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Introduction: Investigating variation in genes involved in the absorption, distribution,
metabolism, and excretion (ADME) of drugs are key to characterizing
pharmacogenomic (PGx) relationships. ADME gene variation is relatively well
characterized in European and Asian populations, but data from African
populations are under-studied—which has implications for drug safety and effective
use in Africa.

Results: We identified significant ADME gene variation in African populations using data
from 458 high-coverage whole genome sequences, 412 of which are novel, and from
previously available African sequences from the 1,000 Genomes Project. ADME variation
was not uniform across African populations, particularly within high impact coding
variation. Copy number variation was detected in 116 ADME genes, with equal ratios
of duplications/deletions. We identified 930 potential high impact coding variants, of which
most are discrete to a single African population cluster. Large frequency differences
(i.e., >10%) were seen in common high impact variants between clusters. Several novel
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variants are predicted to have a significant impact on protein structure, but additional
functional work is needed to confirm the outcome of these for PGx use. Most variants of
known clinical outcome are rare in Africa compared to European populations, potentially
reflecting a clinical PGx research bias to European populations.

Discussion: The genetic diversity of ADME genes across sub-Saharan African
populations is large. The Southern African population cluster is most distinct from that
of far West Africa. PGx strategies based on European variants will be of limited use in
African populations. Although established variants are important, PGx must take into
account the full range of African variation. This work urges further characterization of
variants in African populations including in vitro and in silico studies, and to consider the
unique African ADME landscape when developing precision medicine guidelines and tools
for African populations.

Keywords: ADME, genetic diversity, Africa, pharmacogenomics, CNV

1 INTRODUCTION AND BACKGROUND

Pharmacogenomics (PGx) aims to improve drug safety and
efficacy using genomic knowledge for genes involved in drug
action (Roden et al., 2019) with a focus on genes that have
important roles in drug safety, pharmacokinetics and
pharmacodynamics. Genes involved in pharmacokinetics are
typically defined by the role they play in the absorption,
distribution, metabolism and excretion (ADME) of drug
molecules.

Variation in ADME genes play an important role in
determining the response to drug treatment in an individual
patient. We characterize the extent and impact of variation in
these genes in a novel, high-coverage whole genome sequence
dataset from a diverse group of Africans.

ADME genes have different functions: 1) phase I metabolizing
enzymes, 2) phase II metabolizing enzymes, 3) drug transporters
and 4) modifiers. PharmaADME (http://pharmaadme.org)
classifies the ADME genes in two classes. The 32 core genes
have known biomarkers linked to ADME outcomes. For the
267 extendedADME genes, there is weaker evidence of functional
consequences in vitro or in vivo, or they are important for a
limited number of drugs only.

1.1 Rationale
Currently the majority of patients studied in drug development
programmes are of European or Asian ancestry. The African
continent is the cradle of human origin and African populations
are characterized by high genetic diversity and complex
population structure. Despite this genetic variation, drug
efficacy and safety have not been comprehensively studied in
the populations of sub-Saharan Africa (SSA) (Radouani et al.,
2020). This is of specific relevance to SSA, where high burdens of
disease are amplified by non-optimal treatment outcomes.

The particular diversity of ADME genes in SSA has been
reported in some studies. Hovelson et al. (Hovelson et al., 2017)
and Lakiotaki et al. (Lakiotaki et al., 2017) found that the greatest
levels of coding ADME variation per personal haplotype were

shown in some African populations sampled in the 1,000
Genomes Project (KGP) data. Examples of the impact of this
variation can be seen in CYP2B6 and CYP2D6 variation affecting
efavirenz and primaquine respectively. An efavirenz dosage
reduction has been recommended for HIV patients in SSA
due to the high frequency of functional variants in the
CYP2B6 gene that result in a higher risk of adverse drug
reactions (Mukonzo, 2014). Potential polymorphisms in the
human cytochrome CYP2D6 gene may negatively influence
efficacy of primaquine, and significantly affect malaria
elimination strategies (Dandara et al., 2014; Awandu et al.,
2018). African specific variation in several genes may impact
the pharmacokinetics of rosuvastatin, a drug used to treat
hypercholesterolemia (Soko et al., 2018). While these studies
represent only a fraction of the continent, they serve to
highlight the importance of future studies which are aimed at
providing a more comprehensive overview of the landscape of
ADME variation across Africa.

Therefore it is important to gain a better understanding of the
variation that exists in ADME genes, both within and between
different SSA populations. This information could be used to
inform recommended drug dosage regimens for patients in SSA
based on potential pharmacokinetic effects and consequently
efficacy and safety. To date, no studies have systematically
investigated ADME variation within a diverse set of African
populations. We therefore aim to provide valuable information
regarding the variation that exists in ADME genes, both within
and between different SSA populations. This information could
provide insight into drug efficacy and safety for patients in SSA
and play a role in ensuring safe and efficacious treatments for the
high burden of diseases in populations in SSA.

2 RESULTS

2.1 Description of Samples
Four hundred and fifty eight high coverage whole genome
sequences were used in the study as the primary data set (we
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call this the high coverage African ADME Dataset—HAAD).
Most sequences were generated by the Human Health and
Heredity in Africa (H3A) consortium (The H3Africa
Consortium, 2014; Choudhury et al., 2020) and we also used

public data and additional novel data from collaborators—see
Table 1 and Figure 1. The population structure of participants in
this study is broadly representative of speakers of Niger-Congo
languages fromWest through South Africa. Representation from

TABLE 1 | Sources of high-coverage data sets used to form HAAD: 272 genomes were generated by a supplementary grant from the NIH to the H3A Consortium
(Choudhury et al., 2020) for the primary purpose of designing a custom genotyping array; 100 were produced by AWI-Gen; 40 were shared by African collaborators; 15
genomes came from the Southern African Human Genome Program (SAHGP), and 31 genomes were from the Simons Foundation Genome Diversity Project.

