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Vaginal microbiome topic modeling of laboring Ugandan
women with and without fever
Mercedeh Movassagh1, Lisa M. Bebell2,16, Kathy Burgoine3,16, Christine Hehnly 4, Lijun Zhang4, Kim Moran4, Kathryn Sheldon5,
Shamim A. Sinnar5, Edith Mbabazi-Kabachelor6, Elias Kumbakumba7, Joel Bazira8, Moses Ochora7, Ronnie Mulondo6,
Brian Kaaya Nsubuga 6, Andrew D. Weeks 9, Melissa Gladstone9, Peter Olupot-Olupot3,10, Joseph Ngonzi11, Drucilla J. Roberts12,
Frederick A. Meier13, Rafael A. Irizarry1, James R. Broach 4,17, Steven J. Schiff 14,17 and Joseph N. Paulson 15,17✉

The composition of the maternal vaginal microbiome influences the duration of pregnancy, onset of labor, and even neonatal
outcomes. Maternal microbiome research in sub-Saharan Africa has focused on non-pregnant and postpartum composition of the
vaginal microbiome. Here we aimed to illustrate the relationship between the vaginal microbiome of 99 laboring Ugandan women
and intrapartum fever using routine microbiology and 16S ribosomal RNA gene sequencing from two hypervariable regions (V1–V2
and V3–V4). To describe the vaginal microbes associated with vaginal microbial communities, we pursued two approaches:
hierarchical clustering methods and a novel Grades of Membership (GoM) modeling approach for vaginal microbiome
characterization. Leveraging GoM models, we created a basis composed of a preassigned number of microbial topics whose linear
combination optimally represents each patient yielding more comprehensive associations and characterization between maternal
clinical features and the microbial communities. Using a random forest model, we showed that by including microbial topic models
we improved upon clinical variables to predict maternal fever. Overall, we found a higher prevalence of Granulicatella,
Streptococcus, Fusobacterium, Anaerococcus, Sneathia, Clostridium, Gemella, Mobiluncus, and Veillonella genera in febrile mothers,
and higher prevalence of Lactobacillus genera (in particular L. crispatus and L. jensenii), Acinobacter, Aerococcus, and Prevotella
species in afebrile mothers. By including clinical variables with microbial topics in this model, we observed young maternal age,
fever reported earlier in the pregnancy, longer labor duration, and microbial communities with reduced Lactobacillus diversity were
associated with intrapartum fever. These results better defined relationships between the presence or absence of intrapartum fever,
demographics, peripartum course, and vaginal microbial topics, and expanded our understanding of the impact of the microbiome
on maternal and potentially neonatal outcome risk.

npj Biofilms and Microbiomes            (2021) 7:75 ; https://doi.org/10.1038/s41522-021-00244-1

INTRODUCTION
The vaginal microbiome consists of an ecological community
(CMT) of microorganisms that are important in both maternal and
neonatal health1. During pregnancy, the vaginal microbiome
composition is known to change, which has a role in ascending
infection in puerperal sepsis2. For neonates, exposure to the
vaginal microbiome during birth or through premature rupture of
membranes is an important route to early-onset neonatal sepsis3.
Routine screening and treatment for group B Streptococcus (GBS)
has reduced the rate of neonatal GBS infection in high-income
countries4. In sub-Saharan Africa (sSA), group B Streptococcal
infections are relatively uncommon in early-onset neonatal sepsis
and there is a lack of understanding of how the peripartum
vaginal microbiome contributes to maternal and neonatal
disease5,6. Most maternal microbiome research in sSA has focused

mainly on non-pregnant or postpartum composition of the
vaginal microbiome7,8.
In North America, the composition of the vaginal microbiome in

reproductive aged women has been characterized using 16S
ribosomal RNA gene (rRNA) sequencing (predominantly V3–V4
hypervariable regions) to determine the presence of culturable
and unculturable bacteria in these women9. Vaginal profiles were
categorized into five (I–V) distinct bacterial CMT state types by
hierarchical clustering where patients were assigned a single
CMT9,10. Subsequent work revealed the temporal dynamics of the
bacterial CMTs and a large dynamic shift of CMT composition over
a 16-week time period for some patients7,10. This highlighted why
a single CMT assignment was often not stable over time and the
need for a more dynamic representation of a patient’s CMT.
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Overall, current studies in African women suggest vaginal CMT
compositions distinct from European and North American
women11. Some of the normal vaginal microbial composition in
the sSA specifically possess higher prevalence of Lactobacillus iners
species and the CMT categorization using hierarchical clustering
reports a differentiating number in comparison to that of the
western world11–13. In addition, CMT associations with HIV status
and other diseases such as human papillomavirus and vaginal
infections have been described11,14. In resource-poor settings in
sSA, such as Uganda, there is a higher prevalence of many factors
that could potentially affect vaginal microbial diversity, including
off-label antibiotic use, sexually transmitted infections including
HIV and Chlamydia, endemic malaria, and cytomegalovirus (CMV)
infections11,15–17. Furthermore, these comorbidities impact micro-
bial diversity associated with infant pneumonia, acute diarrhea,
sepsis, and postinfectious hydrocephalus17–19. Although women
living in Africa are at greater risk for malaria, sepsis, and infectious
diarrhea, the effect of these infections on the vaginal microbiome
has not been characterized20–23.
The neonate’s first exposure to microbes is ideally through

