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Abstract
The European mudminnow (Umbra krameri) is a Middle Danubian endemic fish species,

which is characterised by isolated populations living mainly in artificial habitats in the centre

of its range, in the Carpathian Basin. For their long term preservation, reliable information is

needed about the structure of stocks and the level of isolation. The recent distribution pat-

tern, and the population genetic structure within and among regions were investigated to

designate the Evolutionary Significant, Conservation and Management Units (ESUs, CUs,

MUs) and to explore the conservation biological value of the shrinking populations. In total,

eight microsatellite loci were studied in 404 specimens originating from eight regions. The

results revealed a pronounced population structure, where strictly limited gene flow was

detected among regions, as well as various strengths of connections within regions. Follow-

ing the results of hierarchical structure analyses, two ESUs were supposed in the Carpa-

thian Basin, corresponding to the Danube and Tisza catchments. Our results recommend

designating the borders of CUs in an 80–90km range and 16 clusters should be set up as

MUs for the 33 investigated populations. How these genetic findings can be used to better

allocate conservation resources for the long term maintenance of the metapopulation struc-

ture of this threathened endemic fish is discussed.

Introduction
Although large floodplain rivers and their associated habitats (e.g., dead arms, backwaters, wet-
lands) represent a small fraction of the total land area, they nonetheless harbor an outstanding
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number of endangered and threatened species worldwide [1, 2]. However, large rivers in the
developed regions of the world are highly influenced by anthropogenic impacts [3], [4] such as
river regulation, construction of flood-control levees, and reservoirs, which disrupt the lateral
and longitudinal connections of aquatic systems [5, 6]. Moreover, growing human populations,
increased agricultural land use, and the development of infrastructure decreases and fragments
the area of natural floodplain ecosystems [7].

Habitat degradation results in the erosion of genetic diversity [8, 9], in particular for those
aquatic species which are characterised by special environmental needs, narrow ranges of dis-
tribution, and low dispersal ability [10, 11]. Therefore for certain conservation biological proj-
ects, such as habitat rehabilitation and reconstruction, the knowledge of population genetic
structure is necessary if, for example, resettlement of these species is planned [12, 13]. The task
of population genetic investigations in such cases is to assess the rate of gene flow among popu-
lations, to identify shrunken populations exposed to the adverse effects of inbreeding, and par-
ticularly to determine evolutionary significant units (ESU) within biogeographical patterns
[14–17]. This information can be used directly to elaborate species conservation and manage-
ment plans [18, 19].

In Europe, up to 90% of the floodplain area is altered from its natural state [20]. Although
less well known, the most severe degradation of floodplain systems has occurred in the Carpa-
thian Basin. Until the middle of the 19th century, more than 21,000 km2 of land was flooded at
least periodically in the basin [21]. However, of the ~15,000 km2 floodplain area of the Tisza
River (the largest tributary of Danube River, with a drainage area of 157,000 km2), for example,
approximately 4,400 km2 was permanently inundated [22] (see Fig 1a). River regulation began
in the middle of the 19th century and more than 4,200 kms of levees have since been built, and
hundreds of larger meanders were cut along the river. Therefore, the course of the Tisza River
was shortened from the original 1419 to 966 km (i.e., by 32%) [20]. The length of the Berettyó
River, a tributary of the Tisza River, was also shortened, to half of the original length (from 364
to 174 km) [23]. Concurrent with river regulation, draining of the marshlands was also carried
out. The length of draining canals is currently greater than 40,000 km in the central area of the
Carpathian Basin [24]. As the result of these large-scale and numerous regulations, the wetland
area in the floodplain of the Tisza River was reduced to 539 km2. In the entire Carpathian
Basin, the area of wetlands and backwaters directly connected to rivers was reduced to 700 km2