Country H3A consortium data:
High coverage research

center

n

Benin University of Montréal 50
Burkina Faso AWI-Gen 33
Botswana BHP 47
Cameroon University of Dschang 26
Ghana AWI-Gen 26
Nigeria Institute of Human virology 49
South Africa AWI-Gen 100
Zambia University of Zambia 41
African collaborators: High coverage
South Africa SA Human genome program 15
South Africa Cell biology research lab, NICD/Wits 40

Public data sets
Various Simons foundation 31

FIGURE 1 | The geographic locations of the high coverage WGS data are shown on the map. Countries are referenced by their ISO 3166-1 alpha-3 code: BEN,
Benin; BFA, Burkina Faso; BWA, Botswana; CMR, Cameroon; COD, Democratic Republic of the Congo; DZA, Algeria; GHA, Ghana; GMB, Gambia; KEN, Kenya; NAM,
Namibia; NGA, Nigeria; SDN, Sudan; SEN, Senegal; ZAF, South Africa; ZMB, Zambia. The number of samples per country is shown in parentheses.
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Nilo-Saharan and Afro-Asiatic populations is sparse. There also
are few individuals of Khoe and San heritage, although significant
admixture from Khoe and San speakers is found in Bantu-
speakers in Southern Africa (Choudhury et al., 2017).

We supplement some analyses with African datasets from the
KGP (we use KGA specifically to refer to the African genomes in
KGP). As the KGP datasets are low coverage, not all analyses were
performed with the KGA dataset in addition to HAAD.

2.2 Population Structure
A principal component (PC) and structure analysis of our data
shows high genome-scale variation and that we have good
coverage of African genomic diversity across West, Central
and Southern Africa, with less coverage in East Africa. The PC
analysis of our data shows a strong correlation to geographical
location (Figure 2 and Supplementary Section S1).

To explore diversity between different African regions we
clustered the studied population together with reference data
sets using PC data (see Methods, Table 2). The PC analysis shows
that the HAAD samples fall broadly into three groups: West

(Ghana, Burkina Faso, Nigeria), South/Central (Cameroon,
Zambia, Botswana, South Africa), South (Botswana, South
Africa) African populations. The variability in the Southern
group primarily arises through differential admixture between
Bantu, Khoe and San speakers. There is a Far West group
comprising individuals in HAAD and KGA from Gambia,
Senegal and Sierra Leone. There are also a few individuals
from other African regions. Note that there is significant
diversity within countries; and in some cases overlap between
countries—e.g. some participants that we label as “South/Central”
live to the south of some participants in the “Southern” group.

2.3 Overall Characterization of ADME
Variation
Gene-based genetic variation for the core and extended ADME
gene categories was assessed for composition and type, including
introns, upstream and downstream flanking regions (Figure 3).
Comparisons were made between the HAAD dataset and the
KGA dataset, which represent samples in the joint called HAAD
and African KGP populations respectively (Methods 5.3.1). In
ADME core genes, we counted a total of 40,714 and 36,088
variants for HAAD and KGA data respectively while for the
extended ADME genes there were 274,798 and 243,022 variants
respectively. Intronic variants are most common overall with
about the same proportions in both HAAD and KGA datasets of
80 and 77% (for both core and extended genes) respectively. A
significant number of variations appear in 3′ untranslated (3′
UTR) and 5′UTR regions. Coding region variants (non-
synonymous and synonymous as annotated by VEP v92.0) do
not overlap completely between HAAD and KGA groups. For
core genes there were 423 coding variants common to both

FIGURE 2 | Principal component analysis of the HAAD (some outliers are omitted). Abbreviations for sources used are H3A (Human Health and Heredity in Africa
Consortium), and SF (Simons Foundation Genome Diversity Project). The countries of origin and source of the samples shown in the PCA are: BEN/H3A, BFA/H3A,
BWA/H3A + SF, CMR/H3A, COD/SF, GHA/H3A, GMB/SF, KEN/SF, NGA/H3A + SF, SDN/SF, SEN/SF, ZAF/H3A + Tiemessen Lab + SF + Southern African Human
Genome Program, ZMB/H3A. Country codes given in Figure 1.

TABLE 2 | Clusters within Africa, including the number of individuals in each
cluster. Clusters include both HAAD and 1,000 Genomes African
population data.

Identifier Number Region

SA 166 Southern Africa
SC 172 South/Central Africa
KS 5 Khoe and San
FW 185 Far West Africa
WE 309 West Africa
O 5 Outliers
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HAAD and KGA datasets, 288 coding variants unique to HAAD,
and 252 unique to KGA. For extended genes, there were 17,148
coding variants common to HAAD and KGA, 2,850 unique to
HAAD, and 2,318 unique to KGA respectively. Care should be
taken in comparing HAAD and KGA data because of the
different depth of sequencing.

The importance of using and generating African datasets like
ours can be seen in our discovery curves which show the increase
in the number of variants found in the core ADME genes as more
genomes are included in the study (the results for the extended
genes are not shown but are similar). Figure 4A compares our
data set to 1,000 Genomes African and European populations.
The diversity of African populations compared to European
populations is clear and consistent with previous literature
(Hovelson et al., 2017). We believe that the increased richness
of our data compared to 1,000 Genomes African data is partially
due to the fact that our data is high-coverage. This richness is also

likely to be driven by the significant numbers of Southern African
genomes that have significant Khoe and San ancestry (see
(Choudhury et al., 2017) for some discussion) as well some
diverse samples from the Simons Foundation. Figure 4B
shows the discovery curve for the combined African (HAAD
and KGA) dataset. Although the curve has started to plateau, the
results show that combining the data sets has value, and that
sampling more Africans and more diverse African groups not yet
properly captured will reveal considerably more variants.

2.4 Annotation of High Impact Coding
Variants
To annotate ADME genes we used the output of an ADME gene
optimized annotation schema. This schema uses five prediction
tools, and variants meeting score cutoffs for all five are of the
highest confidence for functional impact. We identified 930 high

FIGURE 3 |Distribution of variant types (as defined by SNPeff annotation) across core (A) and extended (B) ADME gene regions. HAAD (N � 458) represents those
samples in the jointly called set from the H3A Consortium data, Simons Foundation, SAHGP and Tiemessen Labs, and KGA (n � 506) represents the African KGP
populations from the jointly called set. Upstream and downstream regions are represented by 10 kb flanks from gene start and end respectively.
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impact variants (HI-vars) (Supplementary Table S8) for 247
ADME genes (from a total of 299 ADME genes) of which 29 are
core genes and 218 are extended genes. Of the core genes, seven
members of the cytochrome P450 (CYP450) family (CYP1A1,
CYP1A2, CYP2B6, CYP2C8, CYP2C19, CYP2A6, CYP2D6) were
among those with the highest count of high impact variants.
Highest counts of the CYP450 genes were seen in CYP1A1 and
CYP2D6 with 12 and 10 HI-vars of respectively. The ATP-
Binding Cassette (ABC) transporter gene, ABCB5 showed the
highest number of HI-vars overall numbering 20. We also
counted three members of ABCC transporter family and three
other members of the CYP450 family in the 10 most
variable genes.