contact with the maternal vaginal and gut microbiota during the
birth process24,25. Maternal vaginal CMTs change during preg-
nancy, thought in part to result from hormonal changes26. Higher
estrogen levels promote the growth of lactic acid-producing
bacteria, shifting the microbiome towards predominantly high-
Lactobacillus CMTs and increasing diversity postpartum26,27.
Previous research has also suggested that children born via
cesarean delivery compared to those born vaginally are inherently
more susceptible to developing autoimmune diseases due to the
absence of bacteria such as Bifidobacterium in their intestinal
microbiome28,29. It remains unknown the extent to which the
composition of the vaginal microbiome in intrapartum sSA
women renders her infant more susceptible to neonatal infection
and subsequent sepsis29. This is particularly true given GBS
neonatal sepsis is uncommon in sSA African women5,6.
Most maternal microbiome research in sSA has focused on non-

pregnancy or postpartum composition of the vaginal micro-
biome7,8. A recent African study has found an association between
preterm birth and increase in microbial diversity during preg-
nancy, using 16s rRNA-sequencing (rRNA-seq) technique (n=
38)30. Here we sought to comprehensively define the structure of
the vaginal microbiome and its association with maternal fever in
99 laboring intrapartum women in Uganda through 16S rRNA-seq
of V1–V2 and V3–V4 hypervariable regions. Given the importance
of maternal intrapartum fever as an indicator of infection, we
incorporated novel modeling methods to characterize the vaginal
microbiomes more fully between febrile and afebrile mothers.

RESULTS
Clinical and microbiology characterization
Maternal vaginal samples were obtained from 99 Ugandan
intrapartum women during active labor but before birth after
obtaining written informed consent (full-term births). Women
were enrolled after presenting to hospital in labor for delivery in
two districts in Uganda: Mbarara (n= 50) in western Uganda and
Mbale (n= 49) in eastern Uganda (see Supplementary Materials,
Online Methods). Various clinical and microbiological features
were collected and assessed comparing maternal fever status
(Table 1, Supplementary Table 1, Supplementary Table 1, and
Supplementary Materials). Overall, from the microbiology culture
recovery results, we deduced that the use of laboratory
bacteriology technique alone was insufficient, as it would limit
us to a certain number of bacteria for investigation, limiting the de
novo discovery, and potentially greater sensitivity available with
marker-gene high-throughput sequencing technologies (see
Supplementary Materials, Methods).

Vaginal microbiome CMTs of afebrile and febrile laboring
Ugandan women
An overview of our 16S rRNA-seq approach on the V1–V2 and
V3–V4 hypervariable regions, and taxonomic assignment method
is provided in Fig. 1a, Supplementary Fig. 1, and in the
Supplementary Materials. We assessed bacterial recovery in
culture and compared it to 16S results (see Supplementary
Materials).
We aimed to dissect patterns within our data that could unravel

the relationship between vaginal microbiome structure and
maternal fever. Through taxonomic assignment and downstream
analysis, we estimated the percent abundance of top genera
represented in our data set Fig. 1b. As expected, Lactobacillus was
the most predominant genus in the vaginal microbiome of
laboring women26. Sneathia, often associated with bacterial
vaginosis (BV), was the second most predominant genus11,
followed by Ureaplasma and Prevotella, all of which are shown
to be associated with dysbiosis in preterm birth but also observed
as normal members of commensal vaginal flora31–33. The
distribution of the top genera of bacteria identified was primarily
consistent across both sample collection sites Fig. 1c.
We initially examined the vaginal CMTs through previously

described hierarchical clustering methods. As there has not been a
consensus on the number of CMTs in the vaginal microbiome of
African women, we assumed agreement with the number of CMTs
expected in the European and African American samples, and
picked five as the initial number of clusters to investigate11. We
pursued two approaches as follows: first the traditional hierarch-
ical approach (see Supplementary Materials) and second a non-
dichotomous approach whereby we subsequently performed
differential abundance analysis.
Through the second approach, we refined sample clusters on a

subset of taxa differentially associated with the traditional
hierarchical clustering, to identify CMTs on taxa that could be

Table 1. Overview clinical characterization of febrile vs. afebrile.

Characteristic Afebrile Febrile Odds ratio
(95% CI)

Total (N= 99) n= 49 n= 50 Univariate

Average temperature at
recruitment (mean, SD)

36.6 (0.3) 38.3 (0.2) –

Age in years (median, IQR) 26 (7) 22 (6.3) 0.03 (0.00, 0.26)

HIV infected n (%)a 5 (10%) 5 (10%) 1.00 (0.26, 3.83)

Parity (mean, SD) 2.8 (1.9) 2.3 (2) 0.61 (0.28,1.32)

Self-reported fever in the last
7 days prior to delivery (%)

4 (6%) 25 (50%) 10.56 (3.56, 39.08)

Self-reported vaginal infection
in last 1 month (%)b

3 (6%) 3 (10%) 1.70 (0.39, 8.71)

Intrapartum antimicrobial use
(%)c

2 (4%) 5 (11%) 2.82 (0.57, 20.47)

Hours in labor (median, IQR) 18 (38) 33 (30) 1.19 (0.98,1.46)

Cesarean delivery (%) 11 (22%) 24 (48%) 3.19 (1.36, 7.84)

