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The deep ocean and its sediments are a continuous source of non-methane short-chain

alkanes (SCAs) including ethane, propane, and butane. Their high global warming

potential, and contribution to local carbon and sulfur budgets has drawn significant

scientific attention. Importantly, microbes can use gaseous alkanes and oxidize them

to CO2, thus acting as effective biofilters. A relative decrease of these gases with a

concomitant 13C enrichment of propane and n-butane in interstitial waters vs. the source

suggests microbial anaerobic oxidation. The reported uncoupling of sulfate-reduction

(SR) from anaerobic methane oxidation supports their microbial consumption. To date,

strain BuS5 isolated from the sediments of Guaymas Basin, Gulf of California, is

the only pure culture that can anaerobically degrade propane and n-butane. This

organism belongs to a metabolically diverse cluster within the Deltaproteobacteria called

Desulfosarcina/Desulfococcus. Other phylotypes involved in gaseous alkane degradation

were identified based on stable-isotope labeling and fluorescence in-situ hybridization.

A novel syntrophic association of the archaeal genus, Candidatus Syntrophoarchaeum,

and a thermophilic SR bacterium, HotSeep-1 was recently discovered from the Guaymas

basin, Gulf of California that can anaerobically oxidize n-butane. Strikingly, metagenomic

data and the draft genomes of ca. Syntrophoarchaeum suggest that this organism uses

a novel mechanism for n-butane oxidation, distinct from the well-established fumarate

addition mechanism. These recent findings indicate that a lot remains to be understood

about our understanding of anaerobic SCA degradation. This mini-review summarizes

our current understanding of microbial anaerobic SCA degradation, and provides an

outlook for future research.

Keywords: Gulf of Mexico, short-chain alkanes, sulfate reduction, anaerobic oxidation,

Desulfosarcina/Desulfococcus

INTRODUCTION

Microbes drive fundamental processes in marine sediments, including the oxidation of organic
matter, production of methane and other hydrocarbons, and the removal of sulfate from oceans
(Jørgensen, 1982; D’Hondt et al., 2004; Hinrichs et al., 2006; Kallmeyer et al., 2012). The marine
biosphere represents a major reservoir for microbial life on Earth. Kallmeyer et al. (2012) estimated
the global subseafloor sedimentary microbial abundance to be 2.9 × 1029 cells, corresponding
to ∼0.6% of Earth’s total living biomass. Unlike photosynthetic processes, metabolic strategies
in dark oceans are based on chemotrophy, where reduced organic and inorganic compounds
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including methane are the dominant electron donors (Orcutt
et al., 2011; Colwell and D’Hondt, 2013). Non-methane short-
chain alkanes (SCAs), [ethane (C2), propane (C3), butane
(C4; only microbial n-butane consumption is noted thus far)]
represent additional substrates for primary productivity and
play an important role in marine ecosystems. Considerable
amounts of SCAs are produced continuously from the ocean
via biotic and abiotic processes (0.54 Tg year−1 ethane, 0.35
Tg year−1 propane, and 0.11 Tg year−1 butane) (Plass-Dülmer
et al., 1995). Their subsequent escape into the atmosphere
significantly contributes to the formation of ozone and organic
aerosols (Etiope and Ciccioli, 2009; Pozzer et al., 2010). However,
aerobic and anaerobic hydrocarbon-degrading microorganisms
can dramatically lower the amount of SCAs reaching the
atmosphere (Head et al., 2006; Atlas and Hazen, 2011; Callaghan,
2013). Aerobic microorganisms that can oxidize SCAs are well-
characterized (Dworkin and Foster, 1958; Kinnaman et al., 2007;
Yakimov et al., 2007; Redmond et al., 2010). Recent studies in
coldmarine seeps andmarine hydrothermal vents have shed light
on the microbial anaerobic oxidation of SCAs (Kniemeyer et al.,
2007; Adams et al., 2013; Bose et al., 2013; Kleindienst et al.,
2014; Dowell et al., 2016; Laso-Pérez et al., 2016). Nevertheless,
research on the anaerobic oxidation of ethane is still in its infancy.
Microbially mediated anaerobic ethane oxidation linked to SR
has been reported for the Gulf of Mexico (GoM) and Middle
Valley (MV) sediments (Adams et al., 2013; Bose et al., 2013).
However, identification of individual isolates/consortia and the
mechanisms involved are still unknown and await discovery. This
mini-review summarizes our current understanding of anaerobic
microbial SCA degradation, and provides an outlook for future
research.