[21]. This broad alteration of the environment has consequently had a serious effect on the
fauna. Several vertebrate species preferring these aquatic habitats became rare or extirpated
from the basin [25], including some endemic fish species, such as the European mudminnow
(Umbra krameriWalbaum, 1792), a Middle Danubian endemic fish species [26], which has
suffered a serious population decline. This small (up to 100 mm in total length) stagnophilous
species [27] was widely distributed in the marshy habitats of the Danube drainage basin from
Vienna to the delta, and in the lower reaches of Dniestr drainage basin [28], prior to river regu-
lation (Fig 1b). The centre of its distribution area is the inner Carpathian Basin [29, 30], where
this species was so abundant, that it was used to feed domestic animals (e.g., swine) [31]. At
present, only a few sporadic populations have survived the habitat loss and fragmentation [32,
33]. The unexpected invasion of a highly competitive, non-native fish species, the Amur sleeper
(Perccottus glenii Dybowsky 1877), has further worsened the situation, especially in the Tisza-
nian area [34, 35]. Unfortunately, this voracious competitor has recently also appeared in the
middle and western parts of the Carpathian Basin [36–38]. Due to these impacts, mudminnow
is known to have been extirpated from many locations [32], especially from the backwaters
connected to the Hungarian Upper and Middle Tisza sections. In just the last decades, more
than 30% population decline is estimated to have occurred [28], and European mudminnow
has therefore been listed as vulnerable (VU) on the IUCN Red List [39] since 1996. Although
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the mudminnow is a strictly protected species in Hungary, only few studies have carried out a
comprehensive analysis of the distribution of the mudminnow, and are in need of a more
recent update [32]. In order to promote the conservation of the remaining stock, captive breed-
ing and rearing techniques have been developed [40, 41], along with some pilot habitat revitali-
zation and population translocation (transferring residual stocks from threatened habitats to
newly established nature-like habitats) experiments [42, 43]. Nevertheless, we still do not have
a comprehensive overview of the genetic structure of the remaining populations distributed
across shrinking and strongly fragmented habitat patches in the Carpathian Basin. According
to the findings of field surveys, many of the known populations now consist only of very few
individuals, which indicates a high probability of inbreeding and the extreme risk of their extir-
pation [32, 42, 44]. We do not know, however, how the total genetic diversity of the mudmin-
now is distributed among populations. Regarding the rapid decrease of mudminnow
populations and the limited amount of resources available for their conservation, it is especially

Fig 1. (a) Recent river network of the Carpathian Basin, with 33 sampling sites across eight sampling regions. Sites indicated by different colours belong to
different regions. Open circles indicate further known (but not analysed) stocks of mudminnow. Periodically and permanently flooded areas before the
beginning of river regulation works (in the mid. 19th century) are indicated by light and dark grey patches respectively. For detailed information, refer to the
text and Table 1. (b) Distribution area of European muddminow (red coloured area). The location of the Carpathian Basin in Europe is indicated by a dotted
rectangle.

doi:10.1371/journal.pone.0138640.g001
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important to explore population genetic patterns across the distribution area (i.e., toward the
identification of ESUs), and to identify those populations containing most of the genetic diver-
sity in order to set priorities for an effective action plan. For instance, imperative species con-
servation actions strongly demand information on which populations may be used for
supplementing (i.e., serving as a pool of parent fish in artificial breeding programs) endangered
populations and stocking reconstructed habitats in different geographic areas and on which
populations have the genetic uniquity requiring them to be preserved without mixing them
with other populations (i.e., the determination of conservation and management units, MUs
and CUs) [17, 45].

Therefore, the aims of the current study were: (i) to explore the recent distribution of mud-
minnow populations in the Hungarian part of the Carpathian Basin, the area inhabited by the
majority of the known stocks; (ii) to reveal spatial patterns in the population genetic structure
and among sites’migratory rates; (iii) to assess the conservation biological value of extremely
small populations; and (iv) to designate ESUs, CUs and MUs.

Materials and Methods

Ethics Statement
This study was carried out following relevant national and international guidelines pertaining
to the care and welfare of fish. Our surveys (e.g., tissue sampling during field surveys) are not
qualified as animal tests by the operative Hungarian law (No: 40/2013.(II.14.). However, since
the studied species is strictly protected in Hungary, any procedure to be applied in connection
with it is controlled by the order of government No: 348/2006.(XII.23.), and is subject to autho-
risation from the National Inspectorate for Environment, Nature and Water. The collection
and storage of mudminnow tissue samples was authorized by this bureau (permission num-
bers: 14/881/5/2011, 14/678-9/2012). During the sampling procedure, all efforts were made to
minimize suffering. Field studies did not involve other fish species that were endangered
according to the IUCN Red List of Threatened Species v. 2014.3 (www.iucnredlist.org).

Sample collection, DNA extraction and microsatellite amplification
Studied areas and sites were selected based on the last published distribution data of mudmin-
now [32]. Specimens were collected by electrofishing between 2011 and 2013, from each region
of the Carpathian Basin where the presence of this species had previously been noted (Table 1).
To minimize suffering, individuals collected for this study (N = 5–20 per site, depending on the
stock size) were narcotized using clove oil. The active agent of clove oil is eugenol (4-allyl-
2-ethoxyphenol), which is considered non-carcinogenic, non-mutagenic, and a "Generally Rec-
ognized As Safe" (GRAS) substance by the U.S. Food and Drug Administration [46, 47]. The
aqueous emulsion of clove oil was deposited into the dangerous refuse containers of the Bala-
ton Limnological Institute after use. For the genetic survey, an approximately 2mm2 anal fin
clip was sampled from each specimen and stored in 96% ethanol at -20°C until DNA extrac-
tion. After fin tissue sampling, fish were released to the habitat they were captured from. DNA
was isolated with DNeasy Blood and Tissue kit (Qiagen, Germany), using 10–20 mg of tissue,
as per the manufacturer’s instructions. Quality and quantity of the extracted DNA were verified
using a NanoDrop 2000c Spectrophotometer (Thermo Scientific, USA).

