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ABSTRACT Genetic variants disrupting DNA methylation at CpG dinucleotides (CpG-SNP) provide a set of known causal variants to
serve as models to test fine-mapping methodology. We use 1716 CpG-SNPs to test three fine-mapping approaches (Bayesian
imputation-based association mapping, Bayesian sparse linear mixed model, and the J-test), assessing the impact of imputation errors
and the choice of reference panel by using both whole-genome sequence (WGS), and genotype array data on the same individuals (n =
1166). The choice of imputation reference panel had a strong effect on imputation accuracy, with the 1000 Genomes Project Phase
3 (1000G) reference panel (n = 2504 from 26 populations) giving a mean nonreference discordance rate between imputed and
sequenced genotypes of 3.2% compared to 1.6% when using the Haplotype Reference Consortium (HRC) reference panel (n =
32,470 Europeans). These imputation errors had an impact on whether the CpG-SNP was included in the 95% credible set, with a
difference of �23% and �7% between the WGS and the 1000G and HRC imputed datasets, respectively. All of the fine-mapping
methods failed to reach the expected 95% coverage of the CpG-SNP. This is attributed to secondary cis genetic effects that are unable
to be statistically separated from the CpG-SNP, and through a masking mechanism where the effect of the methylation disrupting
allele at the CpG-SNP is hidden by the effect of a nearby SNP that has strong linkage disequilibrium with the CpG-SNP. The reduced
accuracy in fine-mapping a known causal variant in a low-level biological trait with imputed genetic data has implications for the study
of higher-order complex traits and disease.
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THERE have been a variety of methods proposed for fine-
mapping variants discovered in genome-wide association

studies (GWAS), with the aim of statistically determining the
causal genetic variant, or creating a minimal set of SNPs that
contain the causal variant with a high confidence (e.g., Servin
and Stephens 2007; Morris 2011; Hormozdiari et al. 2014;
Kichaev et al. 2014; Chen et al. 2015; Benner et al. 2016;
Brown et al. 2017; Huang et al. 2017). One strong assumption
common to all fine-mapping methods is that all possible
causal variants are present in the data (Spain and Barrett
2015). This assumption is not satisfied in most studies that
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use genotypes generated by arrays followed by imputation.
While imputation methods with the appropriate choice of
reference panel are very accurate for common variants
(Mitt et al. 2017), imputation errors will still exist and
can affect the relative probability of SNPs being determined
as causal by fine-mapping methods.

Because of the small number of known causal variants,
comparisons of fine-mapping methods need to be performed
through simulation, and are often idealized and do not en-
compass the full range of experimental variation. However,
high-throughputmeasurementofDNAmethylationacross the
genome provides a potential model trait for testing fine-
mapping methods. DNA methylation is an epigenetic modifi-
cation that is influenced by both genetic and environmental
factors, with an average heritability of 20% (McRae et al.
2014). DNA methylation in humans occurs primarily at
CpG dinucleotides, and removal of the CpG sequence
through single nucleotide polymorphisms (CpG-SNPs) di-
rectly alters DNAmethylation at this site (Hellman and Chess
2010;Meaburn et al. 2010; Shoemaker et al. 2010; Fang et al.
2012; Zhi et al. 2013). For example, at a CpG locus in a
population with a variant with allele frequency of 50% at
the C or G, half of the population will have a CpG-site that
can bemethylated and the other half will not have a CpG site,
as the C or Gwill be substitutedwith another nucleotide base,
and this locus will not be not methylated. Thus DNA methyl-
ation at a site with a CpG-SNP provides a trait with a known
causal variant of large effect and can be used as a model trait
to test fine-mapping. Furthermore, there are large numbers
of such sites throughout the genome, and the genetic regu-
lation of methylation by such SNPs have been implicated in
disease risk (Dayeh et al. 2013; Zhou et al. 2015; Chen et al.
2016).

In this study, we compare three fine-mapping methods,
covering a variety of approaches, Bayesian imputation-based
associationmapping (BIMBAM) (Servin and Stephens 2007),
Bayesian sparse linear mixed model (BSLMM) (Zhou et al.
2013), and the J-test (Davidson andMacKinnon 1981), using
individual-level SNP data, and DNA methylation at CpG-
SNPs as a model trait. We compare 95% credible sets of
causal variants for each method, and directly contrast the
use of whole-genome sequencing data and imputed genotyp-
ing array data, including the choice of imputation reference
panel.