SHORT-CHAIN ALKANES AS CARBON
AND ENERGY SOURCE IN THE MARINE
ECOSYSTEMS

SCAs are chemically the least reactive compounds due to their
non-polar C-H σ-bonds (Carey, 2007). Despite this, microbes can
oxidize them aerobically or anaerobically (Leahy and Colwell,
1990; Maeng et al., 1996; Heider et al., 1999; Callaghan et al.,
2006; Rojo, 2009; Callaghan, 2013). Aerobes activate alkanes
by cleaving C-H bonds via monooxygenase or dioxygenase
enzymes (Callaghan et al., 2006). Their terminal oxidation
results in an alkanol that is oxidized by dehydrogenases to
aldehydes, then to fatty acids followed by β-oxidation (Rabus
et al., 2001; Callaghan et al., 2006). The key role that oxygen
plays in aerobic alkane transformations led to the belief that
alkanes are biologically inert under anoxic conditions. However,
research conducted over the years has shown that activation of
hydrocarbons can also occur under such conditions. In marine
ecosystems, anaerobic SCA degradation is linked to only SR
unlike terrestrial ecosystems where nitrate and chlorate act as
electron acceptors for hydrocarbon (>C6) degradation (Wilkes
et al., 2003; Mehboob et al., 2009; Zedelius et al., 2011; Adams
et al., 2013; Bose et al., 2013; Kimes et al., 2013; Chanton et al.,
2015).

Emission of oil and gas from hydrocarbon seeps are
widespread along continental margins. This gas is primarily
composed of methane, a potent greenhouse gas; and marine
hydrocarbon seeps are estimated to contribute 20 Tg year−1

methane to the atmosphere, representing about 5% of the total
atmospheric flux (Fung et al., 1991; Judd, 2004). Due to the
high concentration of methane in the atmosphere, bacterial
oxidation of methane under aerobic and anaerobic conditions
has received considerable attention. Over the past four decades,
studies focusing on anaerobic oxidation of methane (AOM) have
revealed the diversity and distribution of methane oxidizers, and
the underlying biochemical processes (Reeburgh, 2007; Knittel
and Boetius, 2009; Callaghan, 2013; Haroon et al., 2013). In
addition to methane, these hydrocarbon seeps also release an
estimated 0.45 Tg year−1 ethane and 0.09 Tg year−1 propane
into the atmosphere (Etiope and Ciccioli, 2009). The amount
reaching the atmosphere would be substantially larger if not
for microbial oxidation in the sediments and water column
(Reeburgh, 2007). Although, microbial aerobic and anaerobic
consumption of SCAs from marine and terrestrial environments
is widely known (Redmond et al., 2010; Mbadinga et al., 2011;
Callaghan, 2013; Musat, 2015), to the best of our knowledge,
no quantitative approaches have been used to clearly define the
partitioning of SCAs between their atmospheric emission and
oxidation. The lack of such data makes it difficult to estimate the
influence of SCAs to global carbon budgets and their potential
effect on climate. Future research on SCA degradationwould help
fill this large knowledge gap.

