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Follicular regulatory T cells: a novel target for immunotherapy?
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Abstract

High-affinity antibodies are produced during multiple processes in
germinal centres (GCs), where follicular helper T (Tfh) cells interact
closely with B cells to support B-cell survival, differentiation and
proliferation. Recent studies have revealed that a specialised
subset of regulatory T cells, follicular regulatory T (Tfr) cells,
especially fine-tune Tfh cells and GC B cells, ultimately regulating
GC reactions. Alterations in frequencies or function of Tfr cells
may result in multiple autoantibody-mediated or autoantibody-
associated diseases. This review discusses recent insights into the
physiology and pathology of Tfr cells, with a special emphasis on
their potential roles in human diseases. Discrepancies are common
among studies, reflecting the limited understanding of Tfr cells.
Further exploration of the mechanisms of Tfr cells in these diseases
and thus targeting Tfr cells may help reinstate immune
homeostasis and provide novel immunotherapy.
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INTRODUCTION

Germinal centres (GCs) are secondary lymphoid
organs in which somatic hypermutation, affinity
maturation and class switch recombination occur,
thus producing high-affinity antibodies in
humoral immunity.1 During the multistep process
of GC reactions, follicular helper T (Tfh) cells
interact closely with B cells to support B-cell
survival, differentiation and proliferation via
direct contact and soluble signal.2 It was not until
10 years ago that Tfh cells were broadly
acknowledged among immunologists with B-cell
leukaemia/lymphoma 6 (Bcl-6) discovered as a
lineage-defining transcription factor (TF) of Tfh

cells.2 Although various mechanisms have been
defined, the understanding of GC reactions is still
elusive.

A subset of regulatory T (Treg) cells expressing
C-X-C chemokine receptor type 5 (CXCR5) was first
established in human tonsils.3,4 Then, in 2011,
three separate articles described their physiology
in mice.5–7 CXCR5+Foxp3+ cells present different
transcriptional signatures compared with
traditional Treg cells, making them a distinct
subset of Treg cells, termed follicular regulatory T
(Tfr) cells. High expression of CXCR5 directs Tfr
cells to the B-cell follicle by gradients of C-X-C
motif chemokine ligand 13 (CXCL13), and then,
they fine-tune the GC responses. They express,
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simultaneously, markers of Treg cells including
Foxp3, IL-10, GITR and CTLA-4 and markers of Tfh
cells including Bcl-6, PD-1 and ICOS, thus
possessing dual characteristics of Tfh cells and
traditional Treg cells. Considering the potential
expression of autoreactive T-cell receptors (TCRs),
Tfr cells are more similar to Treg cells than Tfh
cells.8 Nonetheless, Tfr cells together with Tfh cells
harbour less diverse repertoires relative to Treg
cells.9 Recent studies have investigated this
population in a wide range of diseases and have
gained some progress.

This review discusses the physiology, pathology,
discrepancies and challenges of Tfr cells, especially
their alterations and potential roles in human
diseases.

DISTRIBUTION, DIFFERENTIATION AND
DEVELOPMENT OF TFR CELLS

Follicular regulatory T cells have been found in the
spleen, lymph nodes (LNs), lymph or other
lymphoid tissues such as Peyer’s patches, and also
in blood. Few Tfr cells are located within the GC,
whereas most of them with low levels of PD-1 are
located surrounding the GC.10 Unlike Tfh cells,
which are derived from na€ıve CD4+T cells,11 Tfr
cells are mainly derived from thymic Treg cells.5–7

In addition, Tfr cells are also derived from Foxp3�

precursors in a PD-L1–dependent manner using
certain adjuvants.12 The full differentiation of Tfr
cells undergoes multistage and multifactorial
processes (Figure 1). A model proposed by Fonseca
et al.13 explains that after interaction with
dendritic cells (DCs), CXCR5�Foxp3+ thymic Treg
cells differentiate into early-stage Tfr (eTfr) cells
and then either enter the circulation or migrate to
the T-B border. After interacting with cognate B
cells at the T-B border, eTfr cells become
intermediate Tfr (iTfr) cells. With loss of CD25
expression in GCs, signatures of iTfr cells are
further strengthened into matured Tfr (mTfr) cells,
which can potently suppress Tfh cells and GC B
cells. There are two perspectives on the origination
of circulating Tfr (cTfr) cells: one advocates eTfr
cells,14 and the other supports lymphoid-resident
mTfr cells.15 cTfr cells may remigrate to follicles
and GCs after reactivation.15,16

Signals that facilitate Tfr-cell development

T-cell receptor and costimulatory signals through
CD28 and ICOS are indispensable for Tfr-cell

development.5,17,18 Attenuated Tfr cells appear in
CD28-deficient cells,5 CD28-deficient mice17,18 and
ICOS-deficient mice.18

Bcl-6 is a significant TF of Tfr and Tfh cells that
prompts the expression of CXCR5. Deletion of
Bcl-6 in cells or in mice results in the absence of
Tfr production.5,7

Foxp3 and chromatin-modifying enzyme Ezh2
prompt suppressive capacity and the
transcriptional programme of Tfr cells.19 Once
they lose Foxp3 expression, they turn into ex-Tfr
cells with an aberrant transcriptional programme
and impaired suppressive capacity. Ezh2-deficient
Tfr cells also exhibit reduced suppressive function
by altering the Tfr-cell transcriptional programme
distinct from Foxp3.

The development of Treg cells requires Ca2+

influx through Ca2+ release–activated Ca2+

channels (formed by STIM and ORAI), which
mediates sustained and potent Ca2+ influx and is
referred to as store-operated Ca2+ entry or
SOCE.20 Stim1/2-deficient Treg cells eliminate Ca2+

signalling and cannot differentiate into Tfr cells,
which may be because of impaired TFs such as B
lymphocyte–induced maturation protein 1 (Blimp-
1) and signalling pathways such as CXCR5.20 SOCE
also regulates Tfr- and Tfh-cell differentiation via
NFAT2-dependent molecules including PD-1, ICOS
and CXCR5 and NFAT2-mediated TFs including
IRF4, BATF and Bcl-6 expression.21 In addition to
upregulating CXCR5, Tfr cells also require NFAT2
for migration.22

The role of mammalian target of rapamycin
(mTOR) signalling in T-cell development and
function is intricate. It is reported that mTORC1 is
a negative regulator of conventional Treg-cell
differentiation, while it also plays a critical role in
Treg-cell homeostasis and suppressive capacity.23

Nevertheless, both mTORC1 and mTORC2 are
indispensable for Tfh-cell development.24 In
contrast, Roquin suppresses the PI3K-mTOR
signalling, thereby inhibiting conversion of Treg
to Tfr cells.25 In particular, mTORC1 signalling
prompts early differentiation and suppressive
function of Tfr cells via p-STAT3-TCF-1-Bcl-6 axis.26