Materials and Methods

Datasets

Lothian birth cohort: The Lothian birth cohorts of 1921 and
1936 (LBC) (Deary et al. 2004, 2007, 2012; Taylor et al.
2018) are both part of a longitudinal study on cognitive ag-
ing. Participants were all born in 1921 or 1936, and com-
pleted a cognitive ability test as part of the Scottish Mental
Survey 1932 (Bartlett 1934) or Scottish Mental Survey 1947
(Ensor 1950), respectively. DNA methylation was measured

in 1366 study participants using the Illumina HumanMethy-
lation450 BeadChips as described in Shah et al. (2014),
McRae et al. (2018). The mean (SD) age of participants
was 79.1 (0.6) from the 1921 cohort, and 69.6 (0.8) from
the 1936 cohort. Out of the .400,000 probes remaining
after quality control (QC), �22,000 have an SNP at the
CpG site (CpG-SNP) and a significant methylation QTL
(mQTL), with the CpG-SNP being genome-wide significant
ðPCpG‐SNP , 13 10210Þ (McRae et al. 2018). A set of
1716 sites with a CpG-SNP with a minor allele frequency
(MAF) . 0.1 were chosen to make sure we have sufficient
power to fine-map the causal variant.

From the LBC, 1370 individuals were whole-genome se-
quenced on a HiSeq X installation to an average coverage of
363 (minimum 19.63, maximum 65.93). All reads were
mapped to the build 38 version of the reference genome
using BWA (Li and Durbin 2009) and variants called using
GATK (DePristo et al. 2011) according to its recommended
best practices. Variants were annotated using variant effect
predictor and gene models from the version 85 release of
Ensembl (McLaren et al. 2016).

Thewhole-genome sequence datawere compared to array
data for the same individuals using PLINK 1.90 (Chang et al.
2015). Standard checks for relatedness, heterozygosity, du-
plication, and sex were also performed. In total, 12 samples
were removed from the original 1370 because of failing one
or more of these tests. The data were then filtered to include
variants that were considered to PASS according to VQSR,
had only two alleles, a maximum missingness of 10%, and
a minimum genotyping quality of 40.

The imputed datasets were genotyped on the Illumina 610-
Quad BeadChip arrays. The data were filtered to remove
individuals with high missing rate (.5%), the SNPs with
high missing rate (.5%), SNPs with Hardy–Weinberg
exact test P, 13 1026, and SNPs with low MAF (,0.01).
We imputed the cleaned data using the 1000 Genomes
Project Phase 3 (The 1000 Genomes Project Consortium
et al. 2015), and the Haplotype Reference Consortium
(HRC) reference panels, prephasing the data using EAGLE,
and imputing using PBWT on the Sanger imputation server
(Durbin 2014; Loh et al. 2016; The Haplotype Reference
Consortium 2016). The imputed SNPs were filtered
again for MAF, deviations from Hardy-Weinberg equilib-
rium, and a low imputation info score ðinfo, 0:8Þ. The
chosen info score threshold is quite stringent to prevent
low-confidence imputed SNPs having an effect on the
fine-mapping analyses. To fairly compare the datasets we
use the intersection of the three (n ¼ 1166, m � 6,300,000
SNPs).

Details of theDNAmethylationQC can be found elsewhere
(Shah et al. 2014; McRae et al. 2018). Briefly, DNA methyl-
ation was measured on the Infinium HumanMethylation450
array using DNA extracted from whole blood. Raw inten-
sity data were background-corrected and normalized us-
ing internal controls, and methylation b values were
generated using the R minfi package (Aryee et al. 2014).
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Probes with low detection rate (,95% at P, 0.01), and low-
quality samples were removed. Individuals with low call rate
(,450,000 probes detected at P , 0.01) were removed.
Probes on the X and Y chromosomes were removed, leaving
450,726 probes remaining. b Values were corrected for
BeadChip, sample plate, hybridization date, white blood
cell count, and sex.

UK10K: We used the UK10K dataset [European Genome-
phenomeArchive(EGA)accessionnumbers:EGAS00001000108
andEGAS00001000090] for the simulations (seeSupplemen-
talMaterial, File S1). TheUK10Kdataset (UK10KConsortium
et al. 2015) comprises the whole-genome sequencing of
3781 European individuals from the United Kingdom. The
dataset has a total of �8,000,000 SNPs after QC (excluding
SNPs with Hardy–Weinberg exact test P, 131026, MAF ,
0.01, and SNPs with .10% missing data).