In marine ecosystems, anaerobic oxidation of C2-C4 alkanes
can significantly contribute to community bioenergetics
(Lorenson et al., 2002; Formolo et al., 2004; Sassen et al.,
2004; Alain et al., 2006; Bose et al., 2013), while competing
with AOM for sulfate, an electron acceptor shared by these
processes (Joye et al., 2004; Orcutt et al., 2010; Bowles et al.,
2011; Adams et al., 2013; Bose et al., 2013). Indeed, at the
GoM cold seeps, SR rates are higher than can be accounted
for by AOM alone, indicating that SR is potentially linked
to the oxidation of non-methane SCAs or higher petroleum
hydrocarbons (Joye et al., 2004; Musat et al., 2009; Orcutt
et al., 2010; Bowles et al., 2011). The microbial oxidation of
SCAs is confirmed by 13C-enriched propane and n-butane in
the sediment interstitial water relative to gas in the hydrates,
and the carbonate alkalinity around them (Sassen et al., 2004).
Overall, studies on the microbial degradation of SCAs in marine
settings are motivated by questions of how such processes affect
global carbon and sulfur cycling, and who the participating
organisms are.

Anaerobic oxidation of C2-C4 alkanes with SR has been
demonstrated in anoxic, marine settings (Kniemeyer et al.,
2007; Savage et al., 2010; Adams et al., 2013; Bose et al.,
2013; Kleindienst et al., 2014; Laso-Pérez et al., 2016). These
studies have identified novel and metabolically diverse microbes
thriving on C2-C4 alkanes. Sulfate-reducing bacteria (SRB)
from the GoM and Guaymas Basin (GB), Gulf of California
sediments oxidized C3-C4 alkanes to CO2 (Kniemeyer et al.,
2007). These authors tested different temperature regimes (12, 28,
and 60◦C) using various substrates (methane, ethane, propane,
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n-butane, iso-butane, alcohols, or carboxylic acids). A pure
culture (BuS5) isolated from 28◦C enrichments, anaerobically
oxidized C3-C4 alkanes (Kniemeyer et al., 2007). The strain
was determined to be a Deltaproteobacterium within the
Desulfosarcina/Desulfococcus (DSS) cluster. Further, Kleindienst
et al. (2014) showed the presence of distinct DSS clades in two
seep sediments from the Mediterranean Amon mud volcano
and Guaymas Basin degrading n-butane and dodecane. Jaekel
et al. (2013) enriched microbial populations from the GoM
and Hydrate Ridge marine cold seeps that degraded C3-C4

alkanes. Similar to the previous observation by Kniemeyer
et al. (2007), the enrichment cultures degraded propane and
n-butane simultaneously, but not methane, ethane, iso-butane,
or pentane. They also identified DSS cluster members as the
responsible phylotypes. Using ex-situ sediment slurries, Bose et al.
(2013) demonstrated the anaerobic oxidation of C1-C4 alkanes
coupled with SR. Interestingly, these authors observed ethane
consumption comparable to methane, propane, and n-butane.
This is in contrast to the study by Kniemeyer et al. (2007), who
reported extremely slow rates of ethane-driven SR. A notable
difference between these studies is the use of sediment slurries
by Bose et al. (2013) compared to enrichment techniques used
by Kniemeyer et al. (2007). Community analyses suggested the
enhancement of Deltaproteobacteria in SCA amended reactors.
Deltaproteobacterial sequences from ethane incubations were
closely related to the isolate BuS5, and the enrichment culture
Butane 12-GMe (both isolated from marine sediments by
Kniemeyer et al., 2007 and Bose et al., 2013).

Anaerobic SCA degradation was also demonstrated in
metalliferous, organic-poor Middle Valley hydrothermal vent
sediments at 25, 55, and 75◦C. Sediment slurries showed
degradation of C1-C4 alkanes under SR conditions (Adams
et al., 2013). Comparison of bacterial communities, suggested
the presence of Deltaproteobacteria mediating the anaerobic
oxidation of C1-C4 alkanes. This implied that, anaerobic alkane
degraders exist in both cold marine seeps and high temperature
hydrothermal vent systems. Importantly, anaerobic oxidation
of SCAs is not restricted to only the Deltaproteobacteria. For
example, an enrichment from GB sediments with propane at
60◦C was dominated by Gram positive, SRB closely related to
Desulfotomaculum, a commonly found cluster of bacteria in the
subsurface biosphere within the Peptococcaceae (Ollivier et al.,
2007; Wang et al., 2008; Aüllo et al., 2013).

