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A multi-center cross-platform 
single-cell RNA sequencing 
reference dataset
Xin Chen1,8, Zhaowei Yang2,1,8, Wanqiu Chen   1,8, Yongmei Zhao   3, Andrew Farmer4, 
Bao Tran5, Vyacheslav Furtak6, Malcolm Moos Jr.   6, Wenming Xiao7 & Charles Wang   1 ✉

Single-cell RNA sequencing (scRNA-seq) is developing rapidly, and investigators seeking to use 
this technology are left with a variety of options for both experimental platform and bioinformatics 
methods. There is an urgent need for scRNA-seq reference datasets for benchmarking of different 
scRNA-seq platforms and bioinformatics methods. To be broadly applicable, these should be generated 
from renewable, well characterized reference samples and processed in multiple centers across 
different platforms. Here we present a benchmark scRNA-seq dataset that includes 20 scRNA-seq 
datasets acquired either as mixtures or as individual samples from two biologically distinct cell lines 
for which a large amount of multi-platform whole genome sequencing data are also available. These 
scRNA-seq datasets were generated from multiple popular platforms across four sequencing centers. 
We believe the datasets we describe here will provide a resource that meets this need by allowing 
evaluation of various bioinformatics methods for scRNA-seq analyses, including but not limited to data 
preprocessing, imputation, normalization, clustering, batch correction, and differential analysis.

Background & Summary
A variety of scRNA-seq technologies and protocols have been developed for biomedical research1–7. These 
technologies can be divided into two broad categories: full-length and 3′ end counting-based. The 3′ end 
counting-based methods allow the incorporation of unique molecular identifiers (UMIs) to improve quantifi-
cation of mRNA molecules; whereas full-length methods generally provide greater sensitivity of gene detection 
and ability to identify changes across the length of a transcript, such as alternative splicing, novel transcripts, and 
mutations, etc. Large differences exist across different protocols and platforms in specificity, sensitivity, through-
put, chemistry of library construction, and bioinformatics8–12, as well as cost. As described in our associated 
Nature Biotechnology paper13, prior studies have attempted to address various aspects relating to scRNA-seq 
benchmarking9,11,12. However, technical factors (technology platform, inter-laboratory differences in cell han-
dling, and library construction) cannot be distinguished from purely biological variability if only mixtures of cells 
are used. For example, it might be difficult to identify the effect of different technology platforms if studies consid-
ered only mixtures of multiple cell types across different platforms; as we pointed out in our Nature Biotechnology 
paper13, Scanorama failed to integrate data from different technology platforms. This was not noticed previ-
ously. By also distributing samples of both cell lines to different centers, where they were subsequently cultured 
before analysis, we were able to additionally evaluate the sort of experimental variability likely to be encountered 
in real-world collaborations. Therefore, currently there is no systematic multi-center study that evaluated the 
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influence of technology platform, sample composition, and bioinformatic methods (including preprocessing, 
normalization, and batch-effect correction) using publicly available standard reference samples and datasets con-
sisting of both mixed and non-mixed biologically distinct samples.

Recently, we benchmarked scRNA-seq performance across several popular instrumentation platforms at 
multiple centers, also focusing on the effects of bioinformatic processing; including preprocessing, normaliza-
tion, and batch-effect correction13. As stated in this paper, our benchmark study has produced well-characterized 
reference materials (reference samples, datasets) and methods, which will have similar value for the single-cell 
sequencing community as the Zook et al. study14, carried out by the Genome in a Bottle Consortium (GIAB), 
did for genome sequencing. The findings from our study offer practical guidance for optimizing and bench-
marking a platform or experimental protocol, and for selecting appropriate bioinformatics methods when 
designing scRNA-seq experiments. We analyzed two well-characterized, but biologically distinct reference cell 
lines, for which a large amount of multiplatform whole-genome and whole-exome sequencing data are available15:  
a human breast cancer cell line (HCC1395; sample A) and a B lymphocyte cell line (HCC1395BL; sample B) 
derived from the same donor. A total of 20 scRNA-seq datasets were generated from the two cell lines, pro-
cessed either separately or as mixtures of different ratios of both cell lines, using four scRNA-seq platforms (10x 
Genomics Chromium, Fluidigm C1, Fluidigm C1 HT, and Takara Bio’s ICELL8 system) at four centers: Loma 
Linda University (LLU), US National Cancer Institute (NCI), US Food and Drug Administration (FDA), and 
Takara Bio USA (TBU). We evaluated seven preprocessing pipelines for raw scRNA-seq fastq data, eight normal-
ization methods16–21, and seven batch correction methods22–26. Our study showed that although pre-processing 
and normalization contributed to variability in gene detection and cell classification, batch effects were quite 
large, and the ability to assign cell types correctly across platforms and sites was dependent on the bioinfor-
matic pipelines, particularly the batch correction algorithms used. In many scenarios, Seurat v327, Harmony26, 
BBKNN25, and fastMNN22 all corrected the batch effects fairly well for scRNA-seq data derived from either bio-
logically identical or dissimilar samples across platforms and sites. However, when samples containing large frac-
tions of biologically distinct cell types were compared, Seurat v3 over-corrected the batch-effect and misclassified 
the cell types (i.e., breast cancer cells and B lymphocytes clustered together), while limma and ComBat failed to 
remove batch effects. The datasets we present here can help researchers select the scRNA-seq protocol and bioin-
formatic method best suited to the samples to be analyzed. In addition, they can be used to benchmark current 
or newly developed scRNA-seq protocols and evaluate various existing and emerging bioinformatics methods for 
scRNA-seq data analysis.

