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Abstract: This paper is a continuation of research into the possibility of using fuzzy logic to assess
the reliability of a selected airborne system. The research objectives include an analysis of statistical
data, a reliability analysis in the classical approach, a reliability analysis in the fuzzy set theory
approach, and a comparison of the obtained results. The system selected for the investigation was
the aircraft gun system. In the first step, after analysing the statistical (operational) data, reliability
was assessed using a classical probabilistic model in which, on the basis of the Weibull distribution
fitted to the operational data, the basic reliability characteristics were determined, including the
reliability function for the selected aircraft system. The second reliability analysis, in a fuzzy set theory
approach, was conducted using a Mamdani Type Fuzzy Logic Controller developed in the Matlab
software with the Fuzzy Logic Toolbox package. The controller was designed on the basis of expert
knowledge obtained by a survey. Based on the input signals in the form of equipment operation time
(number of flying hours), number of shots performed (shots), and the state of equipment corrosion
(corrosion), the controller determines the reliability of air armament. The final step was to compare
the results obtained from two methods: classical probabilistic model and fuzzy logic. The authors
have proved that the reliability model using fuzzy logic can be used to assess the reliability of aircraft
airborne systems.

Keywords: aircraft airborne systems; air armament; reliability assessment; fuzzy logic; expert systems; Matlab

1. Introduction

Taking into account the increasing complexity of technical objects and the fact that
their components interact with each other, reliability is determined using experimental
data obtained during exploitation or during planned reliability tests [1]. The methods of
forecasting reliability play an important role in this respect. Forecasting is a prediction
of future events, phenomena, or facts on the basis of premises determined by scientific
research. Reliability forecasting is inseparably connected with conducting a proper diag-
nostic process, in which a diagnostic analysis of factors influencing damage should be
carried out. It is also necessary to choose appropriate mathematical methods that are able
to approximate the changes occurring in a given object in the near future or in a longer
term. Numerous forecasting methods can be found in the available literature. A uniform
classification of these methods is not widespread; however, some experts divide them
into two main groups: quantitative (statistical–mathematical) methods and qualitative
(non-mathematical) methods [2]. The quantitative methods are based on numerical data, as
opposed to qualitative methods, which are based mainly on judgements or expert opinions.

In the case of technical facilities, the research conducted to date has shown the appli-
cability of the following forecasting models for determining reliability:

(a) time series extrapolation values [3],
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(b) adaptive trend models [4],
(c) autonomous extrapolation of stochastic processes [5],
(d) probabilistic models [6],
(e) expert methods [7,8].

In probabilistic models, reliability forecasting is based on knowledge of the probability
distribution of the random variable T and the functional forms of the reliability indicators.
These models are mainly used when functional reliability indicators can be determined
on the basis of reliability examinations. A mathematical distribution is then fitted to the
empirically determined probability distribution of the random variable so as to describe
the collected empirical data.

An air armament system, as with any other technical system, should be characterised
by high reliability so that air missions can be performed without any disruptions. The
reliability of a technical system largely depends on a failure-free operation of its individual
components. The occurrence of a system failure is a random variable. Increasingly, engi-
neers are unable to accurately determine the factors causing the failure. In the operation of
armament systems, human factors play a significant role, whose momentary indisposition
or error can contribute to generating the malfunction. In case non-technical damage factors
are involved, fuzzy logic can provide a useful tool. Fuzzy logic is mainly intended to take
into account the uncertainty associated with such factors and therefore provides a better
approximation of reality when modelling changes in machinery during its operation [9].

An analysis of literature data on the use of fuzzy logic for reliability assessment is
extensively discussed by the authors [9]. A literature review over the past years is presented.
It identifies three main streams using fuzzy number theory issues in reliability assessment:

• Failure risk analysis and assessment. Fuzzy logic is mainly used to estimate risk and
determine the probability of damage. An example research article describing this
trend is a study showing the effective use of fuzzy numbers as inputs and outputs
in the isobutane cylinder rupture risk analysis based on Fault Tree and Event Tree
methods [10]. Other studies based on real source data of two Italian industrial plants
(a tyre manufacturing company and a chemical plant) indicate that fuzzy logic can
be successfully applied to quantify the risk of accidents at work [11]. Fuzzy logic
was also used in aviation [12,13]. It was used to assess the risk of a helicopter crash
depending on two factors: intensity of operations and the probability of a crash [14].

• Human factors leading to damage. Fuzzy logic is used to model the uncertainty asso-
ciated with human error factors. Research [15] has indicated the possibility of using
fuzzy logic to define quality standards for operations, maintenance, and production
activities, which can significantly reduce errors made by oil refinery personnel. Fuzzy
logic and expert judgement have also been successfully used to determine the proba-
bility of human error among nuclear plant operators. The research results presented
in [16] demonstrate the effectiveness of using fuzzy logic to determine the significance
of risk of human error. Other studies which use fuzzy logic, taking into account human
error and uncertainty in failure data, aim at assessing the imprecise failure probability
of level crossing systems in Morocco [17]. A further example of the application of
fuzzy logic in aviation is the study of the influence of human factors on damage. It
has been successfully used to assess basic event failure rates for safety-critical avionics
systems [18].