Nine microsatellite markers previously developed by Winkler andWeiss [48] were investi-
gated by multiplex PCR. 50 ng of DNA was amplified in a multiplex PCR reaction with three
primer pairs in a PCR reaction using Type-it Microsatellite PCR Kit (Qiagen, USA), and fluo-
rescently labelled forward primers according to the protocol of the kit (details and multiplex
combinations are provided in Table 2). The final concentration of each primer was 0.2 μM,

Population Genetic Patterns of Hungarian Umbra Stocks

PLOS ONE | DOI:10.1371/journal.pone.0138640 September 22, 2015 4 / 23

http://www.iucnredlist.org


and the annealing temperature was 60°C in each PCR. Amplified products were detected using
an ABI 3130 sequencer (Applied Biosystems, USA). Peak Scanner Software v1.0 was used to
analyse the data. The functionality of all primer pairs and the reliability of multiplex PCR were
tested in singleplex reactions using the same PCR conditions and reagents.

Statistical analyses
Genetic variation. Microsatellite markers (Table 2) and primers published by Winkler

andWeiss [48] were checked in GenBank before PCR and microsatellite analysis. Based on the

Table 1. Name, location, code, and geographical position of the sampling sites.

Drainage Basin Region Name of river code HC Coordinates N Ar I Ho He F P

Tisza Upper Tisza Gőgő-Szenke A1 n N47.96629 E22.60042 14 7.25 1.63 0.76 0.73 -0.03 0.95

Öreg-Túr A2 n N48.03644 E22.52039 12 6.25 1.48 0.72 0.69 -0.04 0.65

Bélyi-csatorna A3 a N48.37069 E22.00521 5 4.50 1.29 0.83 0.67 -0.24 1.00

Ricsei-csatorna A4 a N48.33958 E21.97172 15 7.00 1.53 0.71 0.70 -0.02 0.34

Borsodi plain Hejő B1 a N47.91033 E20.90809 15 9.00 1.83 0.80 0.75 -0.06 0.95

Hejő B2 a N47.86618 E21.00431 15 10.00 1.97 0.76 0.78 0.09 0.22

Rigós-ér B3 a N47.80835 E20.97225 10 5.88 1.48 0.71 0.70 -0.04 0.15

Tápió Felső-Tápió C1 a N47.38396 E19.71634 5 3.00 0.86 0.58 0.49 -0.18 0.98

Felső-Tápió C2 a N47.35976 E19.75206 15 3.38 0.83 0.48 0.46 -0.05 0.99

Bihari plain Pocsaji-láp D1 n N47.30103 E21.85952 15 3.00 0.87 0.50 0.51 0.03 0.23

Kis-Körös D2 a N47.21176 E21.64530 10 3.67 0.83 0.44 0.44 0.00 0.29

Ölyvös-ér D3 a N47.17127 E21.72658 10 4.25 0.99 0.49 0.50 0.02 0.61

Kutas-ér D4 a N47.06114 E21.46210 10 7.25 1.66 0.79 0.73 -0.08 0.35

Csente-Szakáli-alsó-csatorna D5 a N47.01788 E21.59800 5 4.50 1.26 0.65 0.63 -0.02 0.45

Danube Middle Hungarian Sződ-Rákos-patak E1 n N47.62597 E19.29635 20 4.88 1.02 0.51 0.53 0.04 0.06

Öreg-turjános E2 n N47.29726 E19.20590 10 5.00 1.31 0.64 0.66 0.01 0.54

Adacsi- csatorna E3 a N46.93606 E19.32020 15 5.75 1.35 0.63 0.65 0.00 0.07

Kolon-tavi-övcsatorna E4 a N46.75006 E19.30508 15 7.00 1.53 0.76 0.70 -0.10 0.62

Szölőaljai-csatorna E5 a N46.64870 E19.23308 5 4.38 1.20 0.73 0.63 -0.17 0.99

Székesi-csatorna E6 a N46.50555 E19.05487 12 7.25 1.69 0.79 0.77 -0.02 0.81

Karasica-főcsatorna E7 a N46.44800 E19.10021 15 7.13 1.61 0.79 0.74 -0.07 0.73

Császárvíz-övárok E8 a N47.36556 E18.48591 10 2.75 0.80 0.69 0.49 -0.36 0.02

Hanság-Szigetköz Örömkő-Laposai-csatorna F1 a N47.74231 E17.62207 15 6.88 1.54 0.69 0.70 0.00 0.49