Methods
Detailed methods were described in our associated paper13. The following is a brief summary adapted from the 
Online Methods.

Study design.  Fig. 1 shows our overall study design. A total of 20 scRNA-seq datasets were gener-
ated, including fourteen 3′ end counting-based and six full-length datasets, which were generated using two 
well-characterized reference cell lines: a human breast cancer cell line (sample A) and a matched control ‘normal’ 
B lymphocyte line (sample B) derived from the same donor. The fourteen 3′ end counting-based datasets were 
generated at three different centers (LLU, NCI, and FDA), and the datasets were referred to as follows: 10X_LLU, 
10X_NCI, 10X_NCI_M (modified shorter sequencing protocol), and C1_FDA_HT. The six full-length datasets 
were generated at two centers (LLU and TBU), and the datasets were referred to as: C1_LLU and ICELL8 (includes 
both single-end/SE and paired-end/PE). In the case of the 10x Genomics (abbreviated 10x subsequently) data 
sets, mixtures of samples A and B were processed in addition to individual samples processed separately. All other 
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Fig. 1  Study design.
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data sets were generated from samples A and B separately. For simplicity, we will use the labels in Fig. 2 to repre-
sent the 20 datasets throughout our analysis.

Cell culture.  We obtained the human breast cancer cell line (HCC1395, sample A) and the matched ‘normal’ 
B lymphocyte cell line (HCC1395BL, sample B) from ATCC (American Type Culture Collection, Manassas, VA, 
USA). The two cell lines were derived from the same human subject (43 years old, female). HCC1395 cells were 
cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS). HCC1395BL cells were cul-
tured in Iscove’s Modified Dulbecco’s Medium supplemented with 20% FBS.

Full-length single-cell RNA-seq using the C1 fluidigm system.  Single cell suspensions were loaded 
on a medium-sized (10-17 µm) RNA-seq integrated fluidic circuit (IFC) at a concentration of 200 cells/µl. 
Full-length cDNAs were generated using the Fluidigm C1 system at the LLU Center for Genomics using the 
SMART-Seq v4 Ultra Low Input RNA kit (Takara Bio) according to the manufacturer’s protocol. Libraries were 
prepared using the modified Illumina Nextera XT DNA library preparation protocol. 80 libraries were generated 
from HCC1395 cells (sample A) and 66 libraries were generated from HCC1395BL cells (sample B). Library pools 
were sequenced at the LLU Center for Genomics on an Illumina HiSeq 4000 sequencer,150×2 bp, paired-end 
sequencing.

3’-end single-cell RNA-seq using C1 Fluidigm high-throughput (HT) system.  High-throughput 
single-cell 3′ end cDNA libraries were generated according to the manufacturer’s instructions at the FDA’s 
Center for Biologics Evaluation and Research. Briefly, single cells were loaded on an HT IFC at a concentration 
of 400 cells/µl (Nexcelom Cellometer Auto T4). After cell lysis, the captured mRNA was barcoded during the 
reverse transcription step with a barcoded primer, and the tagmentation step was done following the Nextera 

Fig. 2  UMAPs before (a) and after batch correction using (b) Harmony, (c) BBKNN, and (d) Seurat v3.
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XT DNA library preparation guide. Lastly, sequencing adapters and Nextera indices were applied during library 
preparation. Only the 3′ end of the transcript was enriched following PCR amplification. 203 libraries were gen-
erated from HCC1395 cells (sample A) and 241 libraries were generated from HCC1395BL cells (sample B). 
Library pools were sequenced at the FDA/CBER Core Facility on an Illumina HiSeq 2500, 75×2 bp, paired-end 
sequencing.