The 930 HI-vars are mostly rare alleles, with most being
singletons or doubletons. There were only 93 variants with a
frequency above 1% in the total joint called samples (Figure 5).
Overall, the frequency distributions for sub-populations (SA, SC,

FW, and WE) are not uniform (we omit discussion of the Khoe
and San cluster because of low sample number). Some of the high
impact variants tend to show a large disparity in frequency values
between some clusters. For example, the CYP27A1 rs114768494
variant (chr2:g.219677301C > T) (28th index in Figure 5) is only
present in SC andWEwith respective frequencies of 1.1 and 3.7%.
Also, variants can exist in all the sub-populations but with
significantly different proportions. For instance, the CYP4B1
rs45446505 variant, (chr1:g.47279898C > T) (52nd index) is
present at frequencies of 9.5, 2.3, 4.5 and 3.5% for SA, SC,
FW, and WE respectively. Another variant: CYP4B1 rs3215983
(ch1:g.47280747_47280747del) (47th index) is common in the SC
population with a 10% frequency. This value is at least twice that
of other clusters. Frequency differences of ≈10% are observed in
common high impact variants.

The regional overlap of the total HI-vars identified shows the
majority of these variants are appear in one population cluster

FIGURE 4 | Comparative discovery curves of variants in the core ADME genes (including flanks) for the (A) HAAD, the 1,000 Genomes African and European data,
and (B) in the combined HAAD and KGA datasets. The results show for a given number of haplotypes the number of variants seen per kilobase. The actual results are
shown as a large dot, sub-samples by a solid line, and projections by a dotted line. Sub-samples values are computed averaging over 50 different randomly sampled
subsets for intermediate values. Projection is computed using a third order jackknife projection (Burnham and Overton, 1979).

FIGURE 5 | Distribution and frequency of HI-vars across sub-populations. Only common HI-vars (Frequency > 1% in the total joint called population dataset) are
represented in the figure. Frequency is that of the non-reference (ALT) allele. The frequency per variant is reported in the lower panel of the figure as a line plot (indexed by
frequency). The frequency of each of the variants in each sub-population is given by each heat map column, with white indicating 0% frequency. See Table 2 for
abbreviations.
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only (Figure 6). There are only ∼100 variants that overlap all
African population clusters. These variants appearing in all regions
have widely ranging frequencies, with most falling between 1 and
20% for the total African samples assessed. Each population cluster
had >110 variants specific to it. Variants that occur only in one
cluster aremostly rare, with an average frequency of less than 1% in
their own respective cluster. Southern Africans have 20 cluster-
specific variants with frequencies above 1% (20 variant)—more
than any other cluster. Relatively fewer variants overlap between
two clusters alone, with a trend of geographically close clusters
sharing more variants than those which are distant.

Fixation index (FST ) assessments revealed that there are inter-
cluster differences calculated for HI-vars (Figure 7A), and for all
ADME gene variants (Figure 7B). The greatest FST of all ADME
variants is observed between SA and FW populations (0.0125)
and the lowest FST is observed between SC and WE (0.003). For
FST calculated across HI-vars, these are specific to ADMEHI-vars

as compared to HI-vars identified in random genes across the
genome (n � 2,000). This effect was significant between Far West
Africans and all other clusters (p < 0.001). Despite being
geographically close and having HI-vars in common, FW and
WE clusters show an FST value of 0.0042, similar to the FST
between the Far West FW and SC cluster, which are
geographically distant and have no common
variants—something meriting further study. Both of these
differences show significant p-values of 9 × 10−4 and <10−4
between FW/WE and FW/SC respectively. FST values for all
ADME gene variants overall show higher levels of differences,
none of which, however, seem to be a property of these variants
compared to genetic variants from a random set of genes (all
p-values are non-significant).

In summary, HI-vars are not uniform across African clusters,
and that geographical proximity is not a proxy for genetic
similarity in ADME genes.

FIGURE 6 | Characterization of the HI-vars in clusters SA, SC, FW, and WE. (A) The Venn diagram shows the overlap between the clusters for these variants.
Distribution plots of the frequencies of the common variants between the four clusters (B) and for the unique variants found in each sub-population (C).
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2.5 CNVs
A copy number variant region (CNVR) is determined by
aggregating overlapping copy number variants (CNVs)
identified in different individuals. A total of 259 CNVRs were
identified, consisting of 106 duplications, 106 deletions and 47
mixed CNVRs (i.e. a region that is deleted in some individuals
and duplicated in others) (Table 3). Duplications were further
separated into biallelic duplications (3 or 4 copies) and multi-
allelic duplications (>4 copies). About 54% of CNVRs were
unique, while the remaining CNVRs overlapped with one or
more of the other CNVRs identified. Of the 299 ADME genes that
were analyzed, a total of 116 genes (38.8%) contained at least one
CNVR. These include some important core pharmacogenes such

as the CYPs, UGTs, and GSTs. Furthermore, the number of CNVs
in ADME genes per individual ranged from four to 71, with the
majority of individuals (89.9%) harboring between 11 and
30 CNVs.

2.6 Novel and Highly Differentiated Variants
A novel variant in the context of this study is an SNV that is
identified in the high coverage African population datasets, and not
present in dbSNP (version 151) (Sherry, 2001) which aggregates
variants from various data sources that include the 1,000 Genomes
consortium (Altshuler et al., 2010; Auton et al., 2015), GO-ESP
(Auer et al., 2016), ExAC consortium (Lek et al., 2016), GnomAD
(Karczewski et al., 2019) and TOPMED (Brody et al., 2017).

A total of 343,606 SNVs were called for the ADME genes from
the HAAD set of 458 samples, with 12% classified as novel SNPs
(Supplementary Table S2). For the 32 core ADME genes, 5,818
novel variants were identified and a further 34,874 novel variants
were identified in the 267 extended ADME genes within the
HAAD. The majority of these variant types are intronic or
intergenic variants (Supplementary Figure S4). Of the novel
coding variants, eight were identified as HI-vars in core genes and
88 in extended genes.