Malaria RDT or blood smear
positive in labor (%)d

4 (8%) 16 (32%) 5.05 (1.68, 18.92)

Sample collection site (%) 24 (48%) 25 (50%) 1.04 (0.47, 2.30)

Maternal CMV viral load (%) 16 (32%) 17 (34%) 1.06 (0.45, 2.47)

Odds ratio for hours in labor was estimated for every 10 h. The sample site
collection was Mbale vs. Mbarara.
IQR interquartile range.
aN= (49,49).
bN= (48,49).
cN= (46,44).
dN= (47,50).
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used as a biomarker in resolving CMT membership and filtering
taxa that are not differentially abundant between CMTs (Supple-
mentary Materials). CMT 1 was previously identified as a
Lactobacillus genera-rich CMT (Supplementary Table 3)9. Similarly,
previously CMT 2 was mainly composed of high L. iners species9,
whereas CMT 3 appeared to be similar in this regard, but
contained a greater abundance of Finegoldia, Veillonella, and
Streptococcus genera. CMTs 4 and 5 displayed more diverse CMTs
with high levels of Sneathia, Dialister, Gemella, Clostridium, and
Prevotella genera. CMT 5 had higher levels of Parvimonas,
Clostridium, Mycoplasma, Adlercreutzia, and Mycoplasma genera
in comparison to CMT 4 (Supplementary Table 4). We additionally

identified unique bacterial genera including Adlercreutzia, Granu-
licatella, Bulleidia, Staphylococcus, Micrococcus, and Fusobacterium
in this cohort and CMT (Supplementary Table 3). An association
between the maternal CMV viral load and the vaginal microbial
CMT was not observed (P= 0.57).
Furthermore, there was no association between maternal

intrapartum fever and CMT classification previously described
hierarchical clustering methods (P= 0.52) (Fig. 2). When classified
using the V1–V2 hypervariable region, similar CMTs were formed;
however, this region was not as efficient at speciating Lactobacillus
and Streptococcus species, but identified other unique species

Fig. 1 Overall pipeline and structure for 16S ribosomal RNA sequencing (16S rRNA-seq) of maternal vaginal samples. a Maternal vaginal
samples were collected from two hospital sites in Uganda (Mbarara and Mbale) and were categorized by intrapartum fever status. DNA was
extracted and samples underwent library preparation and sequencing on two ribosomal hypervariable regions V1–V2 and V3–V4. The
sequence output was pre-processed utilizing the QIIME1 pipeline (“Methods”) and samples were further processed for downstream
differential abundance (DA) and modeling in concordance with various clinical and technical variables. b Percentage abundance of bacteria
on the genus level based on the febrile status of samples. c Mean percent abundance of bacteria (agglomerated on the genus level) by
enrollment site. (g_) denotes the bacteria naming based on genus taxonomic level.

Fig. 2 Vaginal bacterial community characterization heatmaps of intrapartum Ugandan women through hierarchical clustering. Vaginal
bacterial community classification through selected bacteria after Kruskal–Wallis (KW) test. KW_Communities_V34 are the communities
identified by bacteria selected from the KW test. Color of the heatmap represents log10 normalized counts of species and yellow represents
zero counts. Annotations are as follows: KW_Communities_V34 is the vaginal community identified from V3–V4 regions through hierarchical
clustering followed by bacteria selected by KW test. CMV_Vag represents CMV status of the vaginal samples identified by PCR; LP_Batch is the
library preparation batch; Seq_Batch is the sequencing batch, which the samples were processed in; Labor_Fever is the fever status of the
laboring woman (see “Methods” for definitions; SSITE is the sample collection site (Mbarara or Mbale).
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compared to the V3–V4 hypervariable region34 (Supplementary
Fig. 2, Supplementary Table 2, and see Supplementary Materials).
We assessed α-diversity (Shannon and Simpson)35 of the vaginal

microbiome comparing fever and CMT states across our samples.
We observed no significant difference in α- or β-diversity using
either V1–V2 or V3–V4 between febrile states (P= 0.25 and P=
0.12) (Fig. 3a, c). On the contrary, the microbial CMTs assigned
from hierarchical clustering significantly explained the α-diversity
(Shannon P < 1.78e− 08, Simpson’s P < 3.91e− 04) (Fig. 3c, d and
Supplementary Fig. 2a–d). Overall, we find that the structure of
our sample cohort assessed by α- and β-diversity was highly
driven by microbial CMTs assigned by hierarchical clustering and
not by maternal fever status. However, although the complexity of
the microbiome may not be associated with febrile status, it does
not exclude the possibility that individual pathogens are
differentially associated with febrility.

Differential abundance analysis
We tested for associations between bacterial taxa and maternal
complications, including fever status. We performed differential
abundance analysis for both unadjusted and controlled for CMT
and sample collection sites (see Online Methods for detail).
We observed that the abundance of Granulicatella, Streptococ-

cus, Fusobacterium, Anaerococcus, Sneathia, Clostridium, Gemella,
Mobiluncus, and Veillonella genera were consistently higher in
febrile mothers. We observed Lactobacillus jensenii, Aerococcus sp.,
Prevotella copri, Acinetobacter sp., Lactobacillus crispatus, and
Lactobacillus reuteri at higher abundance levels in afebrile mothers
(Fig. 4a, e).