Single-cell RNA-seq using Takara Bio ICELL8 platform.  A bulk cell suspension of either cancer or 
B cells was fluorescently labeled and diluted to ~1 cell in 35 nl. Each cell type suspension was dispensed from 
a 384-well source plate into individually addressable wells in a 5,184 nano-well, 250 nl volume ICELL8 chip 
(SMARTer™ ICELL8® 250 v Chip, Takara Bio USA, CA, USA) using a SMARTer™ ICELL8® Single-Cell System 
(Takara). Wells containing individual live cells were identified by imaging using CellSelect software to generate a 
well-selection map (filter file), which was then used to enable individual addressing of the chosen wells for addi-
tion of cDNA synthesis and library preparation reagents as detailed in the following sections. All on-chip liquid 
handling was performed with the SMARTer™ ICELL8® Single-Cell System. Full-length cDNA synthesis, P5/P7 
index addition and tagmentation were done on-chip. Following round 1 PCR, amplicons were collected, pooled 
by centrifugation of the chip, and purified using Ampure beads. This was followed by round 2 PCR amplification 
off-chip. All steps were performed per manufacturer’s instructions. The library quality was determined using a 
Qubit fluorometer (Thermo Fisher), a 2100 Bioanalyzer, and a corresponding High Sensitivity DNA Kit (Agilent). 
The ICELL scRNA-seq libraries were sequenced both at the Takara Bio USA site on an Illumina NextSeq 550, 
75×2 bp, paired-end and at the LLU Center for Genomics on a HiSeq 4000, 150×1 bp, single-end sequencing.

Single-cell RNA-seq using the 10x Genomics platform.  After filtering with a 30-micron MACS 
SmartStrainer (Miltenyi Biotec), single cells were resuspended in PBS (calcium and magnesium free) containing 
0.04% weight/volume BSA, and further diluted to 300 cells/µl after cell count (Countess II FL, Life Technologies). 
For the 5% spike-in and 10% spike-in cell mixtures, 5% or 10% of HCC1395 breast cancer cells were mixed 
with either 95% or 90% of HCC1395BL cells. Library preparation was performed following the 3′ scRNA-seq10x 
Genomics platform protocol using v2 chemistry.

10x Genomics scRNA-seq library construction using fixed cells.  We also constructed 10x scRNA-seq 
libraries using fixed cells at the NCI site. Briefly, for delayed captures, cells were fixed in methanol using a method 
described by Alles et al.28. The fixed samples underwent two different treatments. For the first sample (NCI_Mix5_F),  
the normal and cancer cells were harvested, washed, counted, and a 5% spike-in of breast cancer cells plus 95% 
normal B cells was prepared and mixed as described above. Approximately 130,000 cells were then processed 
for fixation. The cells were washed twice with 1X DPBS at 4 °C and resuspended gently in 100 µl 1X DPBS 
(ThermoFisher Scientific). 900 μl chilled methanol (100%) were then added drop by drop to the cells with gen-
tle vortexing. Cells were then fixed on ice for 15 min, following which they were stored at 4 °C for 6 days. For 
rehydration, the fixed cells were pelleted by centrifugation at 3000 g for 10 min at 4 °C and washed twice with 
1X DPBS containing 1% BSA and 0.4U/µl RNase inhibitor (Sigma Aldrich). The cells were then counted and the 
concentration was adjusted to be close to 1000 cells/µl. Approximately 8000 cells were loaded onto a single-cell 
chip for GEM generation using the 10x Genomics Chromium controller. 3′ mRNA-seq gene expression libraries 
were prepared using the Chromium Single Cell 3′ Library & Gel Bead Kit v2 (10x Genomics) according to the 
manufacturer’s guidelines.