• Adequate planning of maintenance, and consequently, prevention of damage. Fuzzy
logic has also been successfully used for proper planning of maintenance, and thus, to
prevent damage. In article [19], fuzzy logic was successfully applied to model impre-
cise answers in a reliability-centered maintenance (RCM) diagram to answer questions
on the causes, symptoms, and types of failure. Additionally, a maintenance-oriented
milling machine reliability study using fuzzy logic and comparing it with the conven-
tional method allowed a more accurate determination of the causes and consequences
of failure [20]. Fuzzy logic was also used to determine specific maintenance tasks used
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to make reactions in chemical plants, based on equipment operating data. Along with
neural networks, fuzzy logic complemented the RCM strategy [21].

In all of the analysed studies concerning the application of fuzzy logic for reliability
assessment, as mentioned in the paper [22], the inaccuracy of the uncertainties in the
reliability estimation is due to the fact that failures are rare events. Especially in aviation,
very high priority is given to their elimination, often creating very expensive procedures as
well as preventive facilities. This is what distinguishes aviation from other engineering
sciences, where failure results in monetary costs, whilst in aviation, possible failure can
cost human lives. Therefore, the authors decided to use fuzzy logic to identify and analyse
rare cases such as the failure of aircraft airborne systems. This approach was motivated in
the work [22], in which the authors by fuzzy logic mean fuzzy set theory and possibility
theory. Taking into consideration such a definition, the authors aim at checking whether
the use of fuzzy logic alone may be used to assess the reliability of a selected onboard
aircraft system. For this purpose, an innovative reliability model of airborne air armament,
based on expert knowledge, and a fuzzy controller was developed.

2. Research Methodology

The statistical data taken into account in probabilistic models of reliability assessment
indicate failure, yet they do not take into consideration the reasons for its occurrence [23].
Failures occur for a variety of reasons and depend on a range of variables. Therefore, it
is rather difficult to predict when a malfunction may occur. An alternative solution to
classical reliability estimation methods, in this case, can be adopting a fuzzy logic approach.

When seeking an answer to the posed question of whether a reliability model of
a selected airborne armament system can be built by means of fuzzy logic, the authors
designed and implemented a research algorithm, which includes the following steps:

• Analysing the available literature with a particular emphasis on the applications of
fuzzy logic and the reliability issues of technical systems [9];

• Analysing available methods for estimating the systems reliability in a mathematical approach;
• Computing the reliability indicators of a selected airborne armament system, by

means of a mathematical approach (based on statistical data from an IT-based aircraft
reliability analysis system);

• Developing a reliability model of a selected airborne armament system by means of
fuzzy logic;

• Assessing the reliability indicators of the aircraft armament system on the basis of the
developed model, by means of fuzzy logic (using input signals from an IT system for
the aircraft reliability analysis);

• Comparing the results obtained in the mathematical approach and the fuzzy set
theory approach;

• Formulating and presenting the conclusions.

3. Object of Research

For the purpose of the research, the authors selected the armament subsystem of the
TS-11 “Iskra” aircraft, which can be regarded as an icon of Polish aviation. It is a two-seat
jet trainer and light combat aircraft. It is designed for basic pilot training, training in flights
in adverse weather conditions, aerobatic flights, training on the training ground (shooting,
bombing), and for air photographic reconnaissance. The selected tactical and technical data
of the TS-11 “Iskra” aircraft are shown in Table 1.
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Table 1. Basic tactical and technical data of the TS-11 “Iskra” aircraft [24].

Type Data

Length 11.15 m
Wingspan 10.06 m

Height 3.50 m
Lifting surface 17.50 m2

Unloaded 2560 kg
Gross weight 3724 kg

Maximum take-off weight 3840 kg
Engine WSK SO-3W with a thrust of 10.80 kN (1100 kG)

Maximum speed 720 km/h in 5000 m
Range 1260 km

Operational ceiling 11,000 m
Climb rate 14.8 m/s

Wing loading 213 kg/m2

Thrust-to-weight ratio 1:3.4

The TS-11 “Iskra” aircraft is fitted with missiles and shooting and bombing armaments.
The shooting armament includes a NS-23KM (or, alternatively, NR-23) 23 mm calibre
cannon with an ammunition reserve of 80 rounds for the combat version or 40 rounds
for the training version. An electrical control of the cannon, missile firing, and bomb
dropping is steered via two buttons located in the front upper part of the aircraft control
stick by the pilot from the front seat. The preparation of the electrical installation for the
use of the cannon or missiles is executed by means of a three-position switch located on
the armament plate in the cockpit of the front cabin, by switching it to the appropriate
position: “CANNON”, “GUN”, or “MISSILE”. There are also corresponding buttons on
the armament plate for electro-pneumatic reloading of the cannon.

The NS-23KM cannon is mounted on the right side of the aircraft, rigidly attached to
the front grate, without cushioning, by two nodes: the front one, called the cannon bedding,
and the rear one. An additional gun mount node was used to reduce the barrel vibrations.
When firing, the gun bedding takes the recoil force and the rear node serves as a support
for the gun. The selected tactical and technical data of the TS-11 “Iskra” aircraft are shown
in Table 2.

The gun’s ammunition handling set consists of an ammunition box and entrance and
exit chutes.

The cannon reloading system is an electro-pneumatic system consisting of the EK-48
valve, compressed-air reservoir, cables, and the electrical control system for the EK-48 valve.
Aiming, when shooting, is made possible by the ASP-3NM-1 collimator automatic sight.