Systems Genomics of Parkinson’s Disease cohort: The Sys-
tems Genomics of Parkinson’s Disease (SGPD) cohort com-
prises 956 individuals with Parkinson’s disease, and
930 controls genotyped on the Illumina PsychArray-B.bpm.
In our analyses we did not take disease status into account.
The data were filtered to remove individuals with high miss-
ing rate, the SNPs with high missing rate (.5%), SNPs with
Hardy–Weinberg exact test P,13 1025, and SNPs with low
MAF (,0.01). The imputation was performed using the
Sanger imputation server (The Haplotype Reference Consor-
tium 2016) and was imputed using the HRC reference panel
(The Haplotype Reference Consortium 2016). The imputed
SNPs were filtered again for MAF, deviations from Hardy-
Weinberg equilibrium, and a low imputation info score
ðinfo, 0:3Þ.

The DNA methylation data were measured using the Illu-
mina HumanMethylation450 BeadChip array. Raw intensity
data were background-corrected and normalized using in-
ternal controls, and methylation b values were generated
using the R meffil package (Min et al. 2018). Probes of low
quality, and low detection rate were removed (,95% at P ,
0.01). The R meffil package was also used to perform sample
QC using Illumina recommended thresholds. Samples were
dropped if call rate was low (,450,000 probes detected at
P , 0.001), if predicted sex (based on XY probes) did not
match reported sex, and if predicted median methylated sig-
nal was.3 SD from the expected. After these QC steps, meth-
ylation b values were quantile-normalized with respect to
20 principal components generated from the control matrix
and the most variable probes. Additionally, normalization
was adjusted for batch, slide, cohort, sentrix row/column,
sex, and age. Of the 1716 probes in the LBC dataset, only
1678 remained after cleaning, thus the replication was only
conducted on the respective probes.

Simulating phenotypes: Phenotypes similar to DNA meth-
ylation at CpG-SNPswere simulated using the GCTA software
(Yang et al. 2011). GCTA uses a simple additive genetic
model to simulate the phenotypes given the causal variants,

with effect sizes drawn form a normal distribution Nð0; 1Þ. In
the case of a single causal variant, the narrow sense herita-
bility is equivalent to the variance explained by the causal
variant. We simulated three phenotypes, with h2 ¼ 0.2, 0.1,
and 0.05, each with 1000 replicates using two sample sizes,
the full UK10K dataset (n=3781), and a subset of the UK10K
dataset to match the sample size in the imputed LBC dataset
(n= 1366). The causal variants were chosen at random from
the genome, but restricted to have MAF . 0.05.

Fine-mapping methods: To compare the performance of
fine-mapping methods, a 95% credible set is constructed
for eachmethod, theminimum set of SNPs which will contain
the causal SNP 95% of the time. Although the credible set is a
Bayesian concept, we can also use a 95% confidence set for
Frequentest approach (J-test) because we use the coverage of
the causal variant in the sets as a measure of fine-mapping
accuracy. Both sets are designed so that 95% of the time the
causal variant will be captured. For simplicity we will refer to
both sets as credible sets.

The J-test (Davidson and MacKinnon 1981) is a simple
regression method to test non-nested hypotheses. The
method is as follows:

1. Rank the SNPs by strength of association, and add the
most associated SNP to the credible set;

2. Regress the most associated SNP against the phenotype

y ¼ m1 þ X1b1 þ e1;

3. Starting at N = 2, regress the Nth best SNP against the
phenotype with the fitted values from the regression in
step 2 as a covariate:

y ¼ mN þ XNbN þ lNcX1cb1 þ eN ;

4. If lN is not significant, we add the SNP to the credible set,
incrementN, and repeat step 3. If lN is significant, we stop
here;

where y is the phenotype, Xi is the genotype of SNP i, and lN
is the regression coefficient for the fitted values from the re-
gression from step 1. This method tests if the best SNP ex-
plains a statistically significant amount of the phenotypic
variance more than the Nth best SNP. To construct a 95%
credible set of causal variants, a set of SNPs with 95% prob-
ability to contain the causal variant, a Bonferroni-corrected
significance of P

N2 1 was used. To remove redundant tests,
only one SNPwas tested of SNPs in complete linkage disequi-
librium (LD), all SNPs in complete LD that were removed
were subsequently added to the credible set if applicable.

BIMBAM (Servin and Stephens 2007), which uses a
Bayesian regression approach to find genetic associations,
calculates a Bayes factor for each SNP. This is the likelihood
of the SNP being causal divided by the likelihood that no SNP
in the region is causal. Maller et al. (2012) showed that,
assuming a single causal variant, the posterior probability
of association (PPA) can be written as PPAi ¼ BFiP

j
BFj
. This
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method is used to compute the credible sets, repeatedly tak-
ing the next highest associated SNP until a combined poste-
rior probability of association of 95% is reached.