Reproducibility with differing 16S V1–V2 and V3–V4
hypervariable regions
To assess the consistency of our results between the V1–V2 and
V3–V4 hypervariable regions, we compared diversity, read depth,
and species abundances across matched samples. In general, α-
diversity was lower in V1–V2 relative to V3–V4 (Shannon P= 1.41e
− 05, Simpson P= 1.56e− 4), whereas sample read depth was

consistently higher in V1–V2 than in V3–V4 (Mann–Whitney P <
2.2e− 16) (Fig. 4b, c).
Species abundances were highly correlated and clustered

between the two hypervariable regions (Fig. 4d). In particular, a
cluster formed by Turicibacter, Lachnospira, Prausnitzii, and
Coprococcus (Spearman’s correlation > 0.2). These bacteria are
all known members of the gut microbiome family and formed a
CMT when measuring correlation across samples. Furthermore,
we identified nuanced bacterial relationships between regions.
For example, Mycoplasma sp. displayed no correlation (Spear-
man’s correlation= 0.05) across regions; on the other hand,
Dialister sp. had a strong correlation across both regions
(Spearman’s correlation= 0.85) (Fig. 4d). We found additional
nuances between bacteria taxa depending on the hypervariable
region, which we have further explained in the Supplementary
Materials.

GoM models for characterization of vaginal microbial CMTs
Grades of membership (GoM) models have most commonly been
used in text processing and document structure identification36.
One such method employs a Latent Dirichlet Allocation (LDA)
approach, a generative latent variable model, where documents
can be thought of as bags of words generated by various themes
phrased as “topics” and are represented by vectors of frequen-
cies36,37. LDA can be used to simultaneously distill topics from a
set of “documents” and describe a weight to each document as
belonging to a particular topic.

p sið Þ ¼
XT

j¼1

p si jzi ¼ jð Þp zi ¼ jð Þ (1)

We applied GoM models to describe the underlying bacterial
CMT structures that may have evaded detection in our hierarchical
clustering methods, and to quantify the degree to which each
sample belongs to the identified topics. Where T is the number of
topics (bacterial CMTs), preassigned through estimation of optimal
numbers of clusters (i.e., topics) to be used for our GoM models via
the elbow method and Nonnegative Matrix Factorization38,39. Both

Fig. 3 Structure of vaginal microbiome based on diversity estimates. a α-Diversity estimation (Shannon, Simpson) jitter boxplot of maternal
cohort when fever status is considered utilizing V3–V4 regions (upper and lower quartiles are shown by whiskers and center line represents
the median α-diversity). b α-Diversity estimation, jitter boxplot of maternal cohort when sample community assignment is taken into account;
CMT denotes community (1–5) (upper and lower quartiles are shown by whiskers and center line represents the median α-diversity).
c β-Diversity of maternal sample cohort shown by non-metric multidimensional scaling (NMDS). Samples are colored based on the maternal
fever status (febrile, afebrile), goodness of fit stress= 0.2. d β-Diversity of maternal sample cohort by NMDS. Samples are colored by
community assignment through hierarchical clustering goodness of fit stress= 0.18.
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methods confirmed the optimal number of topics for our data set
was four (Fig. 5a and Supplementary Fig. 1a).
Bacterial features were agglomerated at the species level (s). We

assume p(z) as the distribution over topics z in a particular sample,
represented as ω, and p(s | z) as the probability distribution over
bacterial species (s) given topic (z). p (z_i= j) is the probability that
the jth topic was sampled for the ith bacterial species and p (s_i |
z_i= j) as the probability of the ith bacterial species (s_i) under
topic j, also called θ for simplicity. Utilizing the LDA model, we
determined the weight of every bacterial species in a topic (θ) (1).
The key difference between the GoM models and traditional

hierarchical clustering approaches include the ability to no longer
rely on a dichotomous representation of a patient’s CMT state
profile. In the hierarchical clustering, a patient is explicitly given a
CMT from the dendrogram assignment. Leveraging GoM models,
we create a basis composed of a small number of microbial topics
whose linear combination optimally represents each patient.
We built GoM models to evaluate the sample and bacterial

distribution of our data set, and then estimated the topic weights
across each sample and topic feature probability distribution,
respectively (Fig. 5b and Supplementary Fig. 5b). We discovered a
high prevalence of topics 1 and 2 across our sample set. High
feature weights were observed for L. iners, Ureaplasma, Staphylo-
coccus, and Enterobacter in topic 1. Topic 2 included Sneathia,
Shuttleworthia, Atopobium, Mycoplasma, Megasphaera, and Parvi-
monas consistently, regardless of the hypervariable region used.
Topic 3 was enriched in high levels of other Lactobacillus species,
especially L. crispatus, L. jenesenni, and L. reuteri (Fig. 5c and
Supplementary Fig. 5c). Topic 4 was enriched in pathogenic
bacterial genera including Granulicatella, Streptococcus, Fusobac-
terium, Veillonella, and Anaerococcus (Fig. 5c, Supplementary Fig.
5c, and Supplementary Table 5).