Bácsai-csatorna F2 a N47.74036 E17.65363 5 4.50 1.31 0.85 0.68 -0.25 1.00

Lébénymiklósi-csatorna F3 a N47.74922 E17.36127 15 8.25 1.75 0.82 0.77 -0.08 0.43

Bordacs-Császárréti-csatorna F4 a N47.78628 E17.26714 15 7.00 1.64 0.79 0.76 -0.03 0.18

Balaton Lesence G1 a N46.80347 E17.40451 15 6.00 1.37 0.69 0.65 -0.07 0.63

Ordacsehi-berek G2 n N46.75207 E17.60159 15 4.38 1.05 0.52 0.53 0.04 0.01

Kis-Balaton (navvy hole) G3 a N46.69515 E17.24623 15 7.25 1.52 0.68 0.67 0.00 0.89

Marótvölgyi-vízfolyás G4 a N46.58907 E17.28098 15 7.25 1.69 0.79 0.76 -0.03 0.92

Zala-Somogy-határárok G5 a N46.53436 E17.22207 11 7.13 1.64 0.76 0.75 -0.04 0.51

Mura Kerka-malomárok H1 a N46.51676 E16.57354 15 4.25 1.00 0.49 0.52 0.07 0.62

Holt-Mura H2 n N46.38936 E16.77413 10 5.00 1.22 0.63 0.59 -0.06 0.97

HC: habitat condition (n: natural, a: artificial (modified)). N: number of specimens. Genetic diversity indices of microsatellite marker data: Ar: mean of allelic

richness; I: Shannon's Information Index; Ho: observed heterozygosity; He: expected heterozygosity; F: fixation index (F = 1-(Ho He-1)); P: probability of

the Hardy-Weinberg equilibrium test.

doi:10.1371/journal.pone.0138640.t001
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available sequences, it was suggested that Umbra kramerimicrosatellites UkrTet2 (GenBank:
FJ228219.1) and UkrTet3 (GenBank: FJ228220.1) sequences are identical, the reverse comple-
ments of each other. The DNA strand direction was mistakenly reversed for these. Data analy-
sis of 156 fish samples (the first 14 populations) further strengthened this hypothesis. Allele
numbers (n = 18) and allele frequencies, allele specific Fst values (Fst = 0.156) and the propor-
tion of null alleles (prop. = 0.040372339) were equal for the UkrTet2 and UkrTet3 loci. Conse-
quently, the UkrTet2 marker was left out of further statistical analyses.

Fisher’s exact test of linkage disequilibrium and tests for deviations from Hardy-Weinberg
equilibrium were conducted using GENEPOP 4.2.2 [49] for each locus using a Markov chain
of 10,000 dememorization steps, 20 batches, and with 5,000 iterations per batch. MICRO-
CHECKER 2.2.3. [50] was used to estimate the frequency of null alleles for each locus. Number
of alleles, and locus specific Fst values, were calculated using GenAlEx 6.5 [51]. Similarly, this
software was used to estimate the mean of allelic richness (Ar), Shannon's Information Index
(I), observed and expected heterozygosity (Ho, He), fixation index (F) and list the private alleles
for each population.

Population structure. The Lynch & Ritland [52] estimator was used to calculate between-
specimen pairwise relatedness. From this semimatrix, mean within-population pairwise values
were calculated with 999 permutations, and 1,000 bootstraps in GenAlEx 6.5 [51]. Because in
some cases null alleles were detected, their effect on pairwise Fst values were corrected using the
ENA procedure of Chapuis and Estoup [53, 54]. Genetic distances among populations were
calculated using the Cavalli-Sforza and Edwards [55] estimator after INA correction [53], and
presented in PCoA ordination. GenAlEx 6.5 [51] was used to perform the analysis of molecular
variance (AMOVA), with 999 permutations for population differentiation and hierarchical
partitioning of genetic variation among and within regions and populations (F-statistics: Frt–
H0: individuals are shuffled among regions, Fsr–H0: individuals are shuffled within regions, Fst–
H0: populations are shuffled among regions, Fis–H0: individuals are shuffled within popula-
tions, and Fit–H0: individuals are shuffled in the whole sample).