It is found that TRAF3, TCF1/LEF1, Id2/Id3 and
ICOS/P85a-osteopontin are essential for the
development of Tfr cells. The ablation of TRAF3
reduces the generation of Tfr cells by inhibiting
ICOS expression.27 In TCF1/LEF1-conditional
knockout mice, Tfr-cell development is abolished
with impaired Bcl-6 expression, and single
knockout results in partial reduction of Tfr cells.28
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Members of the helix–loop–helix family Id2 and
Id3 regulate specific transcription signatures of Tfr
cells by modulating CXCR5 and Foxp3
expression.29 The activation of ICOS promotes
interaction of p85a (the regulatory subunit of
PI3K) with osteopontin and thus maintains Bcl-6
expression.30

miR-10a may potentially promote Tfr-cell
differentiation by targeting Bcl-6 and corepressor
Ncor2 simultaneously, thereby diminishing the
conversion of Treg cells to Tfh cells.31

Signals that inhibit Tfr-cell development

The balance between Blimp-1 and Bcl-6 is subtle
for the development of Tfr cells. Tfr cells express
Blimp-1 and Bcl-6 simultaneously, whereas Tfh
cells express only Bcl-6.5 Blimp-1 is critical for the

differentiation and suppressive function of Treg
cells, while Bcl-6 is suggested to be important to
maintain a Tfh-like phenotype of Tfr cells.5

Significantly increased Tfr cells are observed in
mice with Blimp-1 specifically deleted.5,32

However, Blimp-1–deficient Tfr cells attenuate the
suppression of antibody generation by B cells,32

suggesting that Blimp-1 regulates Tfr function.
An increased frequency of Tfr cells is observed in

the LNs from PD-1�/� mice, and the transfer of
PD-1�/�CD4+CXCR5�Foxp3+ cells into recipient mice
results in augmented differentiation and
suppressive ability of Tfr cells, which is mediated
by PD-L1.18 Therefore, the PD-1–PD-L1 pathway
can inhibit differentiation and function of Tfr cell.
However, PD-1�/� Tfr cells are able to home to GCs.

The addition of soluble OX40L results in
increased immunoglobulin generation in a

Figure 1. Differentiation and features of follicular regulatory T (Tfr) cells. Thymic Treg cells and na€ıve CD4+T are primed by dendritic cells (DCs)

with antigen presentation and signals from the microenvironment at the edge of the T-cell zone; CD4+CD25+Foxp3+ thymic Treg cells and

Foxp3– precursors are then differentiated into early-stage Tfr cells with lower levels of CD25 and Foxp3. Full differentiation of Tfr and Tfh cells

requires stimulation from cognate B cells at the T-B border. Mature Tfr cells especially fine-tune Tfh cells and GC B cells, ultimately regulating

germinal centre reactions. Markers that are upregulated in the process of Tfr-cell differentiation are represented in green font, and markers that

are downregulated are in red font.
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coculture system, indicating that the OX40L/OX40
axis impairs Tfr-cell function.33

IL-21 plays multifaceted roles in impairing the
number and function of Tfr cells. The percentage
of Tfr cells is significantly increased in BXD2-Il21�/�

mice, and the addition of IL-21 also results in
defective Tfr cell–mediated suppression of GC
reactions.34 Altogether, high concentrations of
IL-21 inhibit Tfr commitment and impair their
suppressive capacity while enhancing Tfh
differentiation, which is mediated by
downregulating p-AKT while upregulating
p-Stat3.34 Furthermore, IL-21 can enhance B-cell
metabolism and function, thus augmenting
insensitivity of B cells to Tfr cell–mediated
suppression. By enhancing Glut1 levels on Tfr cells,
IL-21 may also alter Tfr-cell metabolism.35

It is conjectured that miR-15b/16 may inhibit
Tfr-cell development, as they repress the
expression of Rictor and mTOR, which are
essential for early differentiation and effector
function of Tfr cells.26,36

The roles of miR-17–92, miR-155, IL-2, STAT-3
and AKT remain elusive. The miR-17–92 cluster is
found to promote the differentiation of Tfr cells
by targeting Pten and promoting PI3K/AKT/mTOR
signalling using genetic overexpression cells.25 In
addition, miR-17–92 is validated to promote Tfh-
cell differentiation, and the inhibition of Pten is
implicated in their early differentiation.37 While
an increased ratio of Tfr/Tfh cells is also found in
chronic GVHD mice conditionally deficient for
miR-17–92, whether the underlying mechanism is
attributed to selective inhibition of Tfr cells or
increased apoptosis in Tfh cells deserves more
investigation.38 miR-155 overexpression results in
the lack of Tfr cells by inhibiting the expression of
CTLA-4.39 Conversely, it is speculated that miR-155
might promote Tfr-cell differentiation by
inhibiting SOCS1.40 High IL-2 levels preclude Tfr-
cell development by promoting Blimp-1,41 while
dnTGF-bRII Il2ra�/� mice have impaired Tfr-cell
development, which may be mediated by
regulating Bcl-6 and Nrp-1 expression.42 The
activation of p-STAT3 by IL-21 counteracts Tfr cell–
mediated inhibition of Tfh cells.34 However, the
deletion of STAT3 in Treg cells also results in loss
of Tfr cells with enhanced generation of antigen-
specific IgG.43 Likewise, mTORC1 signalling
prompts Tfr-cell development by activating
STAT3.26 AKT is required for regulating the
proliferation and survival of B cells.44 The transfer
of Tfr cells into experimental autoimmune

myasthenia gravis (EAMG) mice downregulates
p-AKT and thus inactivates AKT in B cells.32

Paradoxically, inhibition of p-AKT by IL-21
downregulates Foxp3 expression and therefore
impairs Tfr-cell commitment.34

MECHANISMS OF TFR-CELL EFFECTOR
FUNCTION

Bcl6fl/flFoxp3cre mice (Tfr cell–specific depletion)
exhibit lower levels of IgG, increased levels of IgA
and decreased avidity to human immunodeficiency
virus (HIV)-1 antigen.45 In addition, higher levels of
IFN-c, IL-10 and IL-21 are produced in Tfh cells from
Bcl6�/� mice. The alteration in the cytokine milieu
may influence the selection of B cells, ultimately
resulting in abnormal GC reactions.

CTLA-4 is intended to serve as a vital mediator
for Tfr cells to fully exert suppressive function.46–48

Deletion of CTLA-4 results in compromised effector
function of Tfr cell with accumulating Tfr cells.46,47

As a coinhibiting molecule, CTLA-4 may
downregulate costimulatory ligands B7-1 and B7-2
on antigen-presenting cells49 and directly control
Tfh-cell differentiation by regulating CD28
engagement.50

Follicular regulatory T cells inhibit the
expression of specific effector genes and central
metabolic (i.e. Myc and mTOR) and anabolic (i.e.
serine biosynthesis and one-carbon metabolism,
and purine metabolism) pathways in GC B and Tfh
cells.35 Interestingly, such suppression is durable
and lasts even in the absence of Tfr cells. The
sustained inhibition is associated with epigenetic
changes in B cells and can be overcome by IL-21.

