread 
the pathogen because their social network distances to individuals that tested positive for COVID-19 are very 
short compared to non-highly exposed workers. Despite being more tested, healthcare workers may not even 
know that they are infectious when they board a bus due to eventual time delays of the result of a COVID-19 
test. Other groups of highly exposed people may affect the dynamics of dissemination of the virus in a similar 
way, e.g., education workers and police officers. We emphasize that finding a CC (even considering reported 
cases of COVID-19 and their epidemiological profiles) on a bus is not sufficient to ensure that the transmission 
indeed happened within it. However, it is the best measure that we can perform in order to infer the transmis-
sion rate. Another limitation that can be pointed out in our study is the fact that no mechanism of reinfection is 
considered in the compartmental model. Therefore, our results reinforce the worldwide claim that it is imperative 
to propose special policies to support displacement (or to avoid it) of highly exposed groups of people. Finally, 
we suggest that the intensity and the necessity of using public transportation by highly exposed groups must be 
seriously considered as a criterion to prioritize their vaccination.

Figure 5.   Time evolution of the effective reproduction numbers. Moving averages of the effective reproduction 
number for the entire city, Recity (blue ◦ ), for buses, Rebus (gray × ), and for healthcare workers in the buses, 
Rehealth (red + ). We find that Rebus consistently follows Recity during the local COVID-19 outbreak, except for 
a three-month period between the first and the second waves of daily cases. We also show that Rehealth was 
systematically higher than Rebus , which unveils that the healthcare workers played an important role in the 
transmission within buses during the first wave of COVID-19 in Fortaleza. The inset shows that the maximum 
ratio Rehealth/Rebus occurred soon after the lockdown period. The windows of moving averages have 22 days of 
width with step size of 5 days for all curves. In the period indicated by the shaded regions in the main plot and 
its inset, both Rebus and Rehealth decayed to undetectable standards, i.e., no CCs could be identified under the 
framework of our contact tracing approach. The vertical dotted lines represent the beginning of social isolation 
(State Decree 33,519), lockdown (State Decree 33,574), and economic reopening (State Decree 33,608) regimes 
imposed on March 20, May 8, and June 1, 2020, respectively. We also highlight, in light red, the lockdown period 
in the city of Fortaleza.
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Methods
Datasets.  Bus validations.  Most part of bus passengers in Fortaleza ( ≈ 94%) pay their bus fares with a 
smart card. Every time a passenger passes their card on a ticket gate of a bus, a validation record is created. The 
Fortaleza City Hall compiled and made available an anonymized dataset of bus validations with the following 
information: a citizen’s ID (a hash code), a vehicle ID (another hash code), the date and time of the validation 
record and the estimated ride time. The dataset ranges from March to December 2020, totaling 107,488,528 
validation registers that refers to 1,426,569 different passengers.

COVID‑19 confirmed cases and deaths.  The dataset of COVID-19 confirmed cases and deaths is an anonymized 
list of all individuals diagnosed with the disease in Fortaleza from March to December 2020. These data were 
also processed and made available by the Fortaleza City Hall. Such dataset is organized in columns as follows: a 
citizen’s ID (the same hash code used in the previous dataset), the date of OS, a confirmed death flag, the date of 
death and a healthcare worker flag. In the period of time ranged by the data, there are 85, 553 confirmed cases 
(5960 of healthcare workers) and 3075 confirmed deaths (227 of healthcare workers). These numbers are slightly 
different from those found in oficial records34 because they only considered cases with dates of OS filled in. We 
emphasize that these healthcare workers are not only the frontline professionals but also people whose jobs are 
related to the health field. Finally, we found that 9032 people (721 healthcare workers) were diagnosed with 
COVID-19 and used their smart card on buses at least once from March to December 2020.