BSLMM (Zhou et al. 2013), a mixed-model method, fits
SNPs into a mixture of two distributions using a sparsity-in-
ducing prior. BSLMM uses a Markov chain Monte Carlo ap-
proach, which is used directly, counting the top associated
variant in every 10th iteration, to account for any correlation
between iterations. Under the assumption of a single casual
variant, the SNP with the largest effect in each iteration is the
predicted causal variant. By counting the number of times
each SNP is predicted to be the causal variant, the 95% cred-
ible set is created by iteratively adding SNPs, in order of most
number of counts, until 95% of the total number of iterations

is reached
�PN

1
countiP

i
counti

$ 0:95
�
. In the case of SNPs in complete

LD, all SNPs were counted at each iteration.
Many recent fine-mapping methods focus on using sum-

mary-level data (Morris 2011; Hormozdiari et al. 2014; Chen
et al. 2015; Benner et al. 2016), we attempted to use some of
these methods, but FineMap (Benner et al. 2016) is unable to
handle large effect size traits and CAVIAR (Hormozdiari et al.
2014; Chen et al. 2015) also ran into computational problems
with the large effect size. However, the CAVIAR model is
equivalent to the BIMBAM model, as shown in Chen et al.
(2015), so the comparison is not needed. Other recent fine-
mapping methods have focused on integrating functional

annotation data to gain extra power (Kichaev et al. 2014;
Hormozdiari et al. 2016), but these functional annotations
are highly correlated with DNA methylation so will not be
applicable in this case.

Conditional analysis: To check for multiple independent
variants affecting the DNAmethylation levels two conditional
analyses were performed, a conditional and joint (CoJo)
method (Yang et al. 2012), and a forward selection.

For the forward selection approach, a multiple linear re-
gression can be performed with the top SNP as a covariate,

y ¼ mþ X2cbþ
X
c
Xclþ e;

where c is the number of SNPs being conditioned on, y is the
methylation level, X2c is the N3M2 c genotype matrix of all
SNPs except the conditioned SNPs, the Xc are the N3 1 ge-
notypematrices of the SNPs being conditioned on,m, b, and l
are regression coefficients, and e is the error term. If the
association is no longer significant ðP, 53 1028Þ when con-
ditioned on the top SNP, then there is only one independent
effect, otherwise there are more than one independent vari-
ants affecting the DNA methylation in the QTL. We continue
to condition on the top SNP from the previous conditional
analysis until all the significant associations are removed.

The CoJo model uses a stepwise selection procedure to
estimate the number of causal variants. It begins with select-
ing the most associated SNP, followed by a forward

Figure 1 Coverage of the CpG-SNP using three
fine-mapping methods. The three methods perform
similarly, with only a very small difference in cover-
age of the CpG-SNP. The coverage of the CpG-SNPs
is at a maximum when using whole-genome se-
quence data, followed closely by the HRC imputed
data, with the 1000 Genomes Project imputed data
having a much lower coverage of the CpG-SNP.
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selection step, using a multiple regression conditioning on
the chosen SNP. This is followed by a backward selection
step by fitting the chosen SNPs in a joint model, and re-
moving any SNPs not significantly associated. The forward
and backward selection steps are repeated until no new
SNPs are added or removed from the chosen set of SNPs.
Between each step the chosen SNPs are checked for multi-
collinearity (Yang et al. 2012).

Data availability

The LBC methylation data are available at EGA under acces-
sion number EGAS00001000910. The LBC1921 and LBC36
genotype data are available on request for relevant research
purposes (https://www.lothianbirthcohort.ed.ac.uk/content/
collaboration). TheUK10K dataset is available fromEGA (acces-
sion numbers: EGAS00001000108 and EGAS00001000090).
The source code used to run the three fine-mapping methods
is available on GitHub (https://github.com/chundruv/
finemapping_GENETICS2019). Details of the simulation re-
sults, the discordance between sequence and genotyped
data, and the SGPD consortium member list is provided in
File S1. Supplemental material available at Figshare: https://
doi.org/10.25386/genetics.7906109.