Follicular regulatory T cells express both the IL-1
decoy receptor IL-1R2 and the IL-1 antagonist
receptor IL-1Ra, while Tfh cells express only the IL-
1R1 agonist receptor.51 IL-1b prompts Tfh cells to
secret IL-4 and IL-21; however, Tfr cells suppress
the cytokine secretion to a similar extent as
recombinant IL-1Ra (Anakinra). Therefore, it has
been proposed that the suppressive function is
mediated by IL-1R2 or IL-1Ra on Tfr cells.

Using a new TFR–DTR mouse
(Cxcr5IRES-LoxP-STOP-LoxP-DTRFoxp3IRES-CreYFP) strain that
can selectively perturb Tfr cells, it has been found
that Tfr cells potently regulate early, rather than
late, GC responses and control IgE production
induced by Tfh13 cells in house dust mite models.52

In addition, Tfr cells regulate memory B-cell
responses by preventing GC formation and
facilitate antibody affinity during memory.
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RNA sequencing has demonstrated that Tfr cells
inhibit the development of a cytotoxic-like Tfh-
cell subset that highly expresses Eomes proteins
and granzyme B in Tfr cell–deficient (Bcl6-flox/
Foxp3-cre) and Tfr cell–amplified (Blimp1-flox/
Foxp3-cre) mouse strains.53 Since abnormal
cytotoxic Tfh cells are associated with an
attenuated GC and antibody responses, Tfr cells
are expected to have the potential to help the GC
responses.

Considering the substantial similarities between
Tfr cells and Treg cells, it is plausible to
extrapolate the suppressive function of Tfr cells
from Treg cells such as granzyme B and
suppressive cytokines. Tfr cells may induce cell
death by secreting granzyme B, as Tfr cells also
express granzyme B although at a lower level
than Treg cells.5 TGF-b is speculated to be a
suppressive cytokine of Tfr cells, because TGF-b
signalling in T cells inhibits Tfh-cell accumulation,
activates self-reactive B cell and therefore controls
autoantibody production.54 IL-10, however, has
aroused controversies in Tfr-cell effector function.
Tfh cells also secrete IL-10–like Tfr cells, and IL-10+

Tfh cells can help GC responses in mice, as specific
deletion of IL-10 in Tfh cells leads to impaired
humoral immunity during chronic viral infection.55

In addition, Tfr cells suppress IL-10 production by
Tfh cells and in the coculture supernatants.16

Consistent with its suppressive function, IL-10
inhibition impedes GC responses and humoral
immunity.56 Nonetheless, another study found
that Tfr cell–derived IL-10 promotes B-cell
differentiation and GC responses by inducing
nuclear FOXO1 translocation in activated B cells,
contributing to the dark zone phenotype and
affinity maturation during acute viral infection.57

TFR CELLS IN HUMAN DISEASES AND
ANIMAL MODELS

Little is known about the physiological role and
mechanisms of Tfr cells because of their relatively
recent studies. Nevertheless, Tfr cells have already
been associated with a variety of human diseases,
predominantly autoimmune diseases (AIDs;
Figure 2). Considering the relative difficulty in
obtaining samples from human lymphoid tissues,
circulating Tfr (cTfr) cells and circulating Tfh (cTfh)
cells have been regarded as the surrogate
populations to investigate GC responses in most
studies. Although these studies have suggested
critical roles that Tfr cells play in various disease

settings, many of them emphasise the correlation
between numerical alterations of Tfr cells and
disease manifestations, devoid of in-depth
mechanism research.

Tfr cells in autoimmune diseases

Altered frequencies and/or the suppressive capacity
of cTfr cells have been elucidated in a multitude of
AIDs, including systemic AIDs and organ-specific
AIDs (shown in Table 1). Systemic AIDs involve
rheumatoid arthritis (RA),58–62 systemic lupus
erythematosus (SLE),33,63–65 Sj€ogren’s syndrome
(SS),14,66,67 ankylosing spondylitis (AS),68 IgG4-
related disease (IgG4-RD)69 and common variable
immune deficiency (CVID).70 Organ-specific AIDs
involve multiple sclerosis (MS),15,71,72 myasthenia
gravis (MG),73–75 Hashimoto’s thyroiditis (HT),76

primary biliary cholangitis (PBC),77 type 1 diabetes
(T1D)78 and ulcerative colitis (UC).79 It is also
demonstrated that when the regulatory capacity
of Tfr cells is impaired, the expansion of Tfr
cells is accompanied by the development of
autoimmunity in mice.13,46,47

Increased58,61 and decreased59,60 frequencies of
cTfr cells are found in RA patients, while no
significant difference is found in early-stage RA.62

The frequency of cTfr cells has negative58,60 or no
correlation59 with disease activity, and the ratio of
cTfr/cTfh is correlated with disease activity.59,61

Moreover, increased cTfr cells with enhanced
suppressive function and activated
CD45RA�Foxp3high cTfr subset have been found in
patients with RA in stable remission compared
with patients with active RA and healthy
controls.58 Percentages of cTfr and cTfh cells are
decreased when prescribed with methotrexate.61

Intriguingly, divergences are also observed in
patients with SLE. Lower frequencies of cTfr cells
were observed in two studies,64,65 while they were
higher in another study.63 Despite the total
reduction in one study, active subpopulations PD-
1highICOShigh Tfr cells and Ki-67+Tfr cells are
increased in SLE patients.64 The frequency of cTfr
cells is negatively correlated with serum anti-
dsDNA antibody levels and with disease activity64

and is significantly lower in seropositive anti-
dsDNA patients than in seronegative anti-dsDNA
patients.65 In contrast, another study has found a
positive correlation with clinical severity and
autoantibodies IgG and IgA.63 The suppressive
function of cTfr cells is not altered in newly
diagnosed SLE patients.63 In addition, the
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imbalance of cTfr cells can be improved after
effective therapy.64,65 Reduced frequency and
potentially impaired inhibitory capacity of
CD4+PD-1+CXCR5+Foxp3+ Tfr cells are found in
spleens from BXD2 autoimmune lupus mice.80 In
the presence of NFAT2-deficient Tfr cells, the
expression of CXCR5 is downregulated, and lupus-
like disease is exacerbated in chromatin-
immunised mice.22

Elevated cTfr levels and cTfr/cTfh ratios in SS
patients have reached a consensus,14,66,67

especially in patients with high autoantibody
levels.14 The expression of PD-1 on cTfr cells is
increased.66 Activated PD-1+ICOS+cTfh cells are
closely associated with SS disease activity
compared with patients with non-SS/sicca
syndrome, and the increased ratio of cTfr/cTfh
indicates the formation of ectopic lymphoid
structures within minor salivary glands, typically in
patients with focal sialadenitis.67 Furthermore,
cTfr cells do not preferentially inhibit humoral
responses because of the lack of full B cell–
suppressive capacity, limiting class switch
recombination, and they show a na€ıve-like
phenotype. These cells are not emerged from the
thymus but are produced in peripheral lymphoid
organs during the GC reaction, leaving the tissue
and then entering the blood.14 Thus, the

increased frequency of the cTfr cells indicates
ongoing humoral activity,14 and the cTfr/cTfh
ratio is suggested to be considered as a strong
predictor of SS diagnosis and focal sialadenitis in
patients suffering sicca symptoms.67 Impaired cTfr
cells contribute to decreased saliva flow rates and
enhanced salivary gland–specific antibodies, tissue
destruction and IgG deposition in a mouse
experimental SS model, indicative of the
development of disease.81

Percentages of cTfr cells and cTfh cells are
significantly higher in patients with AS.68 In
addition, the frequency of cTfr cells is negatively
associated with serum IgA in AS patients before
treatment and is negatively associated with cTfh
cells and the level of serum IL-21 after 1 month of
standard treatment in drug responders.68

IL-10+–producing cTfr cells are increased in
patients with IgG4-RD.69 In addition, the
frequency of cTfr cells is positively correlated with
serum IgG4, ratio of IgG4/IgG, number of organs
involved and soluble IL-2 receptor in IgG4-RD
patients. The percentages of blood and tonsillar
Tfr cells are increased with ageing, especially at
the ages of IgG4-RD high prevalence.