Iterated Ensemble Kalman Filter.  We use the Iterated Ensemble Kalman Filter (IEnKF) framework16,41–43 
to infer the compartmental model parameters and initial subpopulations. The algorithm is based on comparing 
predictions of the model f(.) obtained by the numerical integration of Eqs. (3)–(7) of the main text with a set of T 
observations O1, . . . ,OT taken at discrete times t1, . . . , tT within an observation window (see Fig. S4 of the Sup-
plementary Information). The inference framework starts from an initial state vector X(0) = {S,E, Ir , Iu,R,Dr}

(0) 
(see Table 1), as well as an initial parameter vector θ(0) = {β ,µ, σ , γ ,α,φ}(0) (see Table 1). To these vectors, 
uncertainties are attributed in terms of the variance matrices σX and σθ , respectively. For each iteration m, an 
ensemble of P “particles” is generated such that each particle has the initial state at time t0 drawn from a multi-
variate normal distribution with mean X(m−1) and variance a(m−1)σX , where 0 < a < 1 is a “cooling factor”. The 
initial state vector for particle i is denoted by X(t0, i) = N (X(m−1), a(m−1)σX) . These states are also used to set 
XF(t0, i) , which define the posterior distribution at time t0 . Analogously, each particle i has an initial parameter 
vector θ(t0, i) = N (θ(m−1), b(m−1)σθ ) , where 0 < b < 1 is another cooling factor. The inference proceeds by 
numerically integrating the model from these initial conditions, such that the predicted vector state for each 
particle i at time tn is obtained from the prior distribution, XP(tn, i) = f (XF(tn−1, i), θ(tn−1, i)) . Based on these 
predictions, a weight W(tn, i) is assigned to each particle i, such that

where O(tn, i) is the predicted value for the observed quantities at time tn for particle i, and � is a “temperature”. In 
our case, O(tn, i) is the prediction for the cumulative number of daily reported deaths Dr(tn, i) . The filtering pro-
cess is accomplished by keeping the particles with the largest weights with probability P = W(tn, i)/

∑

j W(tn, j) . 
The states of the filtered particles will set the posterior distribution at time tn , XF(tn, i) = XP(tn, ibest) , where 
ibest is the set of the indexes of the filtered particles42. The parameter vector is updated at time tn using 
θ(tn, i) = N (θ(tn−1, ibest), b

(m−1)σθ ) . This filtering process continues until all the observations O1, . . . ,ON are 
compared. The iterative process continues by setting the initial state vector X(m) and parameter vector θ(m) for 
the next iteration with the same observation window. The next parameter vector is given by41:

where θ̄ (tn) is the sample mean of θ(tn, ibest) and V(tn) is the variance41,42. The next state vector is given by the 
sample mean,

After each iteration m, the initial state vector X(m) and parameter vector θ(m) are used to compute the evolution 
of the model for the whole observation window 1, . . . , tT . The performance of the inferred model is computed 
by evaluating the error

The iteration continues until 
∣

∣ε(m) − ε(m−1)
∣

∣ < εmax , where the threshold used here is εmax = 0.01 . The good-
ness of the fit is also checked by computing the Pearson coefficient, R2 , between the integrated model cumula-
tive number of deaths and the corresponding observations. The value of R2 > 0.96 for all observationwindows.
The Table S1 of the Supplementary Information lists the inferred parameters for all windows. Figure S1 of 
the Supplementary Information shows the epidemiological curves obtained from the inference with the SEIIR 

(11)W(tn, i) = exp

(

−
|O(tn, i)−On|

�

)

,

(12)θ(m) = θ(m−1) + V(t1)

N
∑

n=1

V−1(tn)
(

θ̄ (tn)− θ̄ (tn−1)
)

,

(13)X(m) =
1

P

P
∑
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compartmental model. As depicted, good agreement can be observed between model and observations for the 
evolution of the cumulative deaths.

Ethics declarations.  This study was approved by the Institutional Review Board (IRB) at Universidade de 
Fortaleza (UNIFOR). All methods were conducted in accordance with relevant guidelines and regulations. Two 
datasets were used with the approval and consent obtained by the Fortaleza City Hall, Ceará, Brazil. The first is a 
list of COVID-19 confirmed cases and deaths of patients in Fortaleza and the second consists of bus validations 
records from smart cards of passengers, both collected during the period from March to December, 2020.

Data availability
The data that support the findings of this study are available in Zenodo with the identifier http://​doi.​org/​10.​
5281/​zenodo.​47633​99.
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