Clinical associations with GoM-defined topics
Finally, we investigated the relationship between various clinical
and environmental features of our data set and the topics
identified using our GoM model, and observed intriguing
associations. Univariate regression defined interesting associa-
tions. Topic 1 was associated with higher odds of both prescribed
and non-prescribed antibiotics use (odds ratio (OR)= 9.77, 95%
confidence interval (CI)= 1.3–119.11, P= 0.04, adjusted p= 0.16)
(Supplementary Fig. 5d). There was a correlation between
increased labor duration and topic 4 (Spearman’s correlation=
0.20, P= 0.004, adjusted P= 0.01). Intriguingly, topic 3, which is
enriched in Lactobacillus species, was negatively associated with
high labor duration (Spearman’s correlation=−0.19, P= 0.03,
adjusted P= 0.09) (Supplementary Fig. 5d) and topic 4 was weakly
associated with higher cesarean delivery incidents (P= 0.04,
adjusted P= 0.16) (Supplementary Fig. 5d). Multivariate regression
analysis confirmed a positive association between antibiotic use
and topic 1 (P= 0.03) (Supplementary Table 5) when adjusting for
clinical features (see Online Methods).

Prediction of maternal febrile status using RF model
To achieve a better understanding of features that may lead to
intrapartum fever, we utilized a random forest (RF) classifier
model, capable of handling continuous and categorical vari-
ables40. We used clinical and environmental variables as features
(n= 11) as well as the weights for each topic and CMTs identified
by hierarchical clustering (CMT 1–5) (n= 9). We estimated true-
positive and false-positive rates by resampling training (n= 69)
and test data (n= 30) from our data set 1000 times. Maternal age
was the most important feature predicting the presence or
absence of intrapartum fever, followed by maternal reports of
previous fever during pregnancy. Interestingly, topic 1, labor
duration, and topics 2–4 were important correlates of maternal

Fig. 4 Differential vaginal bacterial presence in febrile vs. afebrile laboring women utilizing V1–V2 and V3–V4 hypervariable regions.
a Volcano plot representing differentially abundant bacteria in febrile vs. afebrile women using V3–V4 regions. Orange points signify P < 0.05
and labeled red points bacterial OTUs with adjusted P < 0.05 (Bonferroni correction). s_ represent species level and g_ denotes genus level
classification of OTUs. b α-Diversity across the V1–V2 vs. V3–V4 assay. c Count per OTU in relevance to assay. d Spearman’s correlations of
samples above zero counts in both V1–V2 and V3–V4 regions (OTUs agglomerated at species level). Spearman’s correlation measures are
between (−1,1). e Heatmap table of differentially abundant bacterial OTU concordance utilizing V1–V2 and V3–V4 regions from DeSeq2
analysis (P < 0.05) (it is noteworthy that the figure is portrayed in increase and decrease in bacteria with and without covariates (site and
community assignment CMT) in the Deseq2 model, respectively.

M. Movassagh et al.

5

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2021)    75 



fever status (Fig. 5d and Supplementary Fig. 6b, d). The performance
of the model was examined using receiver operator curves and the
area under the curve (AUC) was estimated (AUC= 0.76) (Fig. 5e and
Supplementary Fig. 6a, b). In addition, we measured the model
performance for clinical and microbial features individually, and
found a decrease in performance when compared to the model
incorporating both features (AUC= 0.68 and AUC= 0.56, respec-
tively) (Fig. 5e and Supplementary Fig. 6b, c).

DISCUSSION
Heterogeneity in the vaginal microbiome exists due to environ-
mental exposure, behavioral factors, genetic variability, or medical
comorbidities, and may differ between continents and across
populations41–43. Changes in the vaginal microbial CMT could lead
to increased risk of early-onset neonatal sepsis due to the
presence of pathogenic bacteria or dysbiotic CMTs42,44. The
association between the vaginal microbiome and maternal fever
during labor has been incompletely studied. Here we character-
ized the vaginal microbiome in laboring Ugandan women and
found associations with intrapartum fever. We demonstrated that
novel microbial topic models can be useful for predicting maternal
fever. The GoM modeling approach was a necessary probabilistic
method to extend the dichotomous representation of a patient’s
CMT state profile with greater use in the recent microbiome
literature45–47. Our improved results construct a framework for
future validation studies based on a more ecological characteriza-
tion of the microbiome and its potential pathogenic effects.
A comparison with standard microbiology vs. 16S rRNA-seq

(V1–V2 and V3–V4) showed a greater sensitivity and broader
bacterial capture capability using 16S rRNA-seq. Using two
different hypervariable regions, V1–V2 and V3–V4, led to a more
comprehensive vaginal microbiome analysis. Although commonly
identified taxa were often correlated, there were unique taxa
identified by each of the two regions.
We characterized the vaginal microbiome through widely used

supervised and unsupervised hierarchical clustering to identify

bacteria unique to vaginal CMTs. As previously reported, using
supervised clustering we found higher abundance of L. iners
species in our African CMT 2 and CMT 3 populations (Supple-
mentary Table 4)11; in addition, we found higher overall diversity
of bacteria across all CMTs compared to unsupervised approaches.
The bacteria previously associated with BV (CMT IV as defined by
Ravel et al.9)were both more abundant and present in more CMTs
(CMT 2, CMT 4, and CMT 5) within our cohort.
Through differential abundance analysis comparing febrile vs.