Table 2. Basic tactical and technical data of NS-23KM.

Type Data

Calibre 23 mm
Rate of fire 500–590 rounds/min
Gun weight 37.5–38.2 kg

Length 1985 mm
Width 164 mm
Height 256 mm

Barrel length 1450 mm
Minimum air pressure required for reloading 30 kG/cm2

4. Scientific Approach

The research was divided into two main parts. In the first stage of the research,
reliability indicators were determined using a probabilistic reliability model. In the second
phase, the same reliability indicators were determined by means of a reliability model
using fuzzy logic.
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4.1. Analysis of Statistical Data

The damage statistics were obtained from the computerised support system of air operations.
The sample batch was thirty TS-11 “Iskra” aircraft operated at a selected military air

base. The analysis was conducted from 1 January 2014 to 30 November 2018. During
this period, a total of 590 failures were recorded in all specialities, including 28 failures of
aircraft weapons systems. Damage to air armaments accounts for approximately 5% of
overall failures. When considering the guns and cannons, it needs to be noted that damage
accounts for a significant portion of malfunctions of the entire armament. Figure 1 shows
the percentage share of gun/cannon damage in relation to the other subsystems. In general,
it accounts for approximately 67% of all damage to armament systems.
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Figure 1. Percentage of gun/cannon damage in the total number of air armament damage from 2014
to 2018.

Among nineteen reported damages to the subsystem, the vast majority of malfunc-
tions concerned the NS-23KM (interchangeably NR-23) cannon or the cannon’s mounting
components. Eleven components were reported to be damaged. A numerical listing of the
damage to individual components is shown in Figure 2.
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The vast majority of the damage to these components, over 70%, was caused by
material fatigue and excessive vibration during cannon firing. Based on the analysed data,
it can be concluded that fatigue processes constitute a significant causal group of damage
to the shooting armament of the TS-11 “Iskra” aircraft.

4.2. Probabilistic Model of Reliability of the Gun/Cannon Subsystem

In the developed probabilistic reliability model of the subsystem, the time to failure in
the form of the number of flying hours was assumed as a non-negative random variable
T. After initial data processing and a statistical analysis, the random variable was ranked
from the smallest to the largest. Statistical observations were also assumed to be censored
observations as the data for the study were taken from specific years and the study was
completed on 30.11.2018. An important simplification in the model was to assume the
gun/cannon subsystem as a non-repealable object. The initially compiled statistical data
are shown in Table 3.

Table 3. Summary of sample performance data.

No Observation Flying Hours from 2014 to 2018 T (Flying Hours
Until Malfunction [h])

Censored
Observations

1 O10 313 65 complete
2 O9 80 80 censored
3 O14 95 95 censored
4 O5 249 106 complete
5 O8 391 113 complete
6 O3 148 133 complete
7 O11 305 138 complete
8 O1 296 148 complete
9 O28 310 156 complete

10 O24 247 175 complete
11 O7 204 204 censored
12 O21 410 205 complete
13 O4 246 214 complete
14 O12 232 232 censored
15 O22 243 243 censored
16 O26 251 251 censored
17 O29 423 252 complete
18 O23 314 257 complete
19 O2 278 268 complete
20 O25 278 278 censored
21 O30 294 294 censored
22 O27 297 297 censored
23 O16 453 302 complete
24 O6 307 307 censored
25 O13 310 310 censored
26 O15 442 328 complete
27 O20 490 376 complete
28 O18 448 386 complete
29 O19 477 395 complete
30 O17 519 465 complete

4.2.1. Alignment of Measurement Results

The data from complete observations were checked for outliers. For this purpose,
Grubbs’ criterion was used to reject questionable data [25]. The arithmetic mean of the
random variable was calculated from formula:

T =
1
n

n

∑
i=1

Ti =
4482
19

= 235.895 (1)



Sensors 2021, 21, 7913 7 of 21

The standard deviation of the random variable was computed using the root of the
unbiased estimator of variance:

s =

√
∑n

i=1
(
Ti − T

)2

n − 1
=

√
13064.21053

18
= 114.229 (2)

Next, the Grubbs’ coefficient was determined η from formula:

η =

∣∣Ti − T
∣∣

s
(3)

In Grubbs’ criterion, a measurement is rejected if there is a relationship:

ηq ≤ η (4)

where:
ηq—Grubbs’ criterion.
Assuming a risk of error on the level of 5%, Grubbs’ criterion value of ηq = 2156

was read out from the table. Since there was no relationship (4) for any measurement,
none of the measurements were rejected. The calculated Grubbs’ coefficients for the
19 measurements of complete observations are shown in Table 4.

Table 4. Calculated Grubbs’ coefficients for complete observations.