Genetic population structure was inferred using the hierarchical approach [56] of the
STRUCTURE analysis [57] to estimate the most probable number of genetic groups (clusters,
K) for all analysed individuals. Namely, the STRUCTURE analyses was first run including all
samples, then samples were separated by river drainage basin, and finally by region. (A, B, C,

Table 2. Primer sequences, fluorescent dyes and combinations of primers in three (1., 2., 3.) multiplex PCR, number of alleles, locus-specific Fst

values, number of populations out of the 33 in which deviations from Hardy-Weinberg Equilibrium (HWE) were detected. (*UkrTet2 UkrTet3
sequences are identical, therefore locus UkrTet2 was omitted from the further analyses, for more details refer to text), and Mean ± SD estimated frequency of
null alleles.

Multiplex
PCR

primer 5’-3’ sequence of the primer 5’ fluores-
cent dye

number of
alleles

Locus
specific Fst
values

No. of significant
(p<0.05) deviations
from HWE

forward reverse

1 UkrTet1 CATCAAATGTTGGCAGACTTGC GGGAAACCGCTATCCTGAC HEX 25 0.190 5

UkrTet2* AACACACAGACAGGACGTTCC GGGAGAAAGATGGGTGCC 6-FAM - - -

UkrTet3 GGGTGCCAGGCTGTTCTC ATCAATCGGACTAACGGTTCG NED 19 0.148 0

2 UkrTet4 AGACGGCAGCACATAAGAA ATTATTGGTGTCCATCCCTGTC 6-FAM 18 0.198 1

UkrTet5 TCACCGCACAAAAGAAACAC AACACCAGGGAACTGCAGTCT VIC 14 0.249 2

UkrTet7 CAATAGTTCCCCAATCCTGG GTCTCGACCACCAAGCG NED 14 0.482 2

3 UkrTet6 ATCGGTTTTTGCCCATCAGT CCGCAGATCGAAAGTTTGAC HEX 6 0.237 2

UkrTet8 CTTGGCTGTGGTGGTTGAA GGGGGAGTCCCTGC 6-FAM 15 0.296 1

UkrTet9 CACAGTCTCAATGGGGGAAA CCAAGCCTAACCTGCTAAAGA NED 22 0.181 4

doi:10.1371/journal.pone.0138640.t002
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etc.) Values of K were investigated from 1 to 20, with a burn-in period of 100,000 followed by
100,000 MCMC iterations and 10 runs for each K using an admixture model with correlated
allele frequencies. Results of these Bayesian statistics were evaluated by STRUCTURE HAR-
VESTER [58], implementing the (deltaK) Evanno method [59]. Results of the 10 repetitions
were combined using the software CLUMPP 1.1.2. [60]. For the genetic assignment of the stud-
ied individuals, Bayesian cross validation tests [61] were carried out on drainage basin,
regional, and population levels using GeneClass2 [62] software. Cross validation tests were car-
ried out similarly on the clusters defined at various levels by the hierarchical STRUCTURE
analyses.

Migration and spatial analyses. Migration rate estimation was performed by MIGRA-
TE-N 3.2.15 [63, 64], using the maximum likelihood method under the following parameteri-
zation: 20 short chains (500 trees used out of the sampled 10,000) and 5 long chains (5,000
trees used out of the sampled 100,000). Missing data were not included. Theta values were gen-
erated from the Fst-calculation. Mutation rates among loci were estimated from the data.
Migration was estimated for the original regional groups designated by catchment basin, and
based on the results of hierarchical STRUCTURE analyses at the three levels.

Spatial genetic structure was assessed at the population level using Mantel tests [65],
through the comparison of pairwise Fst data and pairwise straight line geographic distances
(GGD) with 999 randomisations for the whole dataset and at drainage basin levels. On the
individual level, two kinds of spatial autocorrelation [66, 67] computation were made. Spatial
autocorrelation computation is suitable to accurately identify the scale at which population
genetic structure is detectable. In this case, “r” coefficients were calculated using multiple dis-
tance class analyses. This method plots “r” as a function of increasing distance class sizes. The
last distance class for which “r” is significant is considered to be the limit of detectable isolation
by distance (IBD). In the second case, autocorrelation coefficients, “R”, were plotted as a func-
tion of discrete distance classes, partitioned so as to achieve a similar number of pairwise com-
parisons for each class [68]. Positive and significant “R” values indicate IBD and the “x”
intercept provides an estimate of the extent of IBD. For more details see Peakall et al. [69]. All
of the spatial autocorrelation computations, including the GGD semimatrix calculation from
geocoordinates, were made in GenAlEx v6.5 [51].