The diversity of SCA degraders in marine environments was
recently demonstrated by the discovery of syntrophic n-butane
degraders from a thermophilic enrichment culture from the
GB vent area (Laso-Pérez et al., 2016). Syntrophic association
of the archaeal genus, Candidatus Syntrophoarchaeum and a
thermophilic SRB, HotSeep-1 completely oxidized n-butane to
CO2. A subsequent study on GB hydrothermal mound sediments
used bacterial and archaeal 16S rRNA gene clone libraries
and V6 tag pyrosequencing to show the co-occurrence of
archaeal groups (such as, anaerobic methane-oxidizing archaea
ANME-1, ANME-1Guaymas, and ANME-2) with bacterial
groups (such as, SEEP-SRB2 and HotSeep-1) (Dowell et al.,
2016). This corroborates that an archaeal-bacterial syntrophic

community mediates alkane degradation in a GB hydrothermal
mound.

The HotSeep-1 group was also detected in thermophilic
SR enrichments with n-butane from GB at 60◦C (Kniemeyer
et al., 2007), and in SR enrichments inoculated with MV
hydrothermal sediments amended with C2-C4 alkanes at 55◦C
(Adams et al., 2013). It is likely that the organisms in the
HotSeep-1 group do not oxidize these alkanes directly but
function as versatile syntrophs that serve as electron/hydrogen
sinks within different consortia (Zengler et al., 1999; Dowell
et al., 2016). Together, these findings reflect the diversity
of anaerobic microorganisms thriving on non-methane SCAs
in marine environments. These studies also suggest that the
processes mediated by these organisms contribute to ocean
chemistry and community bioenergetics via both sulfate and SCA
removal.

Despite informative studies over the past decade on anaerobic
SCA degradation, very little is known about ethane-oxidizing
phylotypes, and how they interact with other organisms in
deep-sea ecosystems. Kniemeyer et al. (2007) reported ethane
dependent SR in an enrichment from the GoM at 12◦C. However,
the reported rate was orders of magnitude slower than the
oxidation rates of C3-C4 alkanes. Notably, Bose et al. (2013)
observed ethane consumption approximately two orders of
magnitude higher than those reported by Kniemeyer et al. (2007)
in ex-situ slurry incubations of GoM sediments incubated at 7◦C.
It is possible that SRB closely related to the C3-C4 degrading
DSS cluster might be associated with ethane degradation in
these incubations, though this remains to be investigated. These
authors also demonstrated carbon flux dynamics of ethane
oxidation using δ13C of DIC and alkanes from their enrichment
experiments.

Batch incubations with sediments from MV hydrothermal
vent systems showed modest rates of ethane dependent SR at
25, 55, and 75◦C (Adams et al., 2013). In accordance with
the observed stoichiometries, SR coupled to the anaerobic
oxidation of C2-C4 proceeded at a faster rate than AOM
at mesophilic and thermophilic temperatures (25 and 55◦C,
respectively). These faster rates might indirectly limit AOM.
These findings suggest that microbial anaerobic SCA degradation
affects local carbon and sulfur cycles. In contrast to C3-C4

alkane degradation, anaerobic ethane oxidation has not yet
been reported by sediment-free cultures or isolates/consortia.
This makes ethane oxidation the least understood among
the SCA degradative processes. This is in part due to the
slow rate of microbial anaerobic ethane oxidation observed in
enrichment studies (Kniemeyer et al., 2007). Anaerobic ethane
oxidation needs to be investigated in further detail due to its
abundance in marine seeps (Plass-Dülmer et al., 1995; Sassen
et al., 1998; Etiope and Ciccioli, 2009), its contribution to
tropospheric chemistry (Singh et al., 1994; Katzenstein et al.,
2003), and the demonstrated ability of microbial populations to
degrade ethane linked to SR (Adams et al., 2013; Bose et al.,
2013). Studies should focus on the precise nature and extent
of this process; the responsible microbes; and the associated
biochemistry.
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BIOCHEMISTRY OF ANAEROBIC
SHORT-CHAIN ALKANE OXIDATION