No Observation Flying Hours from 2014 to 2018 Flying Hours Until Malfunction (h) η

1 O10 313 65 1.495158054
2 O5 249 106 1.136449054
3 O8 391 113 1.075206054
4 O3 148 133 0.900226054
5 O11 305 138 0.856481054
6 O1 296 148 0.768991054
7 O28 310 156 0.698999054
8 O24 247 175 0.532768054
9 O21 410 205 0.270298054

10 O4 246 214 0.191557054
11 O29 423 252 0.140904946
12 O23 314 257 0.184649946
13 O2 278 268 0.280888946
14 O16 453 302 0.578354946
15 O15 442 328 0.805828946
16 O20 490 376 1.225780946
17 O18 448 386 1.313270946
18 O19 477 395 1.392011946
19 O17 519 465 2.004441946

4.2.2. Fitting the Distribution of a Random Variable

On the basis of the ranked statistical data, which were further analysed, a histogram
was created. This enabled a preliminary determination of which distribution of the ran-
dom variable will be the most approximate one with regard to the empirical data. The
damage histogram developed in Statistica software is shown in Figure 3. In addition, the
Kolmogorov–Smirnov test was carried out in Statistica software to match the distribution
of the random variable to the empirical data. The test results are shown in Table 5.



Sensors 2021, 21, 7913 8 of 21

Sensors 2021, 21, 7913 8 of 23 
 

 

10 O4 246 214 0.191557054 

11 O29 423 252 0.140904946 

12 O23 314 257 0.184649946 

13 O2 278 268 0.280888946 

14 O16 453 302 0.578354946 

15 O15 442 328 0.805828946 

16 O20 490 376 1.225780946 

17 O18 448 386 1.313270946 

18 O19 477 395 1.392011946 

19 O17 519 465 2.004441946 

4.2.2. Fitting the Distribution of a Random Variable 

On the basis of the ranked statistical data, which were further analysed, a histogram 

was created. This enabled a preliminary determination of which distribution of the 

random variable will be the most approximate one with regard to the empirical data. The 

damage histogram developed in Statistica software is shown in Figure 3. In addition, the 

Kolmogorov–Smirnov test was carried out in Statistica software to match the distribution 

of the random variable to the empirical data. The test results are shown in Table 5. 

 

Figure 3. Histogram of gun/cannon damage. 

Table 5. Matching the distribution of a random variable by means of the Kolmogorov–Smirnov test. 

 d K-S K-S p 

Weibull 0.080785 0.980681 

Generalised extreme value 0.080995 0.980185 

Normal 0.083536 0.973478 

Gaussian mixture 0.083917 0.972358 

Johnson SB 0.086214 0.964943 

Rayleigh 0.136471 0.584155 

Log-normal 0.141784 0.536058 

Triangular 0.161554 0.373656 

Generalised Pareto 0.166667 0.337101 

Semi-normal 0.240961 0.051135 

On the basis of the previously conducted statistical analysis of damage formation, as 

well as the observations of the histogram of the damage distribution series and the results 

Figure 3. Histogram of gun/cannon damage.

Table 5. Matching the distribution of a random variable by means of the Kolmogorov–Smirnov test.

d K-S K-S p

Weibull 0.080785 0.980681
Generalised extreme value 0.080995 0.980185

Normal 0.083536 0.973478
Gaussian mixture 0.083917 0.972358

Johnson SB 0.086214 0.964943
Rayleigh 0.136471 0.584155

Log-normal 0.141784 0.536058
Triangular 0.161554 0.373656

Generalised Pareto 0.166667 0.337101
Semi-normal 0.240961 0.051135

On the basis of the previously conducted statistical analysis of damage formation, as
well as the observations of the histogram of the damage distribution series and the results
of the Kolmogorov–Smirnov test, the Weibull distribution was adopted as the distribution
of the random variable for further analyses.

The Weibull distribution is a parametric distribution, so the next step was to find its
parameters. For this purpose, a graphical method for determining the parameters of the
distribution of a random variable was used. The Weibull probability grid was developed
in Statistica software, from which the scale parameter and the shape parameter of the
distribution were read out.

The shape and scale parameters estimated by the graphical method are as follows:

• shape parameter α—2.2664
• scale parameter β—318.78

Using the Weibull distribution, as well as its parameters estimated by the graphical
method, functional reliability indicators were calculated for the empirical data:

• function of the intensity of the damage λ(t)

λ (t) =
α

βα
tα−1; α, β > 0; t > 0 (5)

• density distribution function f (t)

f (t) =
α

β

(
t
β

)α−1
e−( t

β )
α

(6)
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• random variable distribution F(t)

Q(t) = F(t) = 1 − e−( t
β )

α

(7)

• the reliability function R(t).

R(t) = e−( t
β )

α

(8)

The graphic method of determining the Weibull parameters, due to its nature, may
be subject to some error. Therefore, it was decided to analyse the data of the censored
observations in Statistica software. For this purpose, the Process Analysis module, and
in particular, Weibull Reliability/Damage Time Analysis, was used. In this analysis, the
distribution parameters determined by the maximum reliability method differ only slightly
from those determined by the graphical method. The resulting scale parameter was 0.7 smaller
than the one that was estimated from the graphical method, while the shape parameter was
approximately 0.3× larger. The values of the specific parameters are shown in Table 6.

Table 6. Differences in scale and shape parameters for empirical and theoretical Weibull distributions.

Scale (β) Shape (α)

Empirical Weibull distribution 318.78 2.2664
Theoretical Weibull distribution 318.06 2.5030

The Weibull analysis in Statistica, both in the Kaplan–Meier estimate and Hollander–
Proschan New-Better-Than-Used test, which compare the theoretical reliability function with
the Kaplan–Meier estimate, showed that the proposed distribution describes data reasonably.