For the second sample (NCI_Mix5_F2), breast cancer cells and normal B cells (approximately 4 million each) 
were harvested and fixed as described above. The cells were initially washed with 1X DPBS and resuspended in 
10% 1X DPBS and 90% chilled methanol, as described above. Cells were then fixed on ice for 15 mins, following 
which they were stored at 4 °C for 24 hrs. For rehydration, the fixed cells were washed with 1X DPBS containing 
1% BSA and 0.4U/µl RNase inhibitor and counted. Approximately 8000 cells were loaded onto a single-cell chip 
for GEM generation using the 10x Genomics Chromium controller. 3′mRNA-seq gene expression libraries were 
prepared using the Chromium Single Cell 3′ Library & Gel Bead Kit v2 (10x Genomics) according to the manu-
facturer’s guidelines.

All the 10x Genomics scRNA-seq libraries constructed at the LLU were sequenced on an Illumina 
NextSeq 550 and a HiSeq 4000 with the standard sequencing protocol of 26 + 98 bp read length at the LLU Center 
for Genomics, whereas the libraries constructed at the NCI site were both sequenced on an Illumina NextSeq 500 
with a modified sequencing protocol of 26 + 57 bp read length at the NCI Sequencing Facility and on an Illumina 
HiSeq 4000 or a NextSeq 550 using the standard sequencing protocol of 26 + 98 bp read length at the LLU Center 
for Genomics.

Bulk cell RNA-seq.  We isolated total RNA from bulk HCC1395 (cancer) and HCC1395BL (B cells) using the 
miRNeasy Mini kit (Qiagen), and constructed RNA-seq libraries using the NuGEN Ovation universal RNA-seq 
kit at LLU according to the manufacturer’s instructions. All the libraries were quantified using Qubit 3.0 (Life 
Technologies) and quality was checked on a TapeStation 2200 (Agilent Technologies). The bulk-cell RNA-seq 
libraries were sequenced both on an Illumina NextSeq 550, 75×2 bp, paired-end; and on a HiSeq 4000, 100×2 bp, 
paired-end at the LLU Center for Genomics.

Reference genome.  The reference genome and transcriptome were downloaded from the 10x Genomics 
website as refdata-cellranger-GRCh38-1.2.0.tar.gz, which corresponds to the GRCh38 genome and Ensembl v84 
transcriptome. All the bioinformatics data analyses were carried out based on the above reference genome and 
transcriptome.
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Preprocessing of 10x Genomics scRNA-seq data.  For UMI based 10x Genomics samples, four 
pre-processing pipelines, Cell Ranger1 (v2.0.0), Cell Ranger (v3.1.0), UMI-tools29 (v1.0.0), and zUMIs30 (v2.4.5) 
were used to process the raw fastq data and generate gene count matrices. In the Cell Ranger pipeline, ‘cellranger 
count’ was used with all default parameter settings. In the umi-tools and zUMIs pipelines, reads were filtered out 
if Phred sequence quality of either the cell barcode or UMI bases were <10. In UMI-tools, ‘umi_tools whitelist’ 
with default parameter settings was used to generate a list of cell barcodes for downstream analysis. ‘umi_
tools extract’ was used to extract the cell barcodes and filter the reads (options: --quality-filter-threshold = 10 
--filter-cell-barcode). STAR31 (v2.5.4b) was used for alignment to generate BAM files containing the unique 
mapped reads (option: outFilterMultimapNmax 1) for gene counting. featureCounts32 (v1.6.1) was used to assign 
reads to genes and generate a BAM file (option: -R BAM). ‘samtools (v1.3) sort’ and ‘samtools index’ were used to 
generate sorted and indexed BAM files. Finally, ‘umi_tools count’ (options: --per-gene --gene-tag = XT --per-cell 
--wide-format-cell-counts) was used for the sorted BAM files to generate gene count per cell matrices.

Preprocessing of non-UMI scRNA-seq data from C1 and Takara Bio ICELL8 platforms.  For 
non-UMI based samples, three pre-processing pipelines were used to process the raw fastq data and generate 
gene count matrices. The pipelines included trimming and filtering, alignment, and gene counting. In the trim-
ming and filtering process, one of the three tools [Trimmomatic33 (v0.35), trim_galore (v0.4.1), or cutadapt34 
(v1.9.1)] was used to process the raw fastq data. Bases with quality less than 10 were trimmed from 5′ and 3′ ends 
of reads. Reads less than 20 bases were excluded from further analysis. STAR with default parameter settings 
was used for alignment to generate BAM files. Three gene counting tools, featureCounts, RSEM35 (v1.3.0), and 
kallisto36 (v0.43.1) were used to generate gene counts per cell. All default parameter settings were used except the 
following: In RSEM, option ‘--single-cell-prior’ was used to estimate gene expression levels for scRNA-seq data; 
Option of ‘--paired-end’ was used if the data were paired-end fastqs; In kallisto, options ‘-l 500’ and ‘-s 120’ were 
used to represent estimated average fragment length and standard deviation of fragment length if the data were 
single-end fastqs. For simplicity, we used featureCounts, RSEM, and kallisto to refer to the three pre-processing 
pipelines later.