The frequency of cTfr cells is decreased only in
CVID patients with ≤2% of IgD�CD27+ (switched
memory phenotype) B cells (smB�), while the

Figure 2. Human diseases and vaccine responses involving follicular regulatory T (Tfr) cells. Tfr cells are involved in influenza vaccination and

pathological contexts including autoimmune diseases, infections, cancers, allergies, chronic graft rejection and acute respiratory distress syndrome.
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Table 1. Studies of Tfr cells in patients with AIDs

Disease Authors Molecular phenotype of Tfr cells Main findings

RA Pandya et al.62 CD4+CD25+CXCR5+CD127low cTfr-, cTfh-

Liu et al.58 CD4+CXCR5+Foxp3+ cTfr↑, cTfh↑, cTfr/cTfh↑, activated
cTfr↑, function of cTfr↑, cTfr is
negatively correlated with IgG,

ACPA, RF and DAS28

Rom~ao et al.59 CD4+CXCR5+Foxp3+ cTfr↓, cTfh↑, cTfr/cTfh↓, cTfr does not
correlate with DAS28, RF and ACPA,

cTfr/cTfh is negatively correlated with

DAS28

Niu et al.60 CD4+CXCR5+Foxp3+ cTfr↓, cTfh↑, cTfr/cTfh↓, cTfr is
negatively correlated with DAS28

Wang et al.61 CD4+CXCR5+CD127low cTfr↑, cTfh↑, cTfr/cTfh↓, cTfr/cTfh is

negatively correlated with CRP, ESR,

RF, ACPA, IgG and DAS28

SLE Ma et al.65 CD4+CXCR5+Foxp3+ cTfr↓, cTfr of seronegative anti-

dsDNA exceeds cTfr of seropositive

anti-dsDNA

Xu et al.64 CD4+CD25+CD127low–intermediateCXCR5+ cTfr↓, PD-1highICOShigh Tfr↑,
Ki-67+Tfr↑, cTfr is negatively
correlated with serum anti-dsDNA

antibody level

Liu et al.63 CD4+CXCR5+Foxp3+ cTfr↑, the suppressive function is not

altered, cTfr is positively correlated

with autoantibodies and SLEDAI

scores

Jacquemin et al.33 CD4+CD45RA–CXCR5+Foxp3+ cTfr-, cTfh↑, cTfh is positively

correlated with SLEDAI and

plasmablasts

SS Fonseca et al.14 CXCR5+Foxp3+CD4+/CXCR5+CD25+CD127�CD4+ cTfr↑, cTfh-, cTfr/cTfh↑ and is

associated with antibody levels

Fonseca et al.67 CXCR5+CD25+Foxp3+CD4+ cTfr↑, cTfr/cTfh↑ and is correlated

with anti–SSA/Ro 60, anti–SSA/Ro

52 and pathologic lymphocytic

infiltration in minor salivary glands

Ivanchenko et al.66 CXCR5+Foxp3+CD4+ cTfr↑, cTfr/cTfh↑, the expression of

PD-1 on Tfr↑
AS Shan et al.68 Foxp3+CXCR5+CD4+ cTfr↑, cTfh↑, cTfr/cTfh↑, and Tfr is

negatively correlated with cTfh cells

and the level of serum IL-21 after

treatment

IgG4-RD Ito et al.69 CD3+CD4+CXCR5+PD-1+CD25+CD127� IL-10+–producing cTfr↑, cTfr is
positively correlated with serum

IgG4, ratio of IgG4/IgG, number of

organs involved and soluble IL-2

receptor

CVID Cunill et al.70 CD4+CXCR5+CD25highCD127low cTfr↓ in smB� patients, cTfh↑
MS Dhaeze et al.15 CD4+CD25+CD4+CD25hiCD127loCXCR5+PD-1+ cTfr↓, cTfh↑, cTfr/cTfh↓, the

suppressive function of cTfr↓
Jones et al.72 CD4+CXCR5+Foxp3+ cTfr-, cTfh-, CD45RA+Foxp3lo

resting Tfr↓, CD45RA�Foxp3lo

non-cTfr↑, Helios↓
Puthenparampil et al.71 CD3+CD4+CXCR5+CD25+CD127dim Tfr↓, cTfr/cTfh↓, cTfr/cTfh is

associated with abnormal IgG

production in blood and

cerebrospinal fluid

(Continued)
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frequency of cTfh cells is increased in both
smB� and smB+ patients.70 Moreover,
CD4+CXCR5+CD25highCD127lowcTfr cells exert
inhibitory capacity as nonfollicular
CD4+CXCR5�CD25highCD127low cells.

In MS patients, significantly lower frequencies of
cTfr cells were found in two studies,15,71 as are Tfr
cells in cerebrospinal fluid.71 In addition, a lower cTfr/
cTfh ratio is related to higher IgG production and
circulating B-cell percentage.71 Notwithstanding, in
patients with early clinical phase clinically isolated
syndrome, a neurological disturbance often occurs
before the development of MS, and the proportions
of cTfr cells and cTfh cells are not significantly
different from healthy controls.72 Specifically,
proportions of proinflammatory Th17-like cTfr cells15

and cytokine-producing CD45RA�Foxp3lo non-cTfr
cells72 are increased, while the proportion of
suppressive fraction CD45RA+Foxp3lo resting cTfr
cells72 is reduced in MS patients, which may explain
the impaired suppressive function of cTfr cells. This
impairment may be because of a defect in CTLA-4
signalling and that the most potent Tfr cells home to

the lymph organs to inhibit the ongoing GC
response.15

Decreased cTfr cells are found in MG patients
compared with healthy controls.73–75 The ratio
of cTfr/cTfh is positively correlated with the
expression of the autoimmune regulator gene in
peripheral blood73 but negatively correlated
with the disease severity of MG.73,74 In addition,
a significantly decreased frequency of cTfr cells
and an increased frequency of cTfh cells are
observed in generalised MG (GMG) patients
compared with untreated ocular MG (OMG)
patients,74 and the cTfr/cTfh ratio is the lowest
in the GMG patients, as compared to the OMG
patients, and higher in healthy controls.73 After
glucocorticoid treatment, cTfr cells and cTfh cells
in MG patients restore immune homeostasis.74

A significantly increased percentage of cTfr cells
and the ratio of cTfr/cTfh are observed in patients
with HT, and Th2-like cTfr cells are significantly
upregulated, while CTLA-4 is downregulated on
Tfr cells, which may contribute to the impaired
humoral immune function of cTfr cells in HT.76

Table 1. Continued.