Based on the parameters of the Weibull distribution obtained in the Weibull Reliabil-
ity/Damage Time Analysis, it was possible to calculate the values of the intensity function,
the distribution density function, the distribution of the random variable, and the reliability
function for the individual times to failure.

The differences between the parameters of empirical Weibull distribution from the oper-
ational data and the graphical method of determining the parameters and theoretical Weibull
distribution (Table 6) obtained as a result of Weibull Reliability/Damage Time Analysis in
Statistica software result in slightly different values of the individual reliability functions.
The values of the individual functions are within a 95% confidence interval, which means
that with a probability of 95%, the reliability of the armament can be estimated from both
empirical and theoretical distributions. In order to illustrate the differences between the values
of the reliability function, the calculation results for the distribution density and the reliability
function are shown in Table 7.

Table 7. Values of the distribution density f (t) and reliability function R(t) for empirical and theoretical Weibull distribution.

Flying Hours Until
Malfunction (h)

Empirical Density of
Distribution f (t)

Theoretical Density of
Distribution f (t) Empirical Reliability R(t) Theoretical Reliability R(t)

65 0.00092 0.00071 0.97315 0.98139
106 0.00162 0.00142 0.92085 0.93809
113 0.00174 0.00154 0.90908 0.92774
133 0.00205 0.00190 0.87118 0.89335
138 0.00212 0.00198 0.86076 0.88365
148 0.00226 0.00215 0.83887 0.86298
156 0.00236 0.00228 0.82040 0.84526
175 0.00257 0.00256 0.77347 0.79919
205 0.00281 0.00292 0.69235 0.71672
214 0.00286 0.00299 0.66680 0.69012
252 0.00294 0.00317 0.55601 0.57214
257 0.00293 0.00318 0.54134 0.55626
268 0.00291 0.00317 0.50923 0.52132
302 0.00274 0.00303 0.41286 0.41546
328 0.00254 0.00280 0.34412 0.33957
376 0.00205 0.00221 0.23369 0.21866
386 0.00194 0.00208 0.21377 0.19721
395 0.00184 0.00195 0.19679 0.17909
465 0.00109 0.00105 0.09509 0.07522
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A graphic interpretation of the results of the two distributions is shown successively
in Figures 4–7.
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4.3. Fuzzy Logic Reliability Model of a Firing Subsystem

The basis of the model using the fuzzy sets theory is a Mamdani fuzzy controller
in MISO design. An extremely important issue in fuzzy modelling is the appropriate
acquisition of expert knowledge. On this basis, the number and shape of membership
functions of the input and output signals are determined, as well as the design of deduction
rules base. With properly selected inference rules and the use of the right inference
mechanism, the whole fuzzy modelling process takes place.

In order to gain relevant expertise for the research, a questionnaire was developed
and addressed to aviation weapons specialists who have at least 15 years experience on
the equipment. Ten experts of the maintenance group dealing with repair and periodic
maintenance of the aircraft armament TS-11 “Iskra” took part in the examination. Based
on the information obtained in the survey, membership functions were determined, and a
deduction rules base was built. A fuzzy controller was developed (Figure 8).
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Figure 8. Diagram of the fuzzy controller.

In the designed model, the input signals are parameters that affect the reliability of
armament flying hours, represented by the operating time of air assets, shots, represented
by the operating time of armament and corrosion, which is characterised by the physi-
cal condition of the armament. For each input parameter, four triangular membership
functions and one (last) trapezoidal one were adopted: “very small”, “small, “medium”,
“large”, and “very large”, which define the range and characteristics of changes in the
input parameters. For the output signal, which is used to determine the reliability of the
armament, six triangular membership functions were adopted, respectively: “very small”,
“small”, “medium”, “large”, “very large”, and “optimal”. The shape and range of the
individual membership functions of the input and output signals are successively shown
in Tables 8–11.
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Table 8. Membership functions and boundaries of fuzzy sets of the input signal “Flying hours”.

Input Signal Membership Functions

Flying hours
[h]

VERY SMALL
[0 0 105]
SMALL

[0 105 205]
MEDIUM

[105 205 305]
LARGE

[205 305 410]
VERY LARGE

[305 410 500 580]
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  Table 9. Membership functions and boundaries of fuzzy sets of the input signal “Number of firing hours”.

Input Signal Membership Functions

Firing hours
[number of shots]

VERY SMALL
[0 0 400]
SMALL

[0 400 800]
MEDIUM

[400 800 1300]
LARGE

[800 1300 1800]
VERY LARGE

[1300 1800 2000 2000]

Sensors 2021, 21, 7913 13 of 23 
 

 

Table 9. Membership functions and boundaries of fuzzy sets of the input signal “Number of firing hours”. 

 Input Signal  Membership Functions 

Firing hours 

[number of shots] 

VERY SMALL 

[0 0 400] 

SMALL 

[0 400 800] 

MEDIUM 

[400 800 1300] 

LARGE 

[800 1300 1800] 

VERY LARGE 

[1300 1800 2000 2000] 

 

Table 10. Membership functions and boundaries of fuzzy sets of the input signal “Corrosion”. 

 Input Signal  Membership Functions 

Corrosion 

[mm] 

VERY SMALL 

[0 0 0.02] 

SMALL 

[0 0.02 0.04] 

MEDIUM 

[0.02 0.04 0.06] 

LARGE 

[0.04 0.06 0.075] 

VERY LARGE 

[0.06 0.075 0.1 0.1]  

Table 11. Membership functions and boundaries of fuzzy sets of the output signal “Reliability”. 