Fumarate addition is noted as the biochemical mechanism for
aromatic hydrocarbon and n-alkane activation by anaerobes
(Biegert et al., 1996; Beller and Spormann, 1997; Kropp
et al., 2000; Rabus et al., 2001; Wilkes et al., 2002; Callaghan
et al., 2006, 2008, 2012; Grundmann et al., 2008). In this
pathway, n-alkanes are activated by fumarate addition to
the double bond at the sub-terminal or terminal carbon
producing 2-(1-methylalkyl)succinates (or 2-alkylsuccinates).
Degradation of 2-(1-methylalkyl)succinates involves carbon
skeleton rearrangement, and decarboxylation yielding branched
fatty acids followed by β-oxidation (Widdel and Grundmann,
2010; Agrawal and Gieg, 2013; Callaghan, 2013; Musat, 2015)
(Figure 1). C3-C4 alkane activation by strain BuS5 and, in
the marine enrichment Propane60-GuB is suggested to occur
via the same pathway (Kniemeyer et al., 2007). Based on
the metabolites detected in both cultures, activation of n-
butane presumably occurs at the secondary carbon yielding
(1-methylpropyl) succinate. Interestingly, it was suggested that
propane activation occurs at both secondary and primary carbon
atoms producing isopropyl- and n-propylsuccinate respectively
(Kniemeyer et al., 2007) (Figure 1). Although initially considered
a side reaction, the second pathway was substantiated by
incubations of strain BuS5 with position-specific deuterium-
labeled propane (Jaekel et al., 2014). Results showed that the
activation of propane at the secondary carbon is more significant,
accounting for an estimated 70% of the activation events, with
30% of activation occurring at the primary carbon. Based on these
findings, activation of ethane would likely yield ethylsuccinate.
Although, metabolites analyses in ethane-degrading laboratory
batch reactors are lacking, ethylsuccinate is reported from
hydrocarbon-rich settings such as, in crude oil processing
facilities and production wells (Duncan et al., 2009), oilfields
(Gieg et al., 2010), and coal beds (Wawrick et al., 2012).

At the biochemical level, this process involves the abstraction
of an H atom from the alkane substrate by the glycyl
radical enzyme (GRE), 1-methylalkyl succinate synthase (MAS)
(Grundmann et al., 2008) also known as alkylsuccinate synthase
(ASS) (Callaghan et al., 2008). These enzymes utilize free
radicals to catalyze fumarate addition to form a succinate radical
intermediate (Callaghan et al., 2008, 2010; Bharadwaj et al.,
2015; Musat, 2015). Several PCR-based detection assays target
the genes that encode the α-subunit of the MAS/ASS enzyme
(masD/assA) as the most relevant genetic markers for anaerobic
alkane degradation by fumarate addition (Callaghan et al., 2010;
Aitken et al., 2013; Von Netzer et al., 2013; Gittel et al., 2015).

The genes encoding an alkane activating GRE have been
identified in the SRB Desulfatibacillum alkenivorans AK-
01 (Callaghan et al., 2008) and Desulfoglaeba alkanexedens
ALDCT (Callaghan et al., 2010) and in nitrate reducing
strains HxN1 (Grundmann et al., 2008) and OcN1 (Zedelius
et al., 2011), all affiliated to the Deltaproteobacteria. Recent
genome analysis of strain BuS5 identified a single putative
masD gene, suggesting that one MasD is involved in the
activation of both propane and n-butane (Musat, 2015).
Phylogenetic reconstruction of translated full-length and partial
masD/assA/bssA/nmsA homologs from selected isolates,
as well as pristine and seepage-impacted metagenomes
showed that there is a wide diversity of organisms that can
degrade short-, long-chain hydrocarbons, and cyclic aromatic
hydrocarbons (Figure 2). Gittel et al. (2015) designed novel
PCR primers to the masD/assA gene to determine the diversity
and distribution of anaerobic alkane degraders in pristine
and seepage-impacted Danish coastal sediments. Seepage-
impacted sediments were dominated by a single masD/assA
gene cluster, which indicates an occurrence of a substrate-
adapted community. In contrast, pristine sediments harbored
a diverse range of masD/assA phylotypes including those
present in seepage-impacted sediments. This comprehensive
cultivation-independent survey of the diversity and distribution