Results

Comparison of fine-mapping approaches

Wecompare 95%credible sets (theminimumset of SNPswith
95% probability of containing the causal variant) obtained
from three fine-mapping approaches using DNA mQTL at a
CpG-SNP in the 1166 individuals from the LBC (Deary et al.
2004, 2007, 2012; Taylor et al. 2018). The performance of
the fine-mapping methods is measured by the coverage of the
CpG-SNP, which is the proportion of replicates for which the
CpG-SNP, the putative causal variant, is present in the 95%
credible set. Each fine-mapping approach was applied to
both whole-genome sequence data and genotype data from
Illumina 610-Quad BeadChip arrays imputed to the 1000
Genomes Project Phase 3 (The 1000 Genomes Project
Consortium et al. 2015) (LBC-1KG) (n = 2504 from 26 pop-
ulations) and the HRC (TheHaplotype Reference Consortium
2016) (LBC-HRC) (n = 32,470 Europeans) reference panels
(seeMaterials and Methods). Fine-mapping was performed at
1716 DNA methylation sites previously identified to have a
cis-mQTL ðP, 13 10210Þ in the LBC dataset (McRae et al.
2018), with a known common SNP (MAF . 0:1) in the CpG
site. These DNA methylation sites have a median genetic

Figure 2 Coverage of the CpG-SNP in those probes where the CpG-SNP is genotyped on the array, and those where it is imputed. The coverage of the
CpG-SNP was higher in the probes where the CpG-SNP was genotyped. This result was replicated in an independent dataset imputed using the HRC
reference panel (Systems Genomics of Parkinson’s Disease Cohort). When the CpG-SNP is imputed, there is a large difference in the coverage between
datasets imputed using the 1000 Genomes Project Phase 3 reference panel (LBC-1KG), and those imputed using the HRC reference panel (LBC-HRC,
Replication-HRC).
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heritability of 0.86, estimated from a sample of twins and
their parents (McRae et al. 2014), consistent with a major
genetic locus underlying their variation (Figure S1).

Under the assumption that the CpG-SNP is causal for the
variation in DNA methylation at each site, we measured the
performance of the three fine-mapping approaches as
the proportion of 95% credible sets of SNPs that included
the CpG-SNP (or the method’s coverage), as well as the num-
ber of SNPs within each credible set. BIMBAM performed
marginally better than both BSLMM and the J-test in terms
of coverage of the CpG-SNP, with the trade-off of larger cred-
ible sets (Table S1). In the 672 cases where the CpG-SNP was
not the most associated SNP (top SNP), the top SNP in the

credible sets had a median distance of 2 kb to the CpG-SNP,
with 95% of SNPs being within 34 kb. (Figure S2). While
performing well on simulated data (see File S1), all three
methods failed to reach the expected 95% coverage of the
putatively causal CpG-SNP (Figure 1) using either the whole-
genome sequence or imputed datasets.

Fine-mapping using whole-genome sequence data gave
thehighest coverageofCpG-SNP,with coveragedropping by
�7% when comparing to data imputed against the HRC
reference and by�23%when using the 1000 Genomes Proj-
ect Phase 3 reference. For the imputed datasets, genotyped
CpG-SNPs (160/1716) were included in 95% credible sets
between 29 and 33% more often than imputed CpG-SNPs

Figure 3 The phenotypic variance explained by the CpG-SNP in the three datasets plotted against one another. Although they are highly correlated, in
the top row we observe that the phenotypic variance explained is on average higher in the LBC-WGS dataset than the two imputed datasets, and in the
bottom row we observe that the phenotypic variance explained is on average higher in the LBC-HRC dataset than in the LBC-1KG dataset.
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using the 1000 Genomes Project Phase 3 reference, and
between 8 and 19% more often using the HRC reference
dataset, with this being driven by differences in imputation
accuracy (see File S1). The difference between imputed vs.
genotyped SNPs and overall coverage of 95% credible sets
was replicated in an independent dataset of 1886 individu-
als imputed using the HRC reference panel (Figure 2). The
effect of imputation accuracy can also be seen in the phe-
notypic variance explained by the CpG-SNPs, which is on
average higher in the whole-genome sequence dataset than
in both the imputed datasets, and the LBC-HRC dataset
captures more of the variance than the LBC-1KG dataset
(Figure 3).

Multiple causal variants at DNA methylation cis-QTL

The underlying assumption of our comparison of fine-map-
ping is the presence of a single causal variant underlying the
cis-mQTL, with this being implicitly assumed in the construc-
tion of the 95% credible set for each of the methods. We
performed two analyses to identify mQTL under the influ-
ence of multiple genetic variants: a standard forward selec-
tion approach and the CoJo stepwise selection model
implemented in GCTA-CoJo (Figure S3). Only one inde-
pendent signal was detected by both methods for 87% of
the mQTL. However, when considering only those mQTL
showing a single independent association for both meth-
ods, we see that the coverage is still below the expected
95% (Table 1).