Cell filtering and quality control metrics.  We used gene count per cell matrices from Cell Ranger v3.1 
and featureCounts pipelines in the downstream analyses for 10x and non-10x data, respectively. The following 
strategies were used to filter dead cells and doublets. (1) Cells were removed from analysis if they expressed less 
than 200 genes. We also removed genes expressed in less than 3 cells. (2) The total numbers of UMIs and genes 
for each cell were counted. The upper bound was calculated as mean plus two standard deviations (SD) and the 
lower bound as mean minus two SD for both the total UMIs and genes. Cells with total UMIs or genes outside of 
the upper and lower bounds were removed. (3) Cells were removed if greater than 10% reads mapped to mito-
chondrial genes.

scRNA-seq data batch effect correction.  We used the filtered gene count per cell matrices from the Cell 
Ranger v3.1 and featureCounts pipelines as input to perform batch correction. Seurat (v3.0.3) was applied to each 
dataset. The datasets were then log transformed and scaled. The top 2,000 highly variable genes (HVGs) were 
selected in each dataset with the function FindVariableGenes. The processed data and HVGs were used as input 
to perform batch correction using Harmony, BBKNN, and Seurat v3. The Uniform Manifold Approximation and 
Projection (UMAP)37 plots were generated from the batch-corrected low-dimensional embedding matrices. The 
uncorrected 20 scRNA-seq datasets showed strong batch effects in UMAP plots (Fig. 2a), clustering by individual 
dataset instead of by cell type. When Harmony method was applied to the combined data, two clusters corre-
sponding to the different cell types were clearly apparent (Fig. 2b). BBKNN batch correction also generated two 
clusters representing each cell type (Fig. 2c). However, Seurat v3 over-corrected and did not generate separate 
clusters for the two cell lines.

Estimation of copy number variation and clustering analysis.  Copy number variation (CNV) is 
highly associated with the development and progression of many cancers. Recently developed scRNA-seq CNV 
inference methods38,39 enable the assessment of both RNA expression and genomic copy number information 
from the same cell using the transcriptomic data to study the genetic heterogeneity at the single-cell level. This 
is a significant advance because current methods for obtaining both DNA-seq and RNA-seq data from the same 
single cell are still not only technically challenging, but also expensive40. Here, we applied one of the published 
CNV inference methods to our dataset to examine the consistency of our data across different platforms and sites 
for CNV inference analysis. To estimate CNV of sample A cells (cancer cell line), we performed CNV analysis by 
inferCNV (https://github.com/broadinstitute/inferCNV, v1.1.3) on 13 datasets. These datasets included different 
batches of sample A cells either alone or mixed with cells from sample B. The 10x datasets were down sampled 
to 1,000 cells per dataset for CNV analysis, which generated a total of 10,353 cells. In addition, the 10X_LLU_B 
dataset was down sampled to 1,000 cells and used as a control. In the CNV analysis, a de-noising filtering step 
and a Hidden Markov Model (HMM)-based CNV prediction step were enabled with a cut-off of 0.1 for gene 
selection. For hierarchical clustering-based tree partitioning, parameters including ‘tumor_subcluster_parti-
tion_method = ‘qnorm”, ‘hclust_method = ‘ward.D2”, and ‘tumor_subcluster_pval = 0.05’ were used. Our CNV 
analysis showed a clear separation by cell type instead of by different dataset or platform. The results indicated 
good consistency across different platforms and datasets, which all captured similar CNVs in the tumor cells 
(Fig. 3a). Meanwhile, we applied Harmony batch correction and Seurat clustering to the same data and detected 
two major clusters as well (Fig. 3b). The CNV analysis and expression-based clustering analysis were highly con-
sistent (Fig. 3c).
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Data Records
All sequence data have been deposited in the National Center for Biotechnology Information (NCBI) Sequence 
Reads Archive (SRA) with accession ID: SRP199641 (BioProject: PRJNA504037)41. Dataset 142 provides detailed 
meta information of the deposited sequence data. The processed gene count matrices have been uploaded to 
Figshare42.