afebrile laboring women, we found that bacterial genera
Granulicatella (a nutritionally variant bacteria, which has been
associated with a variety of infectious pathogens), Sneathia,
Streptococcus, Fusobacterium, Clostridium (four known BV asso-
ciated bacteria), Anaerococcus, and Veillonella (both commensal
bacteria) were consistently more abundant in febrile women.
Some of these genera have previously been associated with
bacterial vaginosis and are known pathogens48–53. However, to
our knowledge, no explicit association has been described
between these bacteria and maternal intrapartum fever9. The
Gram-negative bacterial genus Sneathia has been associated with
high levels of inflammation and the presence of vaginal
proinflammatory cytokines interleukin (IL)-1α, IL-1β, and IL-8
proteins54. High levels of GBS (Agalactiae sp.) have been described
as a common cause for neonatal sepsis55. Although we were
unable to speciate this microbe utilizing V1–V2 primers, we were
able to speciate and detect this bacteria in 29% of both febrile and
afebrile patients by V3–V4 primers or bacterial recovery cultures55.
Previous research on GBS prevalence in pregnant women
reported a 17%, 6–36%, and 29% rate of infection in Guatemala,
Denmark, and the United States, respectively56,57. L. jensenii,
Aerococcus sp., Acinetobacter sp., P. copri, L. crispatus, and L. reuteri
were more abundant in afebrile women.
As we could not identify any significant association between

previously described vaginal microbiome CMTs through pre-
viously described hierarchical clustering methods, we used the
novel GoM approach for vaginal microbiome CMT identification.
Leveraging the application of GoM topic models, we were able to

Fig. 5 GoM models and random forest for maternal febrile status prediction. a Cluster number determination for the data set utilizing the
elbow method, which maximized the variance of rate of decline changes as a second derivative. b The sample weight value (ω) of the topic
model for the V3–V4 data set. Every row represents a participant’s vaginal swab sample. Every color represents the ratio in which the sample
belongs to that particular cluster determined by the model. c Theta (θ) value for every feature (on species taxonomic rank) contributing to the
formation of the clusters of GoM models. The heatmap score is a row wise z-score normalized value for every feature in each cluster. d Feature
importance for maternal fever status determination utilizing clinical features in addition to topic model clusters and communities identified by
hierarchical clustering result of 1000 rounds of random training and test set modeling (CMT 1–5 denote communities identified in hierarchical
clustering formatted as binary 1–5 (present absence feature) feature. e Receiver operator curve (ROC) for 1000 rounds of random resampling
of training and test set of the RF model for maternal fever status identification using all (both clinical and microbial features), clinical, and
microbial features.
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better characterize and understand the underlying structure of the
antepartum vaginal microbiome. This approach enabled us to
determine the best topics that fit for each individual in the
cohort rather than restricting each individual to a specific CMT.
Through this method, we identified four topics (1–4) prevalent in
the cohort.
We identified a number of associations between the identified

topics and clinical characteristics. Maternal antibiotic use was
associated with topic 1 (OR= 9.77 (95% CI: 1.3–119.11)) and was
enriched in L. iners, Ureaplasma, Staphylococcus, and Enterobacter
genera. This association has implications for the disruption in
vaginal flora that may be caused by antibiotic use, whether
prescribed or self-administered. L. iners has been shown to be the
most adaptable, and resilient to fluctuations in the vaginal nitch58,
in this case, to changes potentially due to antibiotic use. Recent
studies have also found dominance of vaginal bacterial CMTs with
L. iners is a risk factor for preterm birth59. Furthermore, we found
that decreased labor duration was associated with topic 3, L.
jensenii, L. crispatus, Acinetobacter sp., and L. reuteri (Supplemen-
tary Fig. 7 and Supplementary Table 6). Finally, topic 4 manifested
weak associations with higher cesarean delivery incidents. In
contrast, topic 4 was associated with longer labor duration and
cesarean delivery. Specific bacteria in topic 4 were shown to be
more prevalent in febrile mothers, including Streptococcus sp.,
Granulicatella sp., and Veillonella sp. Our findings demonstrate the
value of GoM topic models to categorize the structure of the
vaginal microbial CMT in laboring women.
Finally, we fused CMT, topics, and clinical features in our data

set into an RF model. Although age has been previously described
as associated with febrility, we found that young maternal age was
the strongest factor in predicting fever. Surprisingly, topic models
were shown to be among the dominant features, affirming the
GoM topic approach to microbial CMT structure. Topic 1—L. iners,
Ureaplasma, Staphylococcus, and Enterobacter—was the fourth
most important feature for determining maternal febrile status
followed by topic 4. Topic 4 was more prevalent in febrile mothers
consistent with the presence of Sneathia, Granulicatella, Anear-
ococcus, and Streptococcus sp. in febrile women, and the fifth most
important feature in determining maternal health. The RF model
also demonstrated that all four topics describing the vaginal
microbiome CMTs of intrapartum women showed importance in
predicting intrapartum fever classification in the model, suggest-
ing consequence of combinatory presence of bacteria in
individual mothers; this is in contrast with the traditionally
employed CMTs defined through hierarchical clustering.
Our findings support, using a more multifaceted methodologi-

cal approach, leveraging multiple models to characterize such
microbiomes across populations. In the case of the vaginal
microbiome, this more comprehensive approach identifies struc-
tural microbiome features that better predict maternal health and
risk for intrapartum women and their neonates. Recent studies in
Nigerian cohorts (shown through Nugent score, Gram staining,
and 16s rRNA-seq) have linked more diverse microbiome
composition during pregnancy to low birth weight and preterm
membrane rupture; hence, applying these multifaceted
approaches in order to identify potential links and risks in
neonatal outcome is crucial12,30.
We found a higher prevalence of Granulicatella, Streptococcus,

Fusobacterium, Anaerococcus, Sneathia, Clostridium, Gemella, Mobi-
luncus, and Veillonella genera in febrile women, and higher
prevalence of Lactobacillus genera, Acinetobacter, Aerococcus, and
Prevotella species in afebrile women. We show by integrating
clinical variables with microbial topics into this model that young
maternal age, fever reported earlier in the current pregnancy, and
longer labor duration, as well as a more diverse, less Lactobacillus-
dominated microbiome were features of labor associated with
intrapartum fever.