 Output Signal  Membership Functions 

Reliability 

[P] 

VERY SMALL 

[0 0 0.2] 

SMALL 

[0 0.2 0.4] 

MEDIUM 

[0.2 0.4 0.6] 

LARGE 

[0.4 0.6 0.8] 

VERY LARGE 

[0.6 0.8 1] 

OPTIMUM 

[0.8 1 1] 

 

The next step in designing the controller was to build the deduction principles base. 

At this stage of design, it was essential for the deduction principles to be complete. In [25], 

the number of principles computable for the same number of fuzzy sets of all model inputs 

was presented as: 
𝑟𝑤 = 𝑧𝑟

𝑤 (9) 

where: 

𝑟𝑤—number of deduction principles, 

𝑧𝑟 —number of fuzzy sets of the model, 

𝑤—number of model inputs. 

Table 10. Membership functions and boundaries of fuzzy sets of the input signal “Corrosion”.

Input Signal Membership Functions

Corrosion
[mm]

VERY SMALL
[0 0 0.02]
SMALL

[0 0.02 0.04]
MEDIUM

[0.02 0.04 0.06]
LARGE

[0.04 0.06 0.075]
VERY LARGE

[0.06 0.075 0.1 0.1]

Sensors 2021, 21, 7913 13 of 23 
 

 

Table 9. Membership functions and boundaries of fuzzy sets of the input signal “Number of firing hours”. 

 Input Signal  Membership Functions 

Firing hours 

[number of shots] 

VERY SMALL 

[0 0 400] 

SMALL 

[0 400 800] 

MEDIUM 

[400 800 1300] 

LARGE 

[800 1300 1800] 

VERY LARGE 

[1300 1800 2000 2000] 

 

Table 10. Membership functions and boundaries of fuzzy sets of the input signal “Corrosion”. 

 Input Signal  Membership Functions 

Corrosion 

[mm] 

VERY SMALL 

[0 0 0.02] 

SMALL 

[0 0.02 0.04] 

MEDIUM 

[0.02 0.04 0.06] 

LARGE 

[0.04 0.06 0.075] 

VERY LARGE 

[0.06 0.075 0.1 0.1]  

Table 11. Membership functions and boundaries of fuzzy sets of the output signal “Reliability”. 

 Output Signal  Membership Functions 

Reliability 

[P] 

VERY SMALL 

[0 0 0.2] 

SMALL 

[0 0.2 0.4] 

MEDIUM 

[0.2 0.4 0.6] 

LARGE 

[0.4 0.6 0.8] 

VERY LARGE 

[0.6 0.8 1] 

OPTIMUM 

[0.8 1 1] 

 

The next step in designing the controller was to build the deduction principles base. 

At this stage of design, it was essential for the deduction principles to be complete. In [25], 

the number of principles computable for the same number of fuzzy sets of all model inputs 

was presented as: 
𝑟𝑤 = 𝑧𝑟

𝑤 (9) 

where: 

𝑟𝑤—number of deduction principles, 

𝑧𝑟 —number of fuzzy sets of the model, 

𝑤—number of model inputs. 

Table 11. Membership functions and boundaries of fuzzy sets of the output signal “Reliability”.

Output Signal Membership Functions

Reliability
[P]

VERY SMALL
[0 0 0.2]
SMALL

[0 0.2 0.4]
MEDIUM

[0.2 0.4 0.6]
LARGE

[0.4 0.6 0.8]
VERY LARGE

[0.6 0.8 1]
OPTIMUM

[0.8 1 1]

Sensors 2021, 21, 7913 13 of 23 
 

 

Table 9. Membership functions and boundaries of fuzzy sets of the input signal “Number of firing hours”. 

 Input Signal  Membership Functions 

Firing hours 

[number of shots] 

VERY SMALL 

[0 0 400] 

SMALL 

[0 400 800] 

MEDIUM 

[400 800 1300] 

LARGE 

[800 1300 1800] 

VERY LARGE 

[1300 1800 2000 2000] 

 

Table 10. Membership functions and boundaries of fuzzy sets of the input signal “Corrosion”. 

 Input Signal  Membership Functions 

Corrosion 

[mm] 

VERY SMALL 

[0 0 0.02] 

SMALL 

[0 0.02 0.04] 

MEDIUM 

[0.02 0.04 0.06] 

LARGE 

[0.04 0.06 0.075] 

VERY LARGE 

[0.06 0.075 0.1 0.1]  

Table 11. Membership functions and boundaries of fuzzy sets of the output signal “Reliability”. 

 Output Signal  Membership Functions 

Reliability 

[P] 

VERY SMALL 

[0 0 0.2] 

SMALL 

[0 0.2 0.4] 

MEDIUM 

[0.2 0.4 0.6] 

LARGE 

[0.4 0.6 0.8] 

VERY LARGE 

[0.6 0.8 1] 

OPTIMUM 

[0.8 1 1] 

 

The next step in designing the controller was to build the deduction principles base. 

At this stage of design, it was essential for the deduction principles to be complete. In [25], 

the number of principles computable for the same number of fuzzy sets of all model inputs 

was presented as: 
𝑟𝑤 = 𝑧𝑟

𝑤 (9) 

where: 

𝑟𝑤—number of deduction principles, 

𝑧𝑟 —number of fuzzy sets of the model, 

𝑤—number of model inputs. 