Results and Discussion

Results
Distribution patterns. As a result of our broad field investigations, European mudmin-

now was observed at more than 40 sampling sites from the Middle Danubian catchment (Fig
1). A total of 404 mudminnow specimens were sampled for population genetic research, from
33 sites, originating mainly from artificial habitats (i.e., ditches, canals, and ponds), across
eight regions (Fig 1, Table 1). In several locations, no more than 5 individuals were able to be
collected at one time, despite the intensive sampling effort.

Data quality and Genetic variation. Results of Fisher’s exact tests did not reveal evidence
for large allele drop-out for any locus, or for linkage disequilibrium between any pairs of loci.
All microsatellite loci showed significant deviation from the Hardy-Weinberg equilibrium state
if all 404 specimens were analysed as one entire population (404 samples), and we calculated
high Fis values (>0.08) at all loci among the 404 samples. These results suggest strong genetic
substructure caused by geographical isolation and/or non-random mating in subgroups. Char-
acteristics of each microsatellite locus used in our work are provided in Table 2. The total num-
ber of alleles per locus varied between 6 and 25 (mean: 17.6). Locus specific Fst values ranged
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between 0.148 and 0.482. Chi-Square Tests for Hardy-Weinberg Equilibrium for each loci at
each population showed significant values in 17 cases (see Table 2 and S1 Table).

A total of 136 alleles were observed for the eight loci used in the analysis. The whole raw
dataset used for further analyses is indicated in S2 Table in GENEPOP format. Average allelic
richness, such as observed heterozygosity, showed high-level differences among populations.
These ranged from 2.75 to 10 and from 0.44 to 0.85 respectively, within the studied popula-
tions. Shannon's Information Index showed a high level of variability as well, ranging between
0.8 and 1.97 (Table 1). Deviation from HWE was significant (p<0.05) in two studied popula-
tions (E8, G2).

As MICROCHECKER analyses proved the presence of false homozygotes (null alleles) in
some cases (i.e., for UkrTet1 at sites B3, D2, E3, F1, for UkrTet3 at site E3, for UkrTet4 at site
B2), therefore null allele correction was made prior to further analyses (see S3 Table).

13 of the detected 136 alleles were unique to a single location (Table 3). The frequency of
the unique alleles ranged between 0.031 and 0.071. Eight of the unique alleles were observed in
sites of the Tisza River drainage basin, and five from the Danubian part of the study area. No
unique alleles were found for small stocks (where N = 5), in populations A3, C1, E5 and F2.

Pairwise genetic distances ranged between 0.198 and 0.821 (mean: 0.621). Pairwise Fst values
ranged between -0.01 and 0.476 (mean: 0.195), and only five of the 528 pairwise comparisons
(A3-4, B1-2, C1-2, F1-2 and G4-5) did not show significant differences (Table 4).

Mean within-population pairwise correlation relatedness values, “r”, ranged between 0.063
and 0.651, and were significant in all cases (Fig 2). These values correlated negatively with the
observed heterozygosity and with Shannon's Information Index (Spearman’s rho: -0.7681,
p<0.01, and -0.956, p<0.001 respectively). Therefore, higher “r” values refer to higher separa-
tion and lower genetic diversity (these features may indicate inbreeding). In some cases (e.g.,
populations G2 = 0.651, C2 = 0.498, D2 = 0.467), high values were found, but pronounced
regional patterns were not. In almost all sampling regions (except regions A and B), one or
more populations formed by strongly related individuals were observed.

The PCoA plot based on pairwise population genetic distances (Fig 3) showed clear separa-
tion along the “x” axis of eastern (Tisza drainage basin) and western (Danube drainage basin)
sites. Moreover, the populations in the Tisza drainage basin showed higher similarity. In the

Table 3. Summary of private alleles (allele sizes and frequencies) by population. Codes of populations
correspond to those of Table 1 and Fig 1.

Pop Locus Allele size Freq.

A1 UkrTet4 185 0.036

A1 UkrTet4 189 0.071

A1 UkrTet4 193 0.036

A1 UkrTet4 197 0.036

B1 UkrTet4 173 0.033

B2 UkrTet8 226 0.033

D4 UkrTet6 224 0.050

E1 UkrTet1 211 0.025

E6 UkrTet5 314 0.042

E7 UkrTet9 317 0.033

F4 UkrTet6 244 0.067

G3 UkrTet3 243 0.033

G4 UkrTet7 204 0.033

doi:10.1371/journal.pone.0138640.t003
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case of these populations, the separation along the second axis is also important. Pronounced
separation of neighbouring populations (i.e., populations from the same region) within a
region can only be seen in the case of population E1. This population belongs to the Danube
drainage basin Middle Hungarian region, but shows stronger similarity to the Mura region or
to the C1, C2, and D4 populations of the Tisza drainage basin.