Disease Authors Molecular phenotype of Tfr cells Main findings

MG Wen et al.74 CD4+CXCR5+Foxp3+ cTfr↓, cTfh↑, cTfr/cTfh is negatively

correlated with the disease activity

Cui et al.75 CD4+Foxp3+CXCR5+ICOS+ cTfr↓, cTfh↑
Zhao et al.73 CD4+CXCR5+Foxp3+ cTfr↓, cTfh↑, cTfr/cTfh is the lowest

in GMG patients

HT Zhao et al.76 CD4+CXCR5+CD25intermediate–highCD127low cTfr↑, cTfr/cTfh↑, expression of ICOS,

PD-1 on Tfr↑, CTLA-4↓
PBC Zheng et al.77 CD4+CXCR5+CD127loCD25hi cTfr↓, cTfh↑, ICOS+cTfr↑, cTfr/cTfh is

inversely correlated with disease

progression, drug response and level

of serum IgM

T1D Xu et al.78 CD4+CD19–Foxp3+CXCR5+ ICOS+/CD4+CD19– Foxp3+CXCR5+ PD-1+ cTfr↓, cTfh↑, CXCR5+ PD-1+ cTfr is

positively correlated with fasting

serum C-peptide levels in T1D

patients

UC Wang et al.79 Foxp3+CXCR5+CD4+ cTfr↓, IL-10+cTfr↓, cTfh↑, IL-21+cTfh↑,
cTfr and cTfr/cTfh are negatively

correlated with disease activity

Unless stated in the corresponding text, frequencies of Tfr cells and Tfh cells and the suppressive function of Tfr cells are compared between

patients and healthy subjects; ↓, lower level compared with healthy subjects; ↑, higher level compared with healthy subjects; -, no statistically

significant difference between patients and healthy subjects.

ACPA, anticitrullinated protein antibodies; AIDs, autoimmune diseases; AS, ankylosing spondylitis; CRP, C-reactive protein; cTfh, circulating

follicular helper T; cTfr, circulating follicular regulatory T; CVID, common variable immune deficiency; DAS28, disease activity score in 28 joint;

dsDNA, double-stranded DNA; ESR, erythrocyte sedimentation rate; GMG, generalised myasthenia gravis; HT, Hashimoto’s thyroiditis; IgG,

immunoglobulin G; IgG4-RD, IgG4-related disease; MG, myasthenia gravis; MS, multiple sclerosis; NA, not available; PA-IgG, platelet antibody

IgG; PBC, primary biliary cholangitis; PLT, platelet counts; RA, rheumatoid arthritis; RF, rheumatoid factor; SLE, systemic lupus erythematosus;

SLEDAI, systemic lupus erythematosus disease activity index; smB, switched memory phenotype B cells; SS, Sj€ogren’s syndrome; T1D, type 1

diabetes; Tfr, follicular regulatory T; UC, ulcerative colitis.
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Decreased cTfr cells and increased cTfh cells are
found in patients with PBC.77 Meanwhile, both
ICOS+cTfr cells and CTLA-4+cTfh cells are increased,
and the ratio of cTfr/cTfh is inversely correlated
with disease progression, drug response and the
level of serum IgM. The effector memory
phenotype (CCR7loPD-1hi) in cTfr cells and cTfh cells
is significantly increased, while the central memory
phenotype (CCR7hiPD-1lo) is decreased in PBC
patients, and the frequency of effector memory
cTfr cells is positively correlated with the level of
serum alkaline phosphatase. Based on the
expression of CXCR3 and CCR6, CD4+CXCR5+T cells
are further classified into three types: Tfh1 type
(CXCR3+CCR6–), Tfh2 type (CXCR3–CCR6–) and Tfh17
type (CXCR3–CCR6+). The ratio of (Tfr2+Tfr17)/Tfr1 is
decreased, but the ratio of (Tfh2+Tfh17)/Tfh1 is
increased in PBC patients, which may imply the
ongoing humoral immune response.

Significantly decreased CD4+CD19�Foxp3+CXCR5+

ICOS+ and CD4+CD19�Foxp3+CXCR5+PD-1+cTfr cells
and the PD-1+cTfr/cTfh ratio are found in patients
with both T1D and type 2 diabetes (T2D).78 Between
these two different markers, only the frequency of
CXCR5+PD-1+ cTfr cells is positively correlated with
fasting serum C-peptide levels in T1D patients, which
is contrary to that of T2D patients. However, in only
T1D patients, the frequency of Tfr cells is correlated
with levels of positive autoantibodies. In addition,
cTfr cells decrease significantly after 1-year follow-up
with the progress of T1D. Impaired suppressive
function of cTfr cells is also observed in T1D patients.
Decreased cTfr cells are further validated in
nonobese diabetic mice and are associated with
ongoing diabetes. Notably, an adoptive transfer of
Tfr cells effectively prevents diabetes onset.

Decreased frequencies of cTfr cells are
observed in UC patients.79 And the subtype
IL-10+Foxp3+CXCR5+ cells are decreased, but cTfh
cells and the subtype IL-21+Foxp3�CXCR5+ cells are
expanded in UC.

Although the emphasis of Tfr-cell studies is
mainly on AIDs, vaccine responses14,15 and other
diseases including infections,82–88 cancers,89–91

allergies,92,93 chronic graft rejection/graft-versus-
host disease (GVHD)94 and acute respiratory
distress syndrome (ARDS)95 have also been under
investigation (shown in Table 2).

Tfr cells in infections

A greater proportion of Tfr cells is found in
chronically HIV+ spleens,87 lymphoid tissues84,85

and tonsils.84,87 The expansion of Tfr cells is
mediated by HIV viral replication, IDO and TGF-b
signalling, enhanced proliferation and weakened
apoptosis, and regulatory DC.85 Moreover, tonsil
Tfr cells exhibit increased regulatory function and
dysregulated activity of Tfh cells during HIV
infection.85 Tfr cells are highly permissive to
R5-tropic HIV-1, probably because of the elevated
expression of CCR5 and an enhanced proliferative
state, and the heightened permissivity leads to
persistent HIV-1 replication in vivo.84 Paradoxically,
increased CD4+Foxp3+CD20+IgD+ and Foxp3+CD25+