Sensors 2021, 21, 7913 13 of 21

The next step in designing the controller was to build the deduction principles base.
At this stage of design, it was essential for the deduction principles to be complete. In [25],
the number of principles computable for the same number of fuzzy sets of all model inputs
was presented as:

rw = zr
w (9)

where:
rw—number of deduction principles,
zr—number of fuzzy sets of the model,
w—number of model inputs.
The number of fuzzy rules was calculated:

rw = 53 = 125 (10)

The rules of deduction are expressed as, e.g.,
If the Number of Flying Hours is VERY SMALL and the Number of Shooting Hours is

VERY SMALL and Corrosion is VERY SMALL, then the Reliability is OPTIMUM.
In the designed model, an inference mechanism based on Zadeh’s minimax method

was chosen. The premises are connected by conjunction, so the conclusion is the minimum
value of the activation membership functions. In the model, there are 125 principles
involved in deduction. The evaluation of the premises is realised as a logical product (MIN
operator), whereas the resulting membership function is realised as a logical sum (MAX
operator), using an aggregation block.

The resulting membership function still belongs to the set of fuzzy numbers, so in order
to obtain a single value at the output of the system, belonging to the set of real numbers, an
appropriate defuzzification (sharpening) method should be applied. The centre of gravity
method was used in the designed model. This method is one of the methods that takes
into account all active rules in the defuzzification process. This guarantees the highest
sensitivity to changes in the parameters of the input signals.

A very useful tool in assessing the performance of the designed fuzzy controller is the
so-called “control planes (mapping planes)”, thanks to which it is possible to observe the
nature of mapping “crisp” (not fuzzy) input values of the system into “crisp” values of the
output variables over the entire range of parameters. The resulting control planes for the
designed model are shown successively in Figures 9–11.
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Figure 11. Dependence of reliability on the number of shooting hours and corrosion.

Figures 9–11 present control surfaces of the fuzzy logic controller. The surface on
Figure 9 shows the influence of the number of firing rounds and flying hours on the gun
reliability. We can observe on the chart that the reliability is the highest when the number
of flying hours and rounds fired are the lowest. Figure 10 demonstrates influence of gun
corrosion and flying hours on gun reliability. A similar situation as in Figure 9 can be
observed, that reliability is the highest when corrosion and number of flying hours are
the lowest. Figure 11 indicates the influence of gun corrosion and fired rounds on gun
reliability. On that chart also is that the reliability is the highest when the corrosion and
number of flying hours are the lowest. All the illustrations confirm that the designed fuzzy
expert system works, and the received data are compatible to the technical manual of an
aircraft gun.

Having analysed the control planes, it can be concluded that both the shape and
boundaries of individual membership functions as well as their selection, and the deduc-
tion rules, based on expert knowledge, are appropriate. In order to validate the proper
performance of the designed model, reliability model tests were performed.

4.4. Model Tests

The first stage of the model tests consisted of determining the reliability function of
the armaments, in order to compare the results with the reliability function obtained from
the mathematical model.

The discrete values of the flying hours were introduced into the model, using fuzzy
logic, while assuming that the corrosion and shooting hours equal 0. This was to simulate
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the conditions under which the reliability was estimated in a classical probabilistic model.
The resulting discrete values after undergoing the inference and defuzzification process
are shown in Table 12.

Table 12. Values of the reliability function from the fuzzy model.

No Flying Hours (h) Shots Corrosion (mm) R(t)

1 65 0 0 0.9300
2 106 0 0 0.9100
3 113 0 0 0.8860
4 133 0 0 0.8430
5 138 0 0 0.8350
6 148 0 0 0.8220
7 156 0 0 0.8130
8 175 0 0 0.7950
9 205 0 0 0.6990
10 214 0 0 0.6650
11 252 0 0 0.5680
12 257 0 0 0.5560
13 268 0 0 0.5310
14 302 0 0 0.4160
15 328 0 0 0.3460
16 376 0 0 0.2470
17 386 0 0 0.2170
18 395 0 0 0.1790
19 465 0 0 0.0633

A graphic interpretation, obtained from the fuzzy logic model, of the reliability func-
tion has been shown in Figure 12.
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The next stage of the modelling research was to check how changing the defuzzifica-
tion method affects the resulting reliability function. For this purpose, the method of the
centre of the sums, the method of the centre of the maximum, and the first of the maximum
method were checked successively.

The observation of the control planes, obtained with the individual defuzzification
methods already at an initial stage, excluded the first and middle maxima methods from
further study. The control planes of these methods had too many abrupt changes, which
would have improperly affected the results. Therefore, only the method of the centre of
sums was adopted for further analysis. The control planes obtained from the different
defuzzification methods are shown successively in Figures 13–15.
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maximum method.

The authors checked what values of the reliability function can be obtained by using
the centre of sums method as a defuzzification mechanism. The obtained results are listed
along with the results obtained with the centre of gravity as the defuzzification method,
from Table 13.
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Table 13. Values of the reliability function from the fuzzy model for different defuzzification methods.