For the mQTL with one independent association from
the conditional analyses, and where the CpG-SNP was
not the top SNP, we estimated LD between the top SNP
and CpG-SNP. In all cases, the LD between the top SNP and
CpG-SNP pairs had a D’ of close to 1, indicating one of
the four possible haplotypes between the top SNP and
CpG-SNP is not present in our dataset or is very rare. In
contrast, the R2 measure was highly variable in the cases
where the CpG-SNP was not included in the 95% credible
set, but close to 1 when it was included (Figure S4). The
highD’ and low R2 values when the CpG-SNP is not included
in the 95% credible interval are consistent with an allele
frequency difference between the CpG-SNP and top SNP. In
fact, for the cases where the CpG-SNP was not included in
the credible set, we observed that one allele of the top SNP
captured all the methylation disruption of the CpG-SNP

allele as well as several other individuals with low methyl-
ation (Figure 4). As such, the top SNP was effectively mask-
ing the effect of the CpG-SNP on DNA methylation at these
probes.

Discussion

To capture genuine biological complexity while assessing the
performance of fine-mapping methodology, we examined the
use of known genetic variation within DNA methylation CpG
sites as a model trait. This identified limitations in fine-map-
ping with imputed sequence data and in statistically separat-
ing effects of closely linked variants.

Statistically minimizing the set of potential causal variants
underlying the thousands of identified GWAS hits is essential
for efficient experimental follow-up.However,wealsoneed to
ensure statistically derived sets of potential causal variants
actually contain the underlying causal variant. While fine-
mapping methods implicitly assume all potential causal var-
iants are available, GWAS generally use imputed genotypes
because of large sample size requirements and the relative
cost of genotyping arrays vs. sequencing. We have shown a
dramatic reduction in the proportion of credible sets that
actually contain the underlying causal variant when using
imputed genotype data, particularly when using the 1000Ge-
nomes Project Phase 3 reference panel for imputation. This
imputation panel is still widely used, especially for GWAS
meta-analysis combining populations with differing ances-
try. In comparison, the more extensive HRC reference panel
showed a great reduction in imputed genotype error rates,
resulting in increased coverage of the causal variant. This
highlights the need to continue the generation of large im-
putation reference panels across multiple ancestries. The
HRC reference panel is �6.5 times larger than the African
Genome Resource, which is currently by far the largest non-
European imputation reference panel.

Although common CpG-SNPs will have a very large effect
on the DNA methylation, we were unable to reach the
expected 95% coverage of the putatively causal CpG-SNP in
our credible sets even when using whole-genome sequenced
genotypes. We detected multiple statistically independent
genetic associations in the cis region surrounding the CpG
site for 11% of probes. It is likely that a much higher pro-
portion of probes would be identified as having multiple ge-
netic effects with a greater sample size. In addition, we
identified SNPs that effectively masked the effect of the
CpG-SNP; these variants had an effect on the methylation
levels, and the methylation disrupting allele of these variants
were in high LD D’ with the methylation disrupting allele of
the CpG-SNP, but at a higher allele frequency, meaning that
theymasked the effect of the CpG-SNP and explainedmore of
the variance in methylation levels. This is potentially caused
by SNPs having a regional effect on DNA methylation; how-
ever, arrays do not provide the detailed measures of DNA
methylation across a region needed to investigate this
further.

Table 1 The coverage of the CpG-SNP and the size of the credible
sets for the probes with a single independent association detected
from the both conditional analyses (87% of all probes), using the
whole-genome sequence dataset

Method Coverage (%)
Mean

SNPs/set
Median
SNPs/set 95% quantile

J-test 82 4 1 14
BIMBAM 87 5 1 19
BSLMM 80 4 1 10

Assuming that the CpG-SNP is the single underlying causal for the DNA methylation
levels, we would expect that the CpG-SNP would be captured in at least 95% of the
credible sets.
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The difficulties infine-mapping a known causal variant in a
low-level biological trait have implications for the study of
higher-order complex traits and disease. For example, Huang
et al. (2017) fine-mapped 18 inflammatory bowel disease loci
to apparent single-variant resolution. However, their geno-
type data were based on imputation to the 1000 Genomes
Project reference panel, which resulted in.36% of the cred-
ible sets in our study not containing the causal variant when
compared to whole-genome sequencing. The role of imputa-
tion error in the accuracy of fine-mapping also has implica-
tions for rarer causal variants. The imputation accuracy for

rare variants is much lower than common variants (Mitt et al.
2017), implying fine-mapping of rare causal variants will be
less accurate than their common counterparts. In addition,
fine-mapping approaches that integrate additional epigenetic
annotations need to be treated with care. While we could not
use such approaches in our study (due to the circular nature
of the analysis if applied to mapping DNAmQTL), our results
demonstrate that our knowledge of which genetic variants
disrupt these epigenetic marks is incomplete. These limita-
tions in statistical fine-mapping need to be recognized when
designing functional experiments.