The largest number of novel SNVs identified were from
populations sampled from the Southern African region (not

FIGURE 7 | Calculation of Fixation index (FST ) between the population clusters. We used HI-vars (A) and all ADME variants (B) to compute the weighted FST value
between each pair of populations using PLINK (version v1.90b6.3). Population clusters are represented by the geographical centroid of the ensemble of country
centroids constituting each cluster. Dashed lines link the centroids of the countries to the cluster centroid. Node radii are proportional to the size of each sample. p-values
were calculated from a random FST distribution by sampling 917 and 32,0983 variants of a random set of genes (n � 2,000) for high impact variants and all ADME
variants respectively.

TABLE 3 | CNVRs identified in core and extended ADME genes (percentages
rounded to closest integer).

CNVR category Total ADME genes

Core Extended

Deletions 106 (41%) 30 76
Biallelic duplications 71 (27%) 7 64
Multi-allelic duplications 35 (14%) 2 33
Mixed CNVRs 47 (18%) 16 31
Total 259 55 (21%) 204 (79%)
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unexpected as there are no Southern African populations in the
KGP). Novel variants in each regional population cluster were
characterized according to their effect as summarized in
Supplementary Table S3.

We compared the frequencies of ADME variants seen in the
HAAD set as well as in at least one of the other large databases
including 1,000 Genomes Consortium, ExAC, gnomAD and
TOPMED. Any variant with a frequency two-fold more or two-
fold less in the HAAD set than in the other datasets was
considered as highly differentiated. Approximately 1,957
ADME variants were highly differentiated in the HAAD data
compared to 1,000 Genomes consortium, ExAC, gnomAD and
TOPMED datasets. Sixteen common variants with Minor Allele
Frequency (MAF) ≥1% in eight core genes were more frequent

in HAAD than in the KGP including African populations in
those datasets. One variant in one of the core genes (rs3017670,
SLC22A6) was seen more commonly in the other datasets than
in the HAAD data (Supplementary Table S4). In total, 251 core
and extended ADME genes harbored highly differentiated
variants, with about 80% of them having at least two highly
differentiated variants.

We performed a structural analysis of four rare novel HI-
vars in the CYP2A13, CFTR, ABCB1, and NAT1 genes, all
having a protein structure in the Protein Data Bank
(Figure 8). A variant chr19:g.41595975C > G causes a
substitution p. Arg123Gly on CYP2A13 (PDB code 2PG5)
(Sansen et al., 2007). Mapping this variant on the structure
shows a position close to the interaction site belonging to a rigid

FIGURE 8 | The number of novel high impact variants in ADME protein families. Abbreviation for Protein families: AD, aldehyde dehydrogenase; ANA, arylamine
N-acetyltransferase; ATPDABZ, ATP-dependent AMP-binding enzyme; CATA, cation transport ATPase; CYP450, cytochrome P450; DADA, DAMOX/DASOX; DASS,
SLC13A/DASS transporter; EPH, epoxide hydrolase; GPER, glutathione peroxidase; GSTA, GST alpha; GSTM, GSTMu; ICAD, iron-containing alcohol dehydrogenase;
LAAT, L-type amino acid transporter; NCYP450, NADPH–cytochrome P450 reductase; NHRF, nuclear hormone receptor family; OCTF, organic cation transporter
family; PEROX, peroxidase; SDR, short-chain dehydrogenases/reductases; ST2, sulfotransferase 2; SUGT, Sugar transporter; SULF1, sulfotransferase 1; UDPGT,
UDP-glycosyltransferase. ABCC, ABCB, ABCA, FMO, ABCG are not abbreviated. On the structures, we showed examples of variants for four proteins belonging to
different protein families described in Section 2.6.
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alpha helix which might affect the binding properties and the
local folding integrity.

For the CFTR gene, a chr7:g.11725069A > G causes a
substitution p. Thr1036A which is involved in the interaction
of the Lasso domain of the protein serving as a critical interaction
segment of CFTR with other proteins (PDB code 6MSM) (Ford,
2017; Zhang et al., 2018). This threonine also appears to form a
pseudoproline-like structure in which the side chain OH is
hydrogen bonded to its own backbone NH. This may
contribute to the bending of the helix in which this residue is
found. Mutation to Ala removes this hydrogen bond and may
therefore influence the degree of bending of this helix.

A p. H1232Q protein variant in ABCB1 could affect the
interactions of this residue with the ATP molecule required for
the active transport process (PDB code 6C0V) (Kim and Chen,
2018). In the structure His 1,232 lies in a site to which an ATP is
bound approximately 5 Å from the ATP gamma phosphate.
Although not in direct contact with the ATP, it could interact
with it via a network of hydrogen bonds involving water molecules
or, if the histidine is protonated, via an electrostatic interaction
with the ATP phosphates. A mutation to Gln could affect both
types of interaction with the ATP.

The chr8:g.18079983C > T variant creates a premature stop
codon in NAT1 gene (PDB code 2IJA). The variant corresponds
to the position p. Q143 which is close to the catalytic site of the
protein.

We analyzed the distribution of the novel variants for the
HAAD population cluster (Figure 9). The shared variants are

generally exclusive for higher index values, which correspond to
higher allele frequencies (Figures 9A,B) in their respective cluster
for both core (Figure 9C) and extended genes (Figure 9D).
Moreover, we noted that the cluster specific variants cover a big
portion of the frequency spectrum: most of them are rare (lower
limit of the frequency spectrum).