FIGURE 1 | Anaerobic activation of propane at the sub-terminal (A) and terminal (B) carbon atom (marked with stars) via fumarate addition yielding isopropylsuccinate

and n-propylsuccinate, respectively. A similar activation mechanism exclusively at the sub-terminal carbon atom is proposed for the anaerobic oxidation of n-butane.
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FIGURE 2 | Maximum likelihood tree of translated full-length and partial masD/assA/bssA/nmsA homologs from selected isolates as well as pristine and

seepage-impacted metagenomes obtained from GenBank (accession numbers are shown in parentheses). Tree was inferred using the Le_Gascuel_2008 model (Le

and Gascuel, 2008) and involved 85 amino acid sequences and a total of 210 positions. All positions with less than 95% site coverage were eliminated. Full-length

glycerol dehydratase (dhaB1) from Clostridium butyricum was used as an outgroup. Node circles denote bootstrap value percentages from 100 replicate trees. Scale

bar represents 20% estimated sequence divergence. Evolutionary tree was constructed in MEGA7 (Kumar et al., 2016).
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of anaerobic alkane degraders highlighted the relevance of
masD/assA genes as diagnostic genetic markers to identify
seepage/microseepage, e.g., during oil and gas prospecting, and
may act as an indicator of anthropogenic oil spills in marine
sediments. Stagars et al. (2016) used masD to study the diversity
of alkane degraders from seven globally distributed marine
seeps. They identified three distinct masD clades, indicating
a high number of anaerobic alkane degraders thriving in
such environments. Recently, a novel syntrophic association
for n-butane oxidation by the archaeal genus, Candidatus
Syntrophoarchaeum and a thermophilic SRB, HotSeep-1 was
proposed in an anaerobic thermophilic enrichment from the GB
vent area (Laso-Pérez et al., 2016). Neither the metagenomics
assembly nor the draft genomes of ca. Syntrophoarchaeum
contained any GRE indicating a different mechanism for n-
butane activation. Butane activation is proposed to occur via
a methyl-coenzyme M reductase (MCR) enzyme analogous to
that of the MCR in AOM. This is supported by the detection of
butyl-coenzymeM as a reaction intermediate in cell extracts. The
reducing equivalents are then presumably transferred to strain
HotSeep-1.

SUMMARY AND FUTURE RESEARCH
DIRECTIONS IN MICROBIAL
SHORT-CHAIN ALKANE DEGRADATION

Microbial anaerobic oxidation of C2-C4 alkanes has received
considerable scientific attention in recent years. Research
efforts have helped shed light on key questions such as the
degradative microbes, the pathways underlying the degradation,
the enzymes involved, and the potential influence of anaerobic

SCA degradation on local carbon and sulfur cycling. Based on
geochemical and microbiological studies from cold hydrocarbon
seeps to hydrothermal vents, it appears that microbes that
degrade propane and n-butane are more easily enriched than
ethane despite its high concentrations in marine ecosystems.
Most of the SCA degraders discovered in-situ or ex-situ batch
experiments are within the Desulfosarcina-Desulfococcus cluster
of the Deltaproteobacteria, although a syntrophic community
has been discovered recently. Although scientists have made
significant progress in this field by isolating propane and
n-butane degrading strains, our understanding of microbial
anaerobic oxidation of ethane is still in its early stages. Thus, an
obvious need to understand this process in marine ecosystems
exists. Further, investigations into anaerobic SCA degradation
could possibly point to novel and unknown degradative processes
that can potentially strongly influence the carbon and sulfur
biogeochemical cycles.
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