CXCR5+CCR7–CD4+ Tfr cells,85,96 unchanged
CD4+CD25+Foxp3+CXCR5+PD1hiBcl-6+ Tfr cells97 and
decreased CXCR5+CCR7�Foxp3+CD25+CD4+ Tfr
cells98 are discovered in lymphoid tissues from
rhesus macaques during chronic Simian
immunodeficiency virus (SIV) infection, and the
discrepancies are presumably attributed to distinct
gating strategies. In contrast to chronic infection,
Foxp3+CD25+CXCR5+CCR7�CD4+ Tfr cells are
reduced during acute SIV infection, and the
decreased ratio of Tfr/Tfh, rather than the
frequency of Tfr cells, is correlated with anti-
dsDNA antibody and antiphospholipid antibody
levels.96 In addition, the frequency of Tfr cells is
negatively correlated with the avidity of
antibodies recognising SIV-gp120.98 The
percentage of Tfr cells is also increased during
chronic hepatitis B virus (HBV) and hepatitis C virus
(HCV) infection,82,83,88 which is more pronounced
in patients with liver cirrhosis82 and HBeAg+

chronic hepatitis B (CHB).88 The percentage of IL-
10–producing tonsillar Tfr cells is increased, and
the expression of CTLA-4 on Tfr cells is
upregulated.83 In addition, the frequency of cTfr
cells and the ratio of cTfr/cTfh are positively
correlated with fibrosis index based on four
factors and the aspartate transaminase-to-platelet
ratio index.82 Conversely, one study found that an
increased number of cTfr cells are accompanied by
higher levels of serum HBV DNA, HBsAg and serum
alanine transaminase (ALT) in CHB patients and
HCV RNA and ALT in chronic hepatitis C (CHC)
patients,88 while another study indicated no
correlations between cTfr cells and HBV DNA and
ALT.82 The suppressive capacity of Tfr cells against
Tfh cells is enhanced after exposure to HCV.83 The
percentage of cTfr cells is also increased in
patients with schistosomiasis, and most are
CD45RA� cTfr cells, reflecting memory-like
properties.86 It seems that the increase in Tfr cells
in infections has gained consensus in humans.
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However, divergences exist in mouse models. Both
cTfr cells and cTfh cells were observed to be
expanded in mice infected with influenza.16,99

Botta et al.41 found that Tfr cells in the lung-
draining mediastinal LNs fail to accumulate at the
peak of influenza infection, but after the immune
response subsides, a fraction of Treg cells
downregulates CD25 and then differentiates into
Tfr cells. Tfr cell–deficient mice exhibit enhanced
immunity to influenza viruses, indicating that Tfr
cells may be targets in infectious disease.81 Using
mice infected with orthopox and influenza A
viruses, it was observed that Tfh cells expand more
prominently than Tfr cells and that both lymphoid
and circulating Tfh/Tfr ratios can be regarded as
early predictors of long-lived protective humoral
immune responses.100

Tfr cells in cancers

Increased frequencies of Tfr cells89–91 and Tfh
cells90,91 are found in tumor-draining LNs91 and

peripheral blood89,90 from patients with breast
cancer,91 non–small-cell lung cancer (NSCLC)90 and
ovarian carcinoma.89 Tumor-infiltrating Tfr cells
exhibit a higher proportion than cTfr cells.89 In
addition, Tfr cells from ovarian cancer patients
exhibit higher TGF-b (TGFB1) and IL-10 (IL10) gene
transcription levels, particularly the tumor-
infiltrating Tfr cells.89 The frequency of Tfr cells is
not correlated with metastasis or the progression
of breast cancer,91 whereas the frequency of cTfh
cells is correlated with clinical stage and
histological subtypes of NSCLC patients.90 Notably,
when cocultured with CD8+T cells in ovarian
cancer patients, Tfr cells inhibit the activation of
CD8+T cells in an IL-10–dependent manner,
indicative of enhanced suppressive function.89

Tfr cells in allergies

Frequencies of Tfr cells are found to be lower in
peripheral blood from post-transplant food
allergy patients93 and in tonsils from allergic

Table 2. Studies of Tfr cells in patients with non-AIDs and vaccine responses

Disease Authors Molecular phenotype of Tfr cells Main findings

HIV Colineau et al.87 CD3+CD4+CD45RA–CCR7�CXCR5+Foxp3+ GC Tfr↑
Miles et al.85 CD4+Foxp3+CD20+IgD+ GC Tfr↑, proliferation↑, apoptosis↓, regulatory function↑
Miller et al.84 CXCR5+CD25+ CD127�(Tfr) and CXCR5+PD1+

CD25+CD127�(GC Tfr)

Tfr↑, GC Tfr↑, Tfh↑, GC Tfh↑, and Tfr is highly

permissive to R5-tropic HIV-1

CHB Wu et al.82 CD4+CXCR5+Foxp3+ cTfr↑, cTfr/cTfh↑ and are positively correlated

with FIB-4 and APRI

HCV Cobb et al.83 CD4+CXCR5+ PD-1+CD25+Foxp3+ Tfr↑, expression of CTLA-4 on Tfr↑, suppression
capacity↑

CHB CHC Wang et al.88 CD4+CXCR5+Foxp3+ cTfr↑, cTfh↓, cTfr is positively correlated with serum

HBV DNA, HBsAg and ALT in CHB patients, and also

HCV RNA and ALT in CHC patients

Schistosomiasis Chen et al.86 CD3+CD4+CXCR5+Foxp3+ cTfr↑, CD45RA� cTfr↑
Breast cancer Faghih Z et al.91 CD4+Bcl6+CXCR5int/hi Tfr↑, Tfh↑
NSCLC Guo et al.90 CD4+CXCR5+ ICOS+Foxp3+ cTfr↑, cTfh↑
Ovarian

carcinoma

Li et al.89 CD4+CD25+CD127�CXCR5+/CD4+

CD25+CD127�CXCR5+Foxp3+
cTfr↑, the expression of TGFB1 and IL10↑, suppression
capacity↑

LTFA Bruyne et al.93 CD3+CD4+CD45RO+CXCR5+CD25+ Foxp3+ cTfr↓
AR Yao et al.92 CD3+CD4+CD45RAlowCXCR5high/CD3+

CD4+CD45RAlowCXCR5+CD25highCD127lowFoxp3+
Tfr↓ and is negatively correlated with antigen-specific

IgE production and disease activity, the suppression

capacity↓
CGR Chen et al.94 CD4+CXCR5+ICOS+Foxp3+CD127� Tfr↓, IL-21–Tfh↑ in AMR patients

ARDS Li et al.95 CD4+Foxp3+CXCR5+ cTfr↑, expression of CTLA-4 and IL-10 on Tfr↓, the
suppression capacity↓

Influenza

vaccination

Dhaeze et al.15 CD4+CD25+CD127�CXCR5+PD-1+ cTfr↑
Fonseca et al.14 CXCR5+Foxp3+CD4+/CXCR5+CD25+vCD127�CD4+ cTfr↑