This small exploratory study with 99 participants demonstrates
that more sophisticated strategies to understand the maternal
microbiome may be important in understanding which combina-
tions of genera may contribute to febrile illness in mothers. Future
studies will require larger sample sizes to help further characterize
this complex microbiome and its interaction with maternal and
fetal health.

METHODS
Eligibility criteria, ethical approval, and consent to participate
This study protocol was approved by the institutional review boards at
each participating institution, including Mbarara University of Science and
Technology (MUST) Research Ethics Committee (12/11-15), Mbale Regional
Referral Hospital Research Ethics Committee (082/2016), Uganda National
Council of Science and Technology (HS/1963), Partners (2016P000806/
PHS), and Pennsylvania State University College of Medicine
(STUDY0004199). Participants were recruited from two hospital sites
(Mbarara and Mbale) in Uganda. An equal number of participants were
recruited from Mbarara Regional Referral Hospital (MbararaH) in Mbarara,
Uganda, and Mbale Regional Referral Hospital in Mbale, Uganda (MbaleH).
MbararaH is an ~300-bed academic hospital affiliated with Mbarara
University of Science and Technology, with 9000 deliveries annually.
MbaleH is a 400-bed public hospital that has nearly 10,000 deliveries a
year. Both hospitals serve a mixed urban-agrarian population.
Materials Transfer Agreement was in place between MUST and

Pennsylvania State University. An Institutional Biosafety Committee
provided oversight of specimen handling at Penn State. Maternal oral
temperatures were measured during labor using a digital thermometer
(ADC ADTEMP Hypothermia Digital Thermometer), to confirm eligibility.
Verbal consent was given by mothers of at least 18 years of age. These

mothers delivered at term (≥37 weeks’ gestation) and had an intrapartum
oral temperature measurement between 36.0 °C and 37.5 °C (afebrile
group, n= 25 per site), or an intrapartum oral temperature measurement
>38.1 °C on one occasion or >38.0 °C twice, at least 60 min apart (febrile
group, n= 25 per site). Maternal peripheral blood and vaginal swabs were
taken at the time of labor and clinical data were collected.

Sample collection
After informed consent was obtained, maternal peripheral blood and
vaginal samples were obtained. A maternal blood sample was collected
using aseptic technique. Rapid diagnostics and a thick and thin blood
smear were prepared for malaria testing (SD Bioline Malaria Ag P.f/Pan).
Two maternal vaginal swabs were collected consecutively during labor.
First, a sterile DNA- and RNA-free swabs for 16S rRNA-seq was inserted into
the posterior vaginal fornix after gently cleansing the perineum with clean
gauze. The swab rotated for 2–3 s, inserted into a preservative-filled (DNA/
RNA Shield, Zymo Corporation) cryovial, and vortexed at high speed for
10 s. Swabs were then frozen in liquid nitrogen and stored at −80 °C prior
to cryogenic transfer to the United States for sequencing. A second swab
for microbiologic culture (BD BBL CultureSwab Plus Amies Gel) was then
inserted into the posterior vaginal fornix immediately following collection
of the first swab, rotated for 2–3 s, and placed back into the media-
containing swab container. Culture swabs collected at Mbarara Hospital
(MbararaH) were transferred to the on-site microbiology laboratory within
36 h, whereas those collected at Mbale Hospital (MbaleH) were 4 °C for up
to 48 h before transport to a commercial microbiology laboratory in the
Ugandan capital Kampala by road. Clinical data were obtained from
structured interviews and chart review collected before and after delivery.

Microbiology
Vaginal swab samples collected from MbararaH were processed in the
adjacent MUST microbiology lab. A Gram stain was prepared and swabs
were plated on MacConkey agar, incubated at 37 °C, and checked for daily
growth. When growth was observed, colonies were plated onto various
selective and nonselective growth media and re-incubated. Following
incubation, each colony type was enumerated, isolated, and identified
using standard biochemical methods. Vaginal swab samples collected from
MbaleH were processed at MBN Clinical Laboratories in Kampala.
Interpretation of the MbararaH microbiology was performed by a single
microbiologist and interpretation of MbaleH microbiology was performed
by multiple staff microbiologists.
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Cytomegalovirus PCR reaction
TaqMan PCR assay targeting the CMV UL54 gene was utilized using region-
specific primers and probes: CPOL-F720: 5′-GCTGACGCGTTTGGTCATC-3′,
CPOL-R780: 5′-ACGATTCAC GGAGCACCAG-3′, and CPOL-741FAM: 5′-
TCGGCGGATCACCACGTTCG-3′. PCR was performed based on recommen-
dations by Habbal et al.60,61. In brief, amplification was done on the ABITM

QuantStudio 12K Real-Time PCR Instrument (USA, CA) with the following
cycling conditions and times: 60 °C for 30 s, 95 °C for 5 min, then 45 cycles
of 95 °C for 15 s, and 60 °C for 1 min. CMV-positive condition was
considered for samples with DNA amplification (Ct < 45) with technical
duplicates, and in cases of inconsistency a triplicate was considered.
Standard curve analysis was done for all PCR runs, overall efficiency was
>75%, and R2 was >0.95 for all runs (Supplementary Table 7).