2.7 Potential Translational Impact of ADME
Pharmacogenomic Variants With Known
Clinical Effects
To assess the transferability of variants with known
pharmacogenomic effect, we focused on variants with
PharmGKB level 1A and 1B clinical annotations. A level 1A
annotation denotes a variant-drug combination published as a
CPIC guideline or known clinical implementation in a major
health system, while a level 1B annotation denotes a variant-drug
combination for which a large body of evidence shows an
association in the context of altering drug response (Whirl-
Carrillo et al., 2012) (Note that the absence of level 1
annotation may be evidence of lack of study of a variant,
especially for African-specific variants, rather than evidence
against clinical relevance.) There are 21 clinical variants
(PharmGKB 1A/B) in total in 11 ADME genes in the entire
HAAD set: nine of these variants had AF ≥ 0.05 in HAAD, while
12 are rarer (AF < 0.05); and 7 of the 21 are HI-vars (rs3918290,
rs1142345, rs28399504, rs4986893, rs1799853, rs3892097,
rs1065852). We compared the frequency of the clinically

FIGURE 9 |Characterization of novel variant distribution across the ADME genes in HAAD. Variants are indexed by descending MAF for core genes (A) and
extended genes (B) for the total population of HAAD samples. Circular plots for core (C) and extended genes (D) show the position of the unique variants per
each cluster across the index axes represented by points. The index represents the MAF of the variant in the total HAAD dataset. A link is established if two
clusters share the same variant. The FW cluster has fewer variants in common with other clusters in this figure due to low sample number used to generate
this figure.
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TABLE 4 | Allele frequency of the clinically actionable variants (PharmGKB 1A/B) in the combined HAAD dataset compared to the KGP super populationsk as well as
gnomAD.

dbSNP id Gene/Star allele Variant type Allele frequency

HAAD kAFR kAMR kEUR kEAS kSAS gnomAD

rs35742686 CYP2D6 (*3) Frameshift 0 0.0023 0.0058 0.0189 0 0.002 0.0124
rs3892097 CYP2D6 (*4) Splice acceptor 0.0376 0.0605 0.1297 0.1859 0.002 0.1094 0.1384
rs5030655 CYP2D6 (*6) Frameshift 0 0.0008 0.0029 0.0199 0 0.001 0.0079
rs1065852 CYP2D6 (*10) Missense 0.0843 0.113 0.148 0.202 0.571 0.165 0.209
rs28371706 CYP2D6 (*17) Missense 0.2306 0.218 0.009 0.002 0 0 0.014
rs28371725 CYP2D6 (*41) Intron variant 0.01 0.0182 0.062 0.0934 0.0377 0.1217 0.0805
rs1799853 CYP2C9 (*2) Missense 0.0022 0.0083 0.0994 0.1243 0.001 0.0348 0.0926
rs1057910 CYP2C9 (*3) Missense 0.0055 0.0023 0.0375 0.0726 0.0337 0.1094 0.0636
rs12777823 Intergenic Intergenic 0.2544 0.251 0.107 0.151 0.314 0.362 0.189
rs12769205 CYP2C19 (*2) Intron variant 0.1845 0.1967 0.1052 0.1451 0.3125 0.3579 0.1804
rs4244285 CYP2C19 (*2) Synonymous 0.1463 0.1702 0.1052 0.1451 0.3125 0.3579 0.1759
rs4986893 CYP2C19 (*3) Stop gained 0.0011 0.0023 0 0 0.0556 0.0123 0.0052
rs28399504 CYP2C19 (*4) Start lost 0.0011 0 0.0029 0.001 0.001 0 0.0023
rs56337013 CYP2C19 (*5) Missense 0 — — — — — <¡0,001
rs72552267 CYP2C19 (*6) Missense 0 — — — — — <¡0,001
rs41291556 CYP2C19 (*8) Missense 0 0.0008 0 0.003 0 0.001 0.0015
rs12248560 CYP2C19 (*17) Upstream gene variant 0.1954 0.2352 0.1196 0.2237 0.0149 0.136 0.205
rs776746 CYP3A5 (*3) Splice acceptor 0.1681 0.18 0.7968 0.9433 0.7133 0.6677 0.736
rs3745274 CYP2B6 (*6) Missense 0.3734 0.374 0.373 0.236 0.215 0.381 0.272
rs2108622 CYP4F2 Missense 0.0415 0.0825 0.2378 0.2903 0.2143 0.4131 0.2735
rs3918290 DPYD Splice donor 0.0011 0.001 0.001 0.005 — 0.008 0.006
rs115232898 DPYD Missense 0.0153 0.0227 0.0029 0 0 0 0.0016
rs116855232 NUDT15 Missense 0 0.0008 0.0447 0.002 0.0952 0.0695 0.0281
rs1800462 TPMT (*2) Missense 0 0.0008 0.0058 0.006 0 0 0.0017
rs1142345 TPMT (*3A and C) Missense 0.0448 0.0666 0.0576 0.0288 0.0218 0.0174 0.0366
rs1800460 TPMT (*3A and B) Missense 0 0.003 0.0403 0.0278 0 0.0041 0.0281
rs1800584 TPMT (*4) Splice acceptor 0 — — — — — <0.001
rs887829 UGT1A1 Upstream gene variant 0.4858 0.4932 0.379 0.2982 0.13 0.4366 0.364
rs4149056 SLC O 1B1 Missense 0 0.0136 0.134 0.161 0.123 0.0429 0.1326
rs115545701 CFTR Missense 0.0066 0.0189 0.0014 0.001 0 0 0.0014
rs11971167 CFTR Missense 0.0055 0.0182 0.0014 0.001 0 0 0.0012
rs202179988 CFTR Missense 0 0.0008 0 0 0 0 <0.001

AFR: African, European: EUR, AMR: Ad Mixed American, EAS: East Asian, SAS: South Asian.

FIGURE 10 | Distribution of pharmacogenomic variants with a high level of clinical annotation (PharmGKB level 1A/B). (A) Scatter plot of allele frequency of clinically
relevant variants in the PCA clusters. (B) Violin plot of the number of clinically relevant variants carried per individual grouped by the population clusters.
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actionable ADME gene variants in the combined HAAD
population with that in the 1,000 Genomes super populations
and gnomAD (Table 4).CYP2D6*17 (rs28371706, AF � 0.23) had
much higher frequency in HAAD compared to the non-African
KGP super populations and the combined gnomAD population.
CYP2D6*17 has been associated with decreasedCYP2D6 enzymatic
activity in African Bantu populations (Masimirembwa et al., 1996).
The CYP3A5*3 defining variant (rs776746, splice acceptor) had a
much lower frequency in HAAD (AF � 0.17), suggesting
differences in the functionality of CYP3A5 in African
populations compared to non-African populations where the
frequency of this function-obliterating variant is higher.

Some clinically actionable ADME gene variants common in
the non-African KGP super-populations are rare in the HAAD
set. These include the variants SLCO1B1 rs4149056 (SLCO1B1*6),
CYP4F2 rs2108622, CYP2D6 rs3892097, CYP2C9 rs1799853, and
CYP2C9 rs1057910 (Table 4).