AIDs, autoimmune diseases; ALT, serum alanine transaminase; AMR, antibody-mediated rejection; APRI, aspartate transaminase-to-platelet ratio

index; AR, allergic rhinitis; ARDS, acute respiratory distress syndrome; CGR, chronic graft rejection; CHB, chronic hepatitis B; CHC, chronic

hepatitis C; FIB-4, fibrosis index based on four factors; GC, germinal centre; HCV, hepatitis C virus; HIV, human immunodeficiency virus; LTFA,

post-transplant food allergy; NSCLC, non–small-cell lung cancer; Tfr, follicular regulatory T.
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rhinitis (AR) patients.92 The phenotype and
number of cTfr cells are correlated with tonsillar
Tfr cells.92 Moreover, cTfr cells in AR
patients show impaired function specifically in
suppressing IgE expression rather than other
immunoglobulin types. The number and function
of cTfr cells are negatively correlated with
antigen-specific IgE production and disease
activity in AR patients. Once patients get relief
after allergen immunotherapy, the frequency and
function of cTfr cells are recovered.92 Tfr cells
have also been investigated in a food allergy
mouse model to measure peanut-specific antibody
responses.53

Tfr cells in other disease settings

In renal transplant patients with chronic renal
allograft dysfunction, frequencies of Tfr cells in
peripheral blood and renal grafts from those with
antibody-mediated rejection (AMR) are
significantly decreased, while the frequency of IL-
21–producing Tfh cells is increased, relative to
those non-AMR patients.94 However, Tfr cells
exhibit equivalent suppressive function between
AMR and non-AMR patients. An increase in the
Tfr-cell ratio inhibits the expression of IL-21 in Tfh
cells, the proliferation and differentiation of B
cells, and IgG and IgA secretion of plasma cells.94

The miR-17–92 cluster is proved to facilitate Tfh-
cell differentiation and impair Tfr/Tfh balance,
thus accelerating the development of chronic
GVHD in mice.38 In addition, Tfr cells prompt
lymphangiogenesis and Breg proliferation,
exerting an atheroprotective effect in Apoe�/�

mice transferred with Tfr cells.101

Follicular regulatory T cells are significantly
elevated in peripheral blood mononuclear cells
(PBMCs) and in mini-bronchoalveolar lavage (BAL)
during the onset of ARDS. Notably, Tfr cells
account for a small proportion of Treg cells in
PBMCs and a major proportion in mini-BAL.
Compared with non-Tfr Treg cells, Tfr cells exhibit
lower levels of CTLA-4 and IL-10 and weaker
suppression capacity towards autologous
CD4+CD25�T cells but enhanced capacity to induce
IL-10+Breg cells.95

Tfr cells in vaccine responses

The number of cTfr cells is increased after
influenza vaccination in healthy subjects14,15 and
is positively correlated with anti-influenza

antibodies. Among cTfr cells, memory Tfr cells
(CD45RO+CD45RA� Tfr) are significantly increased,
whereas na€ıve Tfr cells (CD45RO�CD45RA+) are
decreased significantly after vaccination.15

Tfr cells in ageing

The expansion of Tfr cells in ageing is
corroborated in patients with NSCLC90 and IgG4-
RD.69 The percentages of cTfr cells and cTfh cells
are higher in patients older than 60 years, but the
cTfr/cTfh ratio is decreased with age.90

Nevertheless, the suppressive capacity of Tfr cells
decreases with ageing.69 Both Tfr cells and Tfh
cells expand with age in mice,99,102 and Tfr cells
are more pronounced.102 However, male mice
exhibit a higher percentage of Tfr cells than their
female counterparts regardless of age.99 Aged
and young Tfr cells exhibit identical suppressive
capacity but a distinct phenotype with enhanced
PD-1 and decreased ICOS expression.102

CHALLENGES AND UNSOLVED
QUESTIONS OF TFR CELLS

Despite the fact that great progress has been
made in the physiology of Tfr cells in recent years,
much is unknown, and significant phenotypic and
functional heterogeneity of Tfr cells still exists
among various disease settings. The uniform
methodology to identify and purify Tfr cells is a
technical challenge. Actually, the defining markers
such as Foxp3, CD25103 and CXCR5104 are also
upregulated during effector T (Teff)-cell
activation. Unlike Treg cells, recent studies have
shown that bona fide Tfr cells do not express
IL-2Ra (CD25),41,45,51,105 which is inconsistent with
previous description of the CD25+Tfr cell. Thus,
most previous studies investigating the physiology
of Tfr cells may be mixtures of Tfr cells and Treg
cells. Notably, both CD25+ and CD25– Tfr cells exist
in follicles and GCs.105 Therefore, it is imperative
to designate corresponding markers in different
anatomic locations. Tfr cells were analysed initially
by total Treg depletion,5,7,46 adoptive transfer
along with other T cells,5,7,18,26 and then mice
with deletion of Roquin25 and NFAT2,22 but these
studies may manifest nonspecific effects or
nonphysiological function of Tfr cells.106 Recently,
a novel model using Bcl6fl/flFoxp3cre mice has been
under investigation, and the findings about Tfr-
cell function are sharply distinct from previous
studies.41,45,57 Nevertheless, Bcl6fl/flFoxp3cre
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mouse model has its limits, and a more recent
study has used a Cxcr5IRES-LoxP-STOP-LoxP-DTR

Foxp3IRES-CreYFP mouse strain.52 Therefore, the
establishment of uniform markers both
phenotypically and functionally to unambiguously
define bona fide Tfr cells in corresponding
anatomic locations and of models to analyse Tfr
cells specifically and physiologically will greatly
deepen our understanding of Tfr cells.

Restricted by the samples, cTfr cells are often
chosen as surrogate indicators, but the origin,
phenotype and function between cTfr and GC Tfr
cells have not yet reached a final conclusion
(shown in Table 3). However, the kinetics of LN
Tfr cells are found to be similar to those of cTfr
cells.18 It is acknowledged that cTfr cells are
derived from lymphoid tissues and are at least
activated by DC.14–16 Two studies conducted in
patients with X-linked agammaglobulinaemia14

and anti-CD20 antibody rituximab treatment,107

both B cell–deficient, found that cTfr- and cTfh-
cell populations are not influenced. In addition,
cTfr cells comprise a phenotypically distinct
population compared with GC Tfr cells, displaying
similar or lower levels of CXCR5 and lower or
even no ICOS, PD-1 or Bcl-6.14–16 Resembling,15

attenuated16 and incomplete14 effector function
of cTfr cells is described by sorting cTfr cells with
distinct strategies. RNA-seq has also validated that
cTfr cells separate from GC Tfr cells, and even LN
Tfr cells only partially overlap with splenic Tfr cells
in mice immunised with NP-OVA.19 More
specifically, LN Tfr cells exhibit higher levels of
ICOS and CTLA-4, similar levels of Ki-67, but lower
levels of PD-1 relative to splenic Tfr cells. When
comparing their suppressive ability, LN Tfr cells
are more potent for inhibiting class switching
than splenic Tfr cells.19 Thus, whether cTfr cells
can be regarded as an alternative to investigate
bona fide Tfr cells needs more validation. cTfr
cells might have the capacity to home to
secondary lymphoid organs after reactivation15,16

and recirculate quickly (about a few hours)
through the blood,16 whereas their putative
remigration and subsequent reactions have not
yet studied.