Figure 4 The effect of the CpG-SNP and top SNP on the methylation levels, independent of one another. A and B show the change in methylation
levels with a change in the genotype of the CpG-SNP, and the top SNP, respectively, with both having a large effect. C is split into three blocks indicating
individuals with 0, 1, or 2 minor alleles at the top SNP, and within each block the points indicate the methylation levels of individuals with 0, 1, or
2 minor alleles at the CpG-SNP, showing there is almost no variation in methylation levels explained by the CpG-SNP after fixing the top SNP. D is the
same as the second, except the SNPs are reversed, showing that even after fixing the CpG-SNP there is extra variation in the methylation levels explained
by the top SNP.
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et al., 2017 Fine-mapping inflammatory bowel disease loci to
single-variant resolution. Nature 547: 173–178. https://
doi.org/10.1038/nature22969

Kichaev, G., W. Y. Yang, S. Lindstrom, F. Hormozdiari, E. Eskin
et al., 2014 Integrating functional data to prioritize causal var-
iants in statistical fine-mapping studies. PLoS Genet. 10:
e1004722. https://doi.org/10.1371/journal.pgen.1004722

Li, H., and R. Durbin, 2009 Fast and accurate short read align-
ment with burrows-wheeler transform. Bioinformatics 25:
1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Loh, P. R., P. Danecek, P. F. Palamara, C. Fuchsberger, A. Y. Reshef
et al., 2016 Reference-based phasing using the haplotype ref-
erence consortium panel. Nat. Genet. 48: 1443–1448. https://
doi.org/10.1038/ng.3679

Maller, J. B., G. McVean, J. Byrnes, D. Vukcevic, K. Palin et al.,
2012 Bayesian refinement of association signals for 14 loci
in 3 common diseases. Nat. Genet. 44: 1294–1301. https://
doi.org/10.1038/ng.2435

McLaren, W., L. Gil, S. E. Hunt, H. S. Riat, G. R. Ritchie et al.,
2016 The ensembl variant effect predictor. Genome Biol. 17:
122. https://doi.org/10.1186/s13059-016-0974-4

McRae, A., J. Powell, A. Henders, L. Bowdler, G. Hemani et al.,
2014 Contribution of genetic variation to transgenerational
inheritance of DNA methylation. Genome Biol. 15: R73. https://
doi.org/10.1186/gb-2014-15-5-r73

McRae, A. F., R. E. Marioni, S. Shah, J. Yang, J. E. Powell et al.,
2018 Identification of 55,000 replicated dna methylation qtl.
Sci Rep 8: 17605.

Meaburn, E. L., L. C. Schalkwyk, and J. Mill, 2010 Allele-specific
methylation in the human genome: implications for genetic
studies of complex disease. Epigenetics 5: 578–582. https://
doi.org/10.4161/epi.5.7.12960

Min, J. L., G. Hemani, G. Davey Smith, C. Relton, and M. Suder-
man, 2018 Meffil: efficient normalization and analysis of very
large dna methylation datasets. Bioinformatics 34: 3983–3989.
https://doi.org/10.1093/bioinformatics/bty476

Mitt, M., M. Kals, K. Parn, S. B. Gabriel, E. S. Lander et al.,
2017 Improved imputation accuracy of rare and low-
frequency variants using population-specific high-coverage
WGS-based imputation reference panel. Eur. J. Hum. Genet.
25: 869–876. https://doi.org/10.1038/ejhg.2017.51

Morris, A., 2011 Transethnic meta-analysis of genomewide asso-
ciation studies. Genet. Epidemiol. 35: 809–822. https://doi.org/
10.1002/gepi.20630

Servin, B., and M. Stephens, 2007 Imputation-based analysis of
association studies: candidate regions and quantitative traits.