Fig. 3  InferCNV analysis compared with expression-based clustering. (a) Estimation of copy number variants 
by inferCNV across 7 datasets including cancer cells (HCC1395) and 6 spike-in datasets containing both 
HCC1395 (breast cancer) and HCC1395BL (B lymphocytes). 10X_LLU_B was used as a control (heatmap not 
shown). All datasets were down sampled to 1,000 cells. Top color bars indicate different chromosome regions. 
Left color bars indicate different datasets. The color intensities of the heatmap correspond to the residual 
expression values by inferCNV, with red or blue indicating higher or lower values compared with those of 
control cells. (b) UMAP of Harmony-corrected expression data. Dark red and blue indicate the cell type identity 
of either HCC1395 or HCC1395BL. (c) A dendrogram of inferCNV clusters (left) and heatmap comparison 
(right) of cell labels generated by inferCNV and Seurat. The order of dendrogram leaves was generated by 
inferCNV as indicated in panel (a). Heatmap colors indicate the top two groups of cells in the dendrogram tree 
and cell clusters identified by Seurat.
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Technical Validation
QC assessment on the effect of preprocess pipelines for 10x and non-10x data.  For the 10x 
scRNA-seq data, we evaluated four pre-processing pipelines: Cell Ranger 2.0, Cell Ranger 3.1 (10x Genomics), 
UMI-tools, and zUMIs, and examined the consistency between the four pipelines regarding the number of cells 
identified, the number of genes detected per cell, and percentage of sample A cells in spike-in mixtures (Fig. 4a–d).  
In most of the datasets (except 10X_LLU_A), Cell Ranger 3.1 and zUMIs always called the largest and second 
largest number of cells. For most of the datasets from sample A only or sample B only, Cell Ranger 2.0 and 
UMI-tools called consistent numbers of cells. For spike-in datasets, especially for cells fixed in methanol, the 

Fig. 4  Effect of preprocessing pipelines. (a) Barplot of the number of cells identified by four pipelines using 
10x datasets. (b,e) Boxplot of the number of genes detected per cell processed using four (10x datasets) or three 
(non-10xdatasets) pipelines, respectively. (c,f) Boxplot of Pearson’s correlations of consensus expressed genes 
per cell between any two pipelines in 10x and non-10x datasets, respectively. (d) Barplot of percentage of breast 
cancer cells detected in spike-in mixtures processed using four pipelines in 10x datasets.
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numbers of cells called were variable. The percentages of sample A cells in Fig. 4d were also inconsistent in the 
samples with fixed cells. These observations suggested that methanol fixation may reduce the quality of data, 
causing inconsistent cell calling by different pipelines. For the 10x single-cell protocol, we compared the standard 
sequencing protocol (26 + 98 bp) with the modified sequencing protocol (26 + 57 bp) using the same scRNA-seq 
libraries. The two sequencing protocols yielded consistent cell calling and percentage of spike-in cancer cells, 
suggesting that sequence length and sequencing instrument do not substantially impact the data quality. Fig. 4b 
shows the number of genes expressed per cell. Because Cell Ranger 3.1 modified the algorithm to call more cells 
with low RNA content, it always generated a lower number of genes expressed per cell because it called the largest 
number of cells compared with other pipelines. Fig. 4c shows the correlation of expressed genes of the same cells 
between any two preprocessing pipelines. Overall, the correlations between any two pipelines were consistently 
high across all the cells. However, we observed a relatively lower correlation in the datasets between the NCI 
modified sequencing protocol and the standard sequencing protocols, which was due to short sequencing reads 
in the modified protocol.

For the non-droplet scRNA-seq data, consistent numbers of genes expressed per cell were observed using the 
three different pre-processing pipelines (Fig. 4e). Kallisto identified more genes per cell in the full-length proto-
cols (C1_LLU and ICELL8) and fewer genes per cell in the 3′-end counting-based protocol (C1-FDA_HT). For 
ICELL8, we compared the paired-end (PE) read with single-end (SE) read data using the same scRNA-seq librar-
ies; and found that the PE or SE sequencing did not affect the quality of the data from the same library. Our corre-
lation analysis between any two preprocessing pipelines (Fig. 4f) showed consistently high correlations between 
full-length data (C1_LLU and ICELL8), but lower correlations between tag-based data, especially when com-
paring kallisto with the other two pipelines. This might be due to different alignment strategies (genome-based 
alignment vs. pseudoalignment) used in the three pipelines.