Furthermore, we evaluated the distribution of level 1A/B
PharmGKB variants within the African populations (HAAD and
KGP) grouped according to the PCA clusters. Variants which show
considerable frequency differences among clusters (SA, SC, FW,
and WE) include CYP2B6*6 (rs3745274), and CYP2D6*17
(rs28371706) (Figure 10A). The number of level 1A/B
PharmGKB variants per individual ranged from 0 to 15 (median
of 6, 5, 5, and 6 in SA, SC, FW, andWE respectively) (Figure 10B),
with 99.8% of individuals carrying at least one such variants.

2.8 Coverage of ADME Variants on SNV
Genotyping Arrays
To evaluate whether genotyping array chips are suitable for
detection of relevant ADME variants in African populations,
we compared our whole genome sequencing variants with those
captured by current arrays. Table 5 on page five shows the
coverage of the variants that we detected in the core ADME
genes in the WGS data compared to the Illumina Human Omni
2.5.8 (Omni) and the Illumina Infinium Multi-Ethnic AMR/

AFR-8 Kit (MEGA). The Omni is a 2.39 million SNP array
commonly used in human GWAS work—previous unpublished
work shows that this is one of the best performing arrays on
African populations. The MEGA array is 1.43 million SNP array
optimized for African and Hispanic American populations (and
can be augmented with approx. 200 k user selected SNPs). For
different minor allele frequencies of variants we detected (MAF)
we show the number of variants that are at least at that threshold,
the number of those variants captured by probes by the two
arrays, and the percentage of the variants that are captured. As
can be seen, even at relatively high frequencies, less than 5% of the
variants are captured by the array for core genes, and less than 8%
for extended genes. As expected the larger Omni does a better job.
However, of the 93 common HI-vars, only 19 (20%) are on the
Omni chip whereas 50 (54%) are on the MEGA.

2.9 Other Analysis
We found novel variation in the regulatory regions of the ADME
genes and large regions of homozygosity. Supplementary
Sections S5, S6 present these analyses.

3 DISCUSSION

Next generation technologies have provided PGx and precision
medicine a major increase in their application for disease
treatment and drug safety (Claussnitzer et al., 2020). ADME
genes have been a focus due to their critical role in
pharmacodynamics and pharmacokinetics. Our work presents
the first study characterizing the PGx landscape of ADME genes
in SSA using high coverage whole-genome sequencing data which
has been collected from different sources. The study’s main aim
was to assess the variability of ADME genes across Africa and if
this could have a significant impact on protein function and other
pharmacologic properties and thus the potential impact on drug
response.

We focus mainly on four African clusters distinguished
geographically and genetically as shown by the PC whole-
genome analysis. Overall assessments of structural and
regulatory variation were evaluated across the complete
dataset, while coding variants were assessed for functional
impact. The applicability of known clinical variants and
current genotyping technologies was also assessed.

In both novel variant and HI-vars analysis, our study
demonstrates a significant level of variability. Most of the
variants are rare and are population-specific in accordance
with previous studies due mainly to increased population size
and to a weak negative selection (Tennessen et al., 2012; Whirl-
Carrillo et al., 2012; Nagasaki et al., 2015;Wright et al., 2018). Our
high coverage data are adequate to genetically characterize these
types of variants at high confidence levels. Evaluations of the false
discovery rate of rare variants were previously estimated between
3.6 and 6.3% depending on the platform (Wall et al., 2014).
Therefore, a broad extrapolation from our results is that there are
between 30 and 60 false positive variants in our HI-vars. In the
context of ADME pharmacogenes, although not all variants
identified may prove to have functional impact, those that do

TABLE 5 | Variant coverage and overlap for core and extended gene variants
detected in HAAD whole genome sequencing datasets vs those captured by
the Omni 2.5.8 and the MEGA arrays.

MAF WGS Omni MEGA

Chip % Cov % Cov

Core genes 1 18,660 640 3.4 349 1.9
2 13,835 574 4.1 298 2.2
3 11,335 522 4.4 242 2.1
4 9,714 457 4.7 204 2.1
5 8,886 409 4.6 179 2.0
10 6,271 262 4.2 135 2.2

Extended genes 1 120,660 11,457 9.5 5,743 4.8
2 94,651 11,031 11.7 5,256 5.6
3 80,585 10,588 13.1 4,937 6.1
4 71,480 10,220 14.3 4,638 6.5
5 64,475 9,859 15.3 4,414 6.8
10 43,228 8,069 18.6 3,555 8.2

Chip, number of variants in the chip; % cov � the percentage of SNPs at thatMAF inWGS
data that are covered by the array; WGS, number of variants in the whole-genome data.
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may have significant consequences in dictating the drug-host
response for individuals.

Our FST calculation highlights the differences between
clusters. Calculation using all ADME variants led to values
similar to results obtained for multiple sub-Saharan African
ethnic groups that used 328,000 independent SNPs (Busby
et al., 2016). Genetic distance did not always correlate with
geographical distance and in some pairs of clusters, the
distance seems to be more significant in ADME genes. In the
absence of clear evidence, it is not trivial to explain why two
geographically close clusters like FW andWE, share a comparable
degree of divergence like the pair FW-SC. Therefore, using ethno-
geographical properties as a proxy to discriminate the PGx
landscape might be inaccurate.

In addition, the important number of cluster-specific novel
and high impact rare variants suggest that strategies limited to
studies of high-frequency alleles might be considered as an over-
generalization to a more complex pharmacogenomic landscape in
SSA. In fact, our work highlights a “genetic diversity bottleneck”
for precision medicine applications, requiring a balance between
variants useful for population-based applications (for a particular
cluster of Africans) and between the potential impact posed by
variants unique to the individual. Therefore, the complexities of
variant interpretation and reporting in PGx testing (Mills et al.,
2013) may be exacerbated by the complex African ADME
landscape.