No Flying Hours [h] Shots Corrosion [mm]
R(t)

Centre of Gravity
Defuzzification Method

R(t)
Method of Defuzzification

of the Centre of Sums

1 65 0 0 0.9300 0.9400
2 106 0 0 0.9100 0.9300
3 113 0 0 0.8860 0.9200
4 133 0 0 0.8430 0.8600
5 138 0 0 0.8350 0.8400
6 148 0 0 0.8220 0.8200
7 156 0 0 0.8130 0.8100
8 175 0 0 0.7950 0.7900
9 205 0 0 0.6990 0.7600

10 214 0 0 0.6650 0.7400
11 252 0 0 0.5680 0.5200
12 257 0 0 0.5560 0.5000
13 268 0 0 0.5310 0.4700
14 302 0 0 0.4160 0.4000
15 328 0 0 0.3460 0.3700
16 376 0 0 0.2470 0.2600
17 386 0 0 0.2170 0.1400
18 395 0 0 0.1790 0.1000
19 465 0 0 0.0633 0.0500

A graphical summary of the results using the centre of gravity and centre of sums is
shown in Figure 16.
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sum defuzzification methods.

The analysis of the obtained values of the reliability function shows that, in this case,
the centre of gravity is a better defuzzification method. The middle of the sums method
gave results that were too abrupt given the shape of the reliability function from the
mathematical model.

In addition, the authors tested whether changing the method of evaluating the
premises as well as the method of aggregation in the resulting membership function
affects the final results. Using different combinations of implication and aggregation
methods did not produce significant differences in results.

4.5. Comparison of Research Findings

The classical probabilistic model of armament reliability developed on the basis of op-
erational tests and the reliability indicators determined on its basis were the reference base
to which the reliability results of the model using fuzzy logic were compared. Comparing
the results should give a clear answer to the question posed by the authors of whether
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fuzzy logic offers the possibility of building a reliability model of the selected air weapon
system. The results that were obtained from the reliability analysis in the classical approach
and the fuzzy set theory approach have been listed in Table 14.

Table 14. Values of the reliability functions from the classical model (empirical distribution and theoretical distribution) and
the “fuzzy” model.

No Flying Hours (h) R(t)—Classical Model
(Empirical)

R(t)—Classical Model
(Theoretical) R(t)—Fuzzy Model

1 65 0.97315 0.98139 0.9300
2 106 0.92085 0.93809 0.9100
3 113 0.90908 0.92774 0.8860
4 133 0.87118 0.89335 0.8430
5 138 0.86076 0.88365 0.8350
6 148 0.83887 0.86298 0.8220
7 156 0.82040 0.84526 0.8130
8 175 0.77347 0.79919 0.7950
9 205 0.69235 0.71672 0.6990

10 214 0.66680 0.69012 0.6650
11 252 0.55601 0.57214 0.5680
12 257 0.54134 0.55626 0.5560
13 268 0.50923 0.52132 0.5310
14 302 0.41286 0.41546 0.4160
15 328 0.34412 0.33957 0.3460
16 376 0.23369 0.21866 0.2470
17 386 0.21377 0.19721 0.2170
18 395 0.19679 0.17909 0.1790
19 465 0.09509 0.07522 0.0633

The graphic interpretation of the results is shown in Figures 17 and 18.
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Figure 17. Shape of the reliability functions obtained from the classical and “fuzzy” model.

The values of the reliability functions obtained from the model using fuzzy logic
differ slightly from the values of the reliability functions determined using the empirical
and theoretical Weibull distribution (analysis in the classical approach). These differences
are within a 95% confidence interval (Figure 19), which means that with a probability of
0.95, the reliability of the armament of the TS-11 “Iskra” aircraft can be estimated by the
developed model using fuzzy logic.
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5. Conclusions

The execution of the assumed research objectives of the first part of the research
included an analysis of statistical data and the reliability analysis of the selected air arma-
ment system in the classical approach. After analyzing the statistical (operational) data,
the reliability was assessed using the classical probabilistic model, in which, on the basis
of Weibull distribution fitted to the operational data, the basic reliability characteristics
were determined, including the reliability function of the selected aircraft armament. This
analysis has led to the following general conclusions:

• Fatigue processes are an important causal group of damage to the shooting armament
of the TS-11 “Iskra” aircraft.

• The differences between the parameters of empirical Weibull distribution from the
operational data and the graphic method of determining the parameters, and theo-
retical Weibull distribution are within the 95% confidence interval, which means that
with a probability of 95%, reliability indicators from both the empirical and theoretical
distribution can be used in further studies on the armament reliability.
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• The interpretation and comparison of the results obtained from the reliability analysis
in the classical approach and the reliability analysis in the fuzzy set theory approach
allowed formulating the following conclusions:

• In order to develop a reliability model using fuzzy logic, access to reliable expert
knowledge is necessary.

• Fuzzy logic offers a possibility to determine reliability based on various parameters
and also allows an analysis and interpretation of the relationship between input
parameter values and reliability.

• The developed reliability model using fuzzy logic can be used to assess the reliability of
various systems without the need for knowledge of an extensive mathematical apparatus.

• The controller pattern, designed with a fuzzy logic reliability model, can be easily upgraded
by changing the membership functions (shapes and limits) and the deduction principles.

The authors are aware that the subject matter covered in this article is a small section
of a broader issue and further research is needed in this area. In particular, further research
should include increasing the number of system input parameters affecting reliability to
address possible errors in reliability estimation.
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