Cell quality assessment across 20 scRNA-seq datasets.  We used three metrics: (1) average number 
of genes per cell; (2) average number of UMIs/read counts per cell; (3) average mitochondrial gene percentage per 
cell to evaluate the quality of the 20 scRNA-seq datasets by comparing high quality cells with filtered low-quality 

(%)

, %
)

(#) (#)

, #
)

, #
)

Fig. 5  Evaluation of cell quality. (a) Average number of genes detected per cell; (b) Average number of UMIs/
read counts (droplet/non-droplet) per cell; (c) Average mitochondrial gene percentage per cell. Auxiliary lines 
represented by grey dash lines are applied to (a–c) and several datasets are labeled for better visualization.  
# indicates the number of genes or read counts. % indicates percentage of mitochondrial genes.
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cells (Fig. 5a–c, see cell filtering in method section for details; Supplementary File 1 provides more detailed qual-
ity assessment results). In high quality cells, the average number of genes detected per cell was greater than 3,000 
genes; only the C1 platform (C1_LLU, C1_FDA_HT) detected genes above this value in low quality cells (Fig. 5a). 
This may be due to relatively small numbers of cells captured with the C1 platform, leading to high read counts 
per cell. Samples analyzed using the same method showed similar average numbers of genes per cell and average 
numbers of UMIs/read counts per cell and were clustered together (Fig. 5a,b). Due to the sequencing depth dif-
ferences between full-length and 3′ end counting-based methods, C1_LLU and ICELL8 showed higher values of 
metrics 1 and 2 in high quality cells than those in 10x and C1_FDA_HT. Furthermore, we found that no more 
than 3.85% of the cells had mitochondrial gene percentages greater than 10% across the combined 20 datasets. In 
high quality cells, the mitochondrial gene percentages were below 10% in all 20 datasets.

Consistency of gene expression across 20 scRNA-seq datasets.  For the 20 scRNA-seq data sets, we 
performed correlation analyses to evaluate the consistency of gene expression data using bulk RNA-seq data as a 
reference. We first labelled cells in the spike-in datasets as sample A and sample B cells, respectively. The subset 
data containing either A or B cells in the spike-in datasets were then used to perform correlation analyses (a total 
of 13 datasets for A and B cells, respectively). The top 2,000 HVGs of the 13 scRNA-seq datasets were used in the 
analyses. The gene expression mean and variance were calculated across all cells in each scRNA-seq dataset across 
three replicates of the bulk RNA-seq dataset. The bulk RNA-seq data sets showed good correlation (r ≥ 0.78) of 
gene expression mean with all 13 datasets in both A and B cells (Fig. 6a,d). The correlation of gene expression var-
iance between the bulk RNA-seq datasets and scRNA-seq datasets suggested cell-to-cell diversity in scRNA-seq 
(Fig. 6b,e). High consistency was observed across the 10x and non-10x datasets in both gene expression mean and 
variance. The C1_LLU datasets showed the highest correlation of gene expression mean with bulk RNA-seq data 
in both A and B cells, likely because these datasets had the highest sequencing depth (an average of over 4 million 
reads per cell). We also found that the data between standard sequencing and modified sequencing protocols had 
high correlation (r ≈ 1). Our results showed high consistency of gene expression across all 20 scRNA-seq datasets.

Fig. 6   Consistency across platforms and datasets. Pairwise Pearson correlation of the expression mean and 
variance of the top 2,000 highly variable genes (HVG) between bulk RNA-seq and scRNA-seq datasets for 
HCC1395 (a,b) and HCC1395BL (d,e). (c,f) represent the cell composition of each scRNA-seq dataset. The 
HVG expression in bulk RNA-seq data represents the average gene expression from 3 biological replicates. The 
HVG expression in scRNA-seq data represents the average gene expression across all cells in each dataset.
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Code availability
All code used in processing the scRNA-seq data and in drawing the figures are available on Github at the following 
link: https://github.com/oxwang/SciData_scRNAseq.
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