While some clinically actionable variants have similar
frequencies in European and African populations, our
assessment of the top-level clinically validated variants shows a
PGx knowledge bias toward European populations, with most
variation in African and other global populations still largely
uncharacterized in terms of PGx effect. Most are more common
in Europeans, though some variants show an opposite trend, such
as the CYP3A5*3 rs776746 (less common in Africans compared
to Europeans) and CYP2D6*17 rs28371706 (largely African-
specific). These enzymes are known to be key metabolisers of
a large number of drugs, and these two variants (as they are
common) will impact the reliability of using a European based
PGx strategy in African populations. Key drugs that may be
affected by those variants are codeine (Brousseau et al., 2007),
primaquine (Awandu et al., 2018) (CYP2D6), and tacrolimus
(Chen and Prasad, 2018) (CYP3A5). We also see an interesting
example of SLC O 1B1 rs4149056, which was seen in the KGA
populations (albeit rarely), which is not seen in the HAAD
samples. This further reiterates the need for additional African
sequences, as publicly accessible African genomic data cannot
remain represented by the KGP alone.

The greatest genomic coverage of African populations to date
is available in genotyping array format (Gurdasani et al., 2015).
These methods are unable to adequately characterize rare ADME
variants at high confidence levels compared to high coverage
WGS datasets. Moreover, we have also detected a large number of
CNVs, and were able to do so robustly with our high coverage
sequencing data as compared to other methods (Zhao et al.,
2013). The distribution of CNVs and their impact on the ADME
landscape in Africans is currently ongoing and will be available in
a separate publication. As the state of data availability and type

remains in flux, precision medicine approaches in Africa will be
limited. In an ideal scenario, high coverage long readWGS will be
used for more African samples undergoing clinical trials, as this
allows for accurate resolution of haplotypes (including novel
haplotypes), and thus, clearer interpretations of their potential
impact on drug response.

4 CONCLUSION

Our work highlights that the ADME landscape in African
populations is diverse, and shows the importance of rare
variation held within individual population clusters. Therefore,
current array-based genotyping technologies have severe
limitations to be applied as the high throughput method in
precision medicine applications. As sequencing technology
becomes more accessible and cheaper, characterization of rare
variants would benefit from the ongoing progress. Targeted
sequencing and whole-exome sequencing would be better
suited for characterizing ADME genes. Moreover, a previous
suggestion to consider intra-ethnic genetic characterization in
drug-development (Soko et al., 2018) might not be appropriate
for SSA due to the important presence of singletons and the
subjective assigning of ethnicity for individuals. The “genetic
diversity bottleneck” in precision medicine might increase the
burden of developing targeted therapies at sub-population levels
because of the weak presence of common genetic patterns.
However, these patterns might exist at the functional and
phenotypic levels which might help to stratify the populations
to clusters sharing common pharmacokinetic properties for a
given drug. In this context, a proposed plan would integrate
genotypic and phenotypic data into predictive models to unveil
these patterns (Dandara and Matimba, 2019).

Capacity building efforts for PGx research in Africa is
important. Strategies and policies for development of science
and technology must ensure a future where Africa can take an
active role in harnessing the power of genomic research in
addressing its healthcare challenges. Promising positive steps
are being taken with the establishment of initiatives such as
the Human Heredity and Health in Africa project (http://
h3africa.org/) that aims at strengthening research capacity for
genomics in Africa.

4.1 Limitations
There are many limitations of our work. The most obvious is the
need for significantly more genomic data from Africa. Although,
more samples are necessary generally, there is a particular need
for more diverse sampling. We focus on SSA, omitting northern
Africa completely. We only had limited numbers of samples from
Nilo-Saharan and Afroasiatic language speakers as well as
speakers of non-Bantu languages in central, southern and
eastern Africa (such as San and Khoe speakers). However,
with more samples, we expect our conclusions to hold and the
additional benefit would be a clearer resolution of the PGx
landscape in diverse sub-clusters. Ideally, we would have
merged the 1,000 Genomes African data and the HAAD data
set and done a combined analysis. However, the bulk of the 1,000
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Genomes WGS is low-coverage while the HAAD set is high-
coverage which complicates comparative work significantly. As
more data becomes available, this challenge will become easier.
The discovery curve shown in Figure 4B shows we can expect to
find many more variants when they are sequenced. Besides the
lack of genomic data, there is very little clinical and drug response
data for African populations (despite the effects of groups of
excellence across Africa we have cited). Without this it will be
difficult to associate the functional effect of variants to the clinical
phenotypes. All of this costs money and requires scarce skills.
Collaborations like ours, which has brought a diverse group of
African scientists together show the potential of what can
be done.

4.2 Strengths
Our work investigates novel African datasets and combines these
with established African sequences to assess as broad an overview
of African ADME variation as possible. This work could lay the
foundations for motivation of more PGx related studies in
Africans. We applied diverse computational assessment
methods to mine the data and retrieve valuable genomic
information. This can assist in guiding future research in
resource scarce environments.

4.3 Future Work
In our subsequent work, we plan to do linkage disequilibrium
analysis and haplotype frequency determination of key ADME
genes—an example being CYP2D6, which requires specialized
algorithms for accurate haplotyping (Twesigomwe et al., 2020).
We are currently in the stage of resequencing CYP2D6 and some
other ADME genes with long-read sequencing technology to
explore such features, as well as for in-depth analysis of CNVs.

5 METHODS

5.1 Data
H3AConsortium set contains 272 samples selected and sequenced
for the Human Heredity and Health in Africa (H3Africa) project.
Samples cover populations from Benin, Burkina Faso, Botswana,
Cameroon, Ghana, Nigeria and Zambia. Samples were shipped to
the Human Genome Sequencing Center (HGSC) at Baylor
College of Medicine (BCM), Houston, United States, under
signed material transfer agreements from each project.
Samples were prepared using the TruSeq Nano DNA Library
Prep Kits and underwent whole genome sequencing on an
Illumina TenX (150 bp) to a minimum depth of coverage of 30×.

AWI-Gen set consists of 100 South Eastern Bantu-Speakers
(40× coverage).

Cell Biology Research Unit, Wits set consists of 40 samples
from Soweto/Johannesburg South Africa (39 black and onemixed
ancestry). Library preparation and sequencing was done at
Edinburgh Genomics, Edinburgh, Scotland. Library
preparation was done using the TruSeq Nano protocol and
high coverage sequencing (∼30×) was done utilizing the
Illumina SeqLab workflow system and the Illumina HiSeqX
platform.