Animal models are generally used to reflect
putative human physiology and pathology.
Studies by two groups have revealed differences
in cTfr function between humans and mice. Sage
et al.16,18,35,46 showed that cTfr cells in mice can
inhibit antibody generation, while Fonseca et al.14

reported that cTfr cells in humans are not fully

suppressed. Partly because of environmental
exposure, murine immune system and immune
responses are actually different from those of
humans.108 From this viewpoint, applications of
murine knowledge directly to humans are
circumscribed. Furthermore, the origin and TCR
repertoire of Tfr cells have been studied only in
mice.

Generally speaking, Tfr cells are deemed as
repressors of GC reactions, so it is speculated that
decreased Tfr/Tfh ratios are associated with
enhanced autoantibody generation. Nevertheless,
the alterations of Tfr cells in homogeneous
diseases are inconsistent and even opposite. Study
participants with different stages of the disease
and therapeutic regimens may account for part of
the reason because methotrexate, a first-line
medication for RA, has reduced the frequencies of
both Tfr and Tfh cells.61 In addition, distinct
markers to define Tfr cells in the same anatomic
locations and the same markers to define Tfr cells
in distinct anatomic locations have brought about
great confusion. A possible interpretation for
increased Tfr cells in autoantibody-mediated
diseases is that it is a compensative response as a
result of increased frequency of Tfh cells,
attempting to restore immune homeostasis.
Another is that suppressive function of Tfr cells is
impaired in disease settings; thus, the overall
effect of controlling GC responses is still
attenuated. In addition, it has also been proposed
that the microenvironment while thymic Treg cells
differentiate into eTfr cells has altered so that
eTfr cells have difficulty in getting access to GCs,
leaving them in the peripheral blood.

Also unknown is whether Tfr cells convert from
suppressive to stimulatory function in GC
responses. Although most studies have
demonstrated that Tfr cells function as inhibitors
of Tfh and GC B cells, it has been proven that Tfr
cells do not influence Tfh or GC B-cell gross
population in a Bcl6fl/flFoxp3cre mouse model.45

Furthermore, Tfr cells help maintain high levels of
high-affinity antigen-specific antibodies5,45 and
regulate the isotype switch of antibodies.45 They
also promote the GC response through the
secretion of IL-10 and the suppression of cytotoxic
Tfh cells.53,57 Thus, Tfr cells might play a
complicated role in the fine-tuning of GC
response and act as ‘helper cells’ in certain
scenarios.

Recently, Treg cells have been proven to be not
terminally differentiated populations and have
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some degree of instability and plasticity under
inflammatory conditions, suggesting that Treg
cells may lose Foxp3 expression or even acquire
the properties of Teff cells. In addition, Teff cells
are resistant to suppression by Treg cells in some
AIDs.109 Foxp3 instability in Tfr cells has recently
been demonstrated, which results in attenuated
suppressive capacity of Tfr cells.19 The so-called ex-
Tfr cells lose their previous transcriptional
programme, rendering them more similar to Tfh
cells.19 Considering the shared similarities
between Tfr and Treg cells, whether plasticity
exists in Tfr cells and whether Tfh and B cells are
resistant to Tfr-cell suppression under pathological
conditions remain unknown.

Since Tfr cells play such a significant role in
regulating antibody production, it is attractive to
target Tfr cells to restore immune homeostasis.
Altered Tfr/Tfh might be implicated in causes or
effects of the above-mentioned diseases.
Intraperitoneally injected all-trans retinoic acid in
EAMG rats and caspase-1 inhibitor in mice have

ameliorated disease severity concomitant with an
increased frequency of Tfr cells and decreased
frequency of Tfh cells.110,111 Baicalin treatment has
also been found to ameliorate lupus nephritis in
MRL/lpr lupus-prone mice by enhancing the
expansion of Tfr cells and suppressing the
differentiation of Tfh cells.112 Methods to enhance
Treg cells numerically and functionally have been
under clinical trials in AIDs,109 so we wonder
whether Tfr cells can be applied for therapeutic
interventions in AIDs, infections, cancers, allergies
and other disorders. According to their role in
inhibiting antibody generation, regulation of Tfr
cells may strengthen the efficacy of vaccines.

PERSPECTIVES

The discovery of Tfr cells has provided novel
insights into the regulation of humoral
immunology, although it is still in the nascent
stage. Future emphasis should be put on intricate
factors that influence the differentiation and

Table 3. Studies comparing cTfr and GC Tfr cells

Authors Gating Samples Origin Phenotype Function

Sage

et al.16
CD4+ICOS+CXCR5+Foxp3+/GITR+CD19– Mice immunised

with NP-OVA

or NP-HEL

in CFA

Primed by DC,

do not

require B

cells

Memory-like, persist in vivo

for a long time, express

similar levels of CXCR5

but lower ICOS, similar

proportions in cell cycle

Similar to LN

Tfr cells but

with a much

lower capacity

Dhaeze

et al.15
CD4+CD25+CD127�CXCR5+PD-1+ Non-AIDs adult

patients with

routine

tonsillectomies

Lymphoid-

resident Tfr

cells after a

GC response

Express lower levels of

follicular markers (CXCR5,

PD-1, Bcl-6 and ICOS) but

similar levels of regulatory

markers (Foxp3 and

Helios) with comparable

Foxp3 methylation status

and higher levels of CD31,

CCR7 and CD62L, display

a memory phenotype and

higher percentage of Th1-

like phenotype

Comparable

suppressive

function with

tonsil-derived

Tfr cells

Fonseca

et al.14
CXCR5+Foxp3+CD4+/CXCR5+CD25+CD127�CD4+ Healthy children

with routine

tonsillectomies

Peripheral

lymphoid

tissues before

T-B

interaction

Na€ıve-like phenotype (high

levels of CD45RA, CCR7,

CD62L and CD27 and low

levels of HLA-DR),

CD45RO�Foxp3lo resting

cells are the majority, do

not express ICOS, PD-1 or

Bcl-6

Able to

suppress

activation of

B cells and

proliferation

of Tfh cells,

do not inhibit

class switch

recombination

AIDs, autoimmune diseases; CFA, complete Freund’s adjuvant; cTfr, circulating follicular regulatory T; DC, dendritic cell; GC, germinal centre;

HLA-DR, human leucocyte antigen–DR; LN, lymph node; NP-HEL, 4-hydroxy-3-nitrophenylacetyl hapten–conjugated hen egg lysozyme; NP-OVA,

4-hydroxy-3-nitrophenylacetyl hapten–conjugated ovalbumin.
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function of Tfr cells. Further elucidation of Tfr cell–
suppressive mechanisms is essential for Tfr cell–
related therapeutics. Tfr cells have been studied in
a wide range of diseases, predominantly AIDs, and
most of the samples derive from peripheral blood.
A major challenge in human research is to obtain
lymphoid tissues to assess bona fide Tfr cells. LN
fine-needle aspirates (FNAs), a minimally invasive
method primarily used for cancer pathology
surveillance, may provide access to GCs in
humans.113 LN FNAs have already been applied in a
pioneering longitudinal study for human GC
investigation.114 Undoubtedly, the establishment
of a precise definition of Tfr cells in different
anatomic locations and relevant animal models is
of equal importance. Substantial discrepancies and
problems remain to be solved, and these answers
will undoubtedly improve immunotherapy.
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