AMOVA analysis showed that among-population and among-regional differences repre-
sented 12.8% and 7.8% of the total variation respectively, while within-population differences
accounted for 78.9% of the total genetic variance. Results of the regional F-statistics, except Fis,
showed significant within- and among-regional differentiation and population level differences.

Bayesian hierarchical clustering separated Danubian and Tiszaian mudminnow stocks in
the first step (Fig 4). The only exception is the E1 population, which was assigned clearly to the
Tiszanian clade. The Tiszanian group was split into 4 clusters; the E1 population, Tápió region
(C1-2), and sites from NE Bihar region (D1-3) were separated from the others. Stocks form the
Upper Tisza region (A1-4), Borsodi-mezőség region (B1-3), and SW of Bihar plain (D4-5)
were separated only in the third clustering step, and the extent of separation is not as unambig-
uous as in the previous steps. The Danubian branch split to two larger groups; the Middle Hun-
garian region together with the Hanság-Szigetköz region (E+F) formed a group separated from
the Balaton and Mura (G+H) regions. The E+F cluster split further into four minor groups (E2
+E8; E3+E4+E5; E6+E7; F1-F4). Populations in the G+H cluster formed five minor groups.
Distinct populations were found in this cluster, except G3-G4-G5 stocks, which all originated
from the Kis-Balaton marshland area and formed one population.

Bayesian cross-validation showed that 98.3%, 89.6%, and 71.8% of the individuals were
grouped correctly on drainage basin, region and population levels respectively (Fig 5). Most of
the reclassifications were made within the same region, mainly between neighbouring sites
(e.g., C1-C2).

Result of the cross validation procedure showed negligible linkage between the Danubian
and Tisza drainage basins. Only three specimens (i.e., 0.7% of the total sample) were misclassi-
fied between the two drainage basins. Within a drainage basin, the percentage of misclassified
cases is higher; five specimens of the total 156 (i.e., 3.2%), and 13 specimens of the 248 (i.e.,
5.2%) were classified to other regions on the Tisza and Danube drainage basins respectively.

Fig 2. Correlogram representing the mean within-population pairwise similarities using the Lynch & Ritland (1999) estimator.Upper (U) and lower
(L) confidence limits bound the 95% CI of the null hypothesis of 'No Difference' across the populations using 999 random permutations, and for estimates of r
by bootstrapping 1,000 pairwise comparisons. Whiskers represent the highest and lowest values within a dataset for each distance class. Regions are
separated by vertical grey lines. Codes of sites correspond to those of Table 1.

doi:10.1371/journal.pone.0138640.g002
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The highest number of misclassified cases was found between the Middle-Hungarian and Han-
ság-Szigetköz regions (E and F regions) where 4.9% and 10% of the stocks were misclassified.

Population assignment results from GeneClass2 strongly support the structure revealed on
the three hierarchical levels identified by Bayesian STRUCTURE analyses. 97.8, 96.0 and 94.6%
of the individuals were classified correctly on the three hierarchical levels respectively (see: Fig
4). The third level of the hierarchical STRUCTURE analyses was therefore found to have classi-
fied the individuals much more reliably than the original population based classification.

The between-region (A-H) migration ranged between 0.28 and 2.31 individuals per genera-
tion. Mutation-scaled immigration rate is less than one individual per generation in most
cases, therefore negligible gene flow is assumed among the eight studied regions in the Carpa-
thian Basin, especially in the case of regions C and H.

Migration computations between the two clusters (corresponding to the Danube and Tisza
catchments, designated on the first level of hierarchical STRUCTURE analysis) showed that
the Danube system received 8.19 (Θ = 2.4941 and M = 3.286) and released 7.24 (Θ = 2.5105
and M = 2.887) migrating individuals per generation to the Tisza drainage basin alone.

Fig 3. PCoA plot of pairwise population genetic distances (using Cavalli-Sforza and Edwards estimator after FREENA-INA null allele correction).
Percentage variances represented by axes are shown in parentheses. Codes and colours of sites correspond to those of Table 1 and Fig 1.

doi:10.1371/journal.pone.0138640.g003
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On the second level of STRUCTURE analysis, the immigration rate (M) between the four
clusters (Figs 4 and 6) found in the Tisza catchment ranged between 0.75 and 1.52. The highest
level of mutation-scaled immigration rate was found between the “a” and “c” clusters. In the
case of the two Danubian clusters (see e and f clusters on Fig 4) the migration rates were less
than one in both directions, resulting in a 1.36 and 1.48 individual per generation migration
rate. These groups are therefore practically separated. Pairwise between-region and between-
clusters immigration rates are presented in Tables 5–9.