PLoS Genet. 3: e114. https://doi.org/10.1371/journal.p-
gen.0030114

Shah, S., A. F. McRae, R. E. Marioni, S. E. Harris, J. Gibson et al.,
2014 Genetic and environmental exposures constrain epige-
netic drift over the human life course. Genome Res. 24: 1725–
1733. https://doi.org/10.1101/gr.176933.114

Shoemaker, R., J. Deng, W. Wang, and K. Zhang, 2010 Allele-
specific methylation is prevalent and is contributed by cpg-snps
in the human genome. Genome Res. 20: 883–889. https://
doi.org/10.1101/gr.104695.109

Spain, S. L., and J. C. Barrett, 2015 Strategies for fine-mapping
complex traits. Hum. Mol. Genet. 24: R111–R119. https://
doi.org/10.1093/hmg/ddv260

Taylor, A. M., A. Pattie, and I. J. Deary, 2018 Cohort profile update:
the lothian birth cohorts of 1921 and 1936. Int. J. Epidemiol. 47:
1042–1042r. https://doi.org/10.1093/ije/dyy022

The 1000 Genomes Project Consortium, A. Auton, L. D. Brooks, R.
M. Durbin, E. P. Garrison et al., 2015 A global reference for
human genetic variation. Nature 526: 68–74. https://doi.org/
10.1038/nature15393

The Haplotype Reference Consortium, 2016 A reference panel of
64,976 haplotypes for genotype imputation. Nat. Genet. 48:
1279–1283. https://doi.org/10.1038/ng.3643

UK10K Consortium, K. Walter, J. L. Min, J. Huang, L. Crooks et al.,
2015 The uk10k project identifies rare variants in health
and disease. Nature 526: 82–90. https://doi.org/10.1038/
nature14962

Yang, J., S. Lee, M. Goddard, and P. Visscher, 2011 Gcta: a tool
for genome-wide complex trait analysis. Am. J. Hum. Genet. 88:
76–82. https://doi.org/10.1016/j.ajhg.2010.11.011

Yang, J., T. Ferreira, A. P. Morris, S. E. Medland Genetic Investiga-
tion of ANthropometric Traits (GIANT) Consortiumet al.,
2012 Conditional and joint multiple-snp analysis of gwas sum-
mary statistics identifies additional variants influencing complex
traits. Nature Genet. 44: 369–375, S1–3. https://doi.org/
10.1038/ng.2213

Zhi, D., S. Aslibekyan, M. Irvin, S. Claas, I. Borecki et al.,
2013 Snps located at cpg sites modulate genome-epigenome
interaction. Epigenetics 8: 802–806. https://doi.org/10.4161/
epi.25501

Zhou, D., Z. Li, D. Yu, L. Wan, Y. Zhu et al., 2015 Polymorphisms
involving gain or loss of cpg sites are significantly enriched in
trait-associated snps. Oncotarget 6: 39995–40004. https://
doi.org/10.18632/oncotarget.5650

Zhou, X., P. Carbonetto, and M. Stephens, 2013 Polygenic mod-
eling with bayesian sparse linear mixed models. PLoS Genet. 9:
e1003264. https://doi.org/10.1371/journal.pgen.1003264

Communicating editor: E. Eskin

586 V. K. Chundru et al.

https://doi.org/10.1016/j.ajhg.2016.10.003
https://doi.org/10.1016/j.ajhg.2016.10.003
https://doi.org/10.1038/nature22969
https://doi.org/10.1038/nature22969
https://doi.org/10.1371/journal.pgen.1004722
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1038/ng.3679
https://doi.org/10.1038/ng.3679
https://doi.org/10.1038/ng.2435
https://doi.org/10.1038/ng.2435
https://doi.org/10.1186/s13059-016-0974-4
https://doi.org/10.1186/gb-2014-15-5-r73
https://doi.org/10.1186/gb-2014-15-5-r73
https://doi.org/10.4161/epi.5.7.12960
https://doi.org/10.4161/epi.5.7.12960
https://doi.org/10.1093/bioinformatics/bty476
https://doi.org/10.1038/ejhg.2017.51
https://doi.org/10.1002/gepi.20630
https://doi.org/10.1002/gepi.20630
https://doi.org/10.1371/journal.pgen.0030114
https://doi.org/10.1371/journal.pgen.0030114
https://doi.org/10.1101/gr.176933.114
https://doi.org/10.1101/gr.104695.109
https://doi.org/10.1101/gr.104695.109
https://doi.org/10.1093/hmg/ddv260
https://doi.org/10.1093/hmg/ddv260
https://doi.org/10.1093/ije/dyy022
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/ng.3643
https://doi.org/10.1038/nature14962
https://doi.org/10.1038/nature14962
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1038/ng.2213
https://doi.org/10.1038/ng.2213
https://doi.org/10.4161/epi.25501
https://doi.org/10.4161/epi.25501
https://doi.org/10.18632/oncotarget.5650
https://doi.org/10.18632/oncotarget.5650
https://doi.org/10.1371/journal.pgen.1003264