The SAHGP set is a collection of 15 samples from the Southern
African Human Genome Program (Choudhury et al., 2017). Two
main Bantu-speaking ethno-linguistic groups were included: The
Sotho (Sotho-Tswana speakers; n � 8) and the Xhosa speakers
(Nguni language; n � 7 recruited from the Eastern Cape
Province). The DNA samples were normalized to ∼60 ng/μl
and ∼5 µg DNA was submitted to the Illumina Service Center
in San Diego, California, for sequencing on the Illumina HiSeq
2000 instrument (101 bp paired-end reads, ∼314 bp insert size)
with a minimum read depth of coverage of 30× (Choudhury et al.,
2017).

SF set contains 34 African samples selected from 300
individuals from the Simons Foundation Genome Diversity
Project. Samples include populations from Congo, Namibia,
Kenya, Senegal, Algeria, Nigeria, Gambia, Sudan and South
Africa. Samples were sequenced at an average depth of 43× at
Illumina Ltd.; almost all samples were prepared using the same
PCR-free library preparation (Mallick et al., 2016).

KGA set consists of 507 African samples from the KGP. These
samples include Gambian Mandinka, Mende from Sierra Leone,
Yoruba from Ibadan, Nigeria, Esan from Nigeria and Luhya from
Webuye, Kenya. Libraries were constructed on either Illumina
HiSeq2000 or GAIIX with the use of 101 base pair end reads.
Sequencing was done at an average depth of 4× (Auton et al., 2015).

The only phenotype made available to us was sex. In
particular, self-identified ethnicity, location in the country, and
disease status were not revealed.

5.2 Data Processing
From the BAMs we called gVCFs using HaplotypeCaller in
gVCF mode using GATK v4.0.8.1. We combined all the gVCFs
into one combined gVCF using GATK’s CombineGVCF
(v4.0.8.1). From the combined gVCF we did joint calling
using GenotypeGVCFs (v4.1.3.0) and followed GATK’s best
practice for variant quality score recalibration for SNPs and
INDELs. After applying VQSR we filtered for all the high quality
(PASS) sites and used the VCF. The final VCF was used for
downstream analysis. All code can be accessed at https://github.
com/h3abionet/recalling.

5.3 Population Structure
Population structure was computed using the autosomal data in
our samples together with reference data sets in order to ensure a
relatively unbiased structure. We included all KGP African data,
and two non-African KGP sets (Utah residents (CEPH) with
Northern and Western European ancestry—CEU—and Bengali
in Bangladesh—BEB) and some chip data from various projects
including Khoi-San data (Schlebusch et al., 2012). The CEU and
BEB populations were included to identify overall outliers in the
African population groups. Prior work of our group has shown
that the primary admixture from non-African populations,
particularly in Southern Africa, comes from Europe and the
Indian subcontinent. The BEB and CEU are good
representatives for this study as other European or Indian
populations. Only unambiguous, biallelic SNPs (A/C, A/G,
C/T, G/T) common in all data sets were used. The data was
merged and pruned using PLINK (Chang et al., 2015), leaving
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401 k SNPs for analysis. Principal components were computed
using PLINK and structure charts were produced using
ADMIXTURE (Alexander et al., 2009) (30 independent runs
for each value of k) and averaged using CLUMPP (Jakobsson and
Rosenberg, 2007). All charts were produced with Genesis
(Buchmann and Hazelhurst, 2014).

Population clusters were determined from the PCA values
rather than from the project and self-identification labels due to
overlapping data. The optimal number of clusters was determined
using the method of Solovieff et al. (Solovieff et al., 2010), and
clusters determined using k-means clustering with the R MASS
package (Venables and Ripley, 2002). In analyses in which
population clusters were compared, we only used the samples
that appeared in the clusters (e.g., excluding Algerian, San
samples). In all other analyses all the data was used.
Choudhury et al. (Choudhury et al., 2020) discusses the
population structure of the H3A data in more detail.

5.4 ADME Gene Selection
ADME genes as defined by PharmADME (http://pharmaadme.
org) (both core and extended definitions) were extracted using
current genomic co-ordinates for GRCh37. p13, as obtained
through BioMart (Smedley et al., 2009). Gene flanking regions
were included in the extraction (10,000 bp upstream from gene
start and downstream from gene end).

5.5 Annotation and Functional Prediction
Variants were classified and typed using SnpEff v4.3t (Cingolani
et al., 2012) with the GR37Ch base reference for canonical gene
transcripts. Variant Effect Predictor (VEP) v92.0 (McLaren
et al., 2016) was used for functional prediction based
annotation. VEP was configured with dbNSFP v3.0 (Liu
et al., 2016), a large database used to retrieve functional
prediction scores for coding variants. The annotation analysis
is implemented in g_miner workflow (https://github.com/
hothman/PGx-Tools/tree/master/workflows/g_miner). An
optimized model for functional prediction of pharmacogene
variants produced by Zhou et al. (Zhou et al., 2019) was used as
the basis for high impact classification of missense variants. The
model uses five toolsets (LRT, MutationAssessor, PROVEAN,
VEST3, and CADD). Loss of Function variants were classified as
high impact if they were present in the canonical transcript of
the gene. Singleton or doubleton high impact variants were
filtered based on their VCF QUAL scores, using a cutoff of >50.
Any variant that did not match such criteria was removed prior
to subsequent analyses with bcftools v1.9 (Li, 2011). Three HI-
vars were not displayed in Figure 5 due to incorrect reference
alleles inducing an erroneous frequency: ALDH3B1 rs11433668,
and rs58160034; and ADH1C—rs283413. We have checked
these variants in KGP and gnomAD datasets to validate
the error.

5.6 Fixation Index (FST) Analysis Between
Population Clusters
Differences between African subgroups were calculated by
PLINK v1.9 (Chang et al., 2015), using mean, weighted FST

between each pair of the population clusters. Prior to the
calculation we applied linkage disequilibrium (LD) based
pruning using PLINK v1.9 for different sets of variants: High
Impact ADME, High Impact non-ADME, all ADME gene
regions, and a set of 2000 random non ADME genes.
The parameters used for this step are as follows: window
size � 1,000; step size � 5 and variance inflation factor � 2.

5.7 CNVs
Discovery and genotyping of CNVs was performed using
GenomeSTRiP’s SVPreprocessing and CNVDiscovery
(svtoolkit 2.00.1918) pipelines using the default parameters for
genomes sequenced at 30–40× coverage (Handsaker et al., 2015).
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