Sample extraction, library preparation, and sequencing
Vaginal specimens were collected in 1mL of DNA/RNA Shield. After
collection, 1 mL of specimen was added, with swab, to 0.15 mm and
0.5 mm zirconium oxide beads, and processed in a Bullet Blender (Next
Advance, NY, USA) at high speed for 5 min. After lysis, DNA was extracted
from 500 μL of the homogenized sample using ZymoBIOMICS DNA
Miniprep Kit (Zymo, CA, USA) following the manufacturer’s protocol with
proteinase K digestion and was eluted two times with 50 μL of heated
elution buffer. Primer extension PCR reaction of the 16S rRNA variable
regions V1–2 and V3–4 was done to reduce reagent contamination using
region-specific primers. Primer sequences are as followed: 27F: 5′-
AGAGTTTGATCMTGGCTCAG-3′, M13: 5′-CAGGGTTTTCCCAGTCACGAC-3′,
341F_M13: 5′-CAGGGTTTTCCCAGTCACGACCCTACGGGNGGCWGCAG-3′,
and 805R: 5′-GACTACHVGGGTATCTAATCC-3′62,63. Specifically, for the
V1–2 region, the annealing probe was the 336R primer attached to M13
(336R_M13) and then the extended product was amplified with 27F as the
downstream bacterial primer and M13. For the V3–4 region, the annealing
probe was the 341F primer combined with M13 (341F_M13) and the
extended product was amplified with the 805R primer and M13.
Amplification was done with 500 nM primers with the MolTaq 16S
Mastermix (Molzym GmbH & Co Kg, Germany)64. For library preparation,
after the amplified products were put into a 1× AMpure XP (Beckman
Coulter) clean up, the Hyper Prep Kit (KAPA Biosystems, USA) library
preparation kit was used following the manufacturer’s protocols with
seven cycles of library amplification. Library was quantified with Qubit or
Agilent Bioanalyzer DNA 1000 Chip, and sequenced on Illumina’s Mi-Seq
system using the 600 cycle v3 kit with 20% PhiX and 6pM pooled library.
Sequencing was performed in Penn State College of Medicine Genomic
core (Supplementary Table 7).

Sequence alignment and taxonomic assignment
Paired-end sequences were filtered for quality using Trimmomatic (version
(v) 0.38)65. Sequences <100 base pairs (bp) in length and average quality
score < 30 on a window of 20 bp were discarded. The remaining paired-
end sequences were then joined utilizing PEAR v 0.9.6)66. Only joined
sequences with designed primers and length > 260 bp were kept. After
chimeras were identified and removed using USEARCH method67,
sequences were clustered into operational taxonomic units (OTUs) via
QIIME packages (v 1.9.1)68. Sequences of over 97% identity represented the
same genus/species and were clustered into the same OTU, and were
assigned a taxonomy by Greengenes database (v 13.8). Those OTUs
without taxonomy assignment were further blasted with BlastX (v 2.7.1) to
non-redundant proteins databases.

Computational pipelines and statistical methods for
downstream analysis
The biological observation matrix object compromising OTU file,
phenotype data, and taxonomic assignment file was built using phyloseq
and metagenomeSeq packages in the R programming language69,70.
Minimum inclusion criteria for sequenced samples were 1000 reads. Taxa
with less than two reads in 10% of samples were excluded from the
analysis. The number of OTUs after filtering using V1–V2 primers was 274
and utilizing V3–V4 primers was 401 OTUs. For the hypervariable region/
primer comparison section, we relaxed the filtering criteria to taxa with
fewer than one read in 5% samples, to ensure accurate estimates of the
presence and absence of association tests for bacteria across both regions.

Packages used for computational analysis
β-Diversity was estimated using non-metric multidimensional scaling
(NMDS). Euclidean distance was measured for hierarchical clustering using
the pheatmap package (v 1.0.12). Phyloseq and ggplot2 were used to
estimate α (Shannon and Simpson) and β (NMDS) diversity and
visualization of plots accordingly69,71. Both adjusted and unadjusted
differential abundance analyses were performed using DESeq272. Multi-
variate models were adjusted for microbial CMT and site of collection. GoM
models identified were obtained using the CountClust package73.
Univariate and multivariate regressions were performed for topic weights
regressing on various clinical features depending on the type of regression
and adjusted by the number of models (i.e., based on the number of
topics). RF models were utilized for maternal fever status prediction from
the h2o package (v 3.30.0.1, https://github.com/h2oai/h2o-3).

Statistical tests
All statistical tests and regression analyses were performed using R base
functions or MASS74. All p-values were adjusted using Bonferroni
(significance cutoff, p < 0.05, and Bonferonni p < 0.1) multiple comparison
test method R v 3.6.2.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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