A Mantel test conducted on the entire dataset at the population level showed no significant
correlation between pairwise Fst and GGD semimatrices (Rxy = 0.061, p>0.05). The inverse
was found for the two drainage basins, where the genetic differences showed significant corre-
lations both for the Tisza (Rxy = 0.4196, p<0.01) and the Danubian drainage basins
(Rxy = 0.2489, p<0.01) as well. Therefore, population level IBD can be detected only within
the Danubian and Tisza drainage basins (see Fig 7)

Spatial autocorrelation computation carried out on the entire dataset at the individual level
showed that IBD was not appreciable beyond an approximate 340–360 km distance. There was
a significant positive correlation for the first two distance classes, which intercepted the “x”

Fig 4. Estimated population structure as inferred by three rounds of hierarchical structure analyses. Each individual is represented by a thin
horizontal line, which is partitioned into K-coloured segments representing individual’s estimated membership fractions in K clusters. Black lines separate
individuals from different sampling sites. The most probable K for a sample, given by the arrows, is based on the results of StructureHarvester using the
Evanno method. Codes of sampling sites correspond to those of Table 1. Red codes represented on the three hierarchical levels correspond to the codes
used in Fig 6.

doi:10.1371/journal.pone.0138640.g004
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axes at 124 km (Fig 8A and 8B) and was therefore significant within this range. Autocorrelation
calculation at the drainage basin level showed similar results in both cases. The IBD is still
detectable to approximately 150–160 km, but it is significant only within an 80.1 and 86.7 km
range for the Tisza and Danube drainage basins respectively (see Fig 9).

Fig 5. Plots of the Bayesian cross-validation test for microsatellite data. Correctly classified individuals are placed on the diagonal. The square colour
corresponds to the proportion of individuals of posterior group assignment based on posterior probabilities. Rows correspond to actual sites (a priori), while
columns correspond to inferred sites (posteriori). White thick lines separate the Tisza and Danube drainage basins, red rectangles show the regional
detachments of populations. Codes of sites correspond to Table 1.

doi:10.1371/journal.pone.0138640.g005
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Discussion
Tockner et al. [4] noted that fragmentation, water stress, land use change, and the introduction
of non-native species are the most important threats to freshwater biodiversity. All these fac-
tors currently threaten mudminnow stocks, and their impacts are reflected in present day dis-
tribution and population genetic patterns. In this study, population genetic structure and
dynamics of genetic mixing among populations in a strongly altered and fragmented landscape
were analysed, and revealed some basic principles of optimal species conservation strategies.

Fig 6. Migration within and among different clusters designated by hierarchical STRUCTURE analyses. Sites in the green areas belong to the same
evolutionarily significant units (ESUs) identified by the 1st level of hierarchical STRUCTURE analysis. Sites framed by red and blue lines belong to the same
conservation units (CUs) and management units (MUs) designated by the 2nd and 3rd level by STRUCTURE analyses respectively. Arrows directions show
between cluster migrations, where the migration rate is >1 individual per generation. Arrow colouring corresponds to hieararchical levels. Open circles show
sampling sites. Codes of clusters correspond to Fig 4.

doi:10.1371/journal.pone.0138640.g006
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Distribution patterns
The field surveys of the current work have provided new information about the present day
distribution of the European mudminnow at the centre of its range. In the “C” and “F” regions,
stable and large assemblages were found, contrary to earlier communication which noted that
the mudminnow was extremely rare and had been extirpated from most habitats in these
regions [32]. At the same time, due to the expansion of Amur sleeper (Perccottus glenii) [70],
European mudminnow has disappeared from many locations in the Hungarian Upper Tisza
region (i.e., region “A” of this study), where it had previously been abundant [44]. At present,
these shrinking populations seem to be the most threatened ones within the Carpathian Basin.

In almost all regions, the largest assemblages were found in artificial habitats. Of the 33 sam-
pling sites, only seven were in a near-pristine state (Table 1). Consequently, similar to other
threatened stagnophilous fish, it seems that some of the human-altered or man-made habitats
(e.g., irrigation and drainage canals) with rich macrophyte coverage and permanent water sup-
ply might be the last chance to provide refuge for the shrinking European mudminnow popula-
tions [27, 71].

Table 5. Migration computation among the eight hydrological regions preliminary defined, + receiving
population (for region codes see Table 1).

Θ A+ B+ C+ D+ E+ F+ G+ H+

A 1.6931 - 1.048 0.620 1.186 1.075 0.886 0.901 0.802

B 1.7901 1.292 - 0.921 1.224 1.143 1.048 1.170 0.692

C 0.7948 0.858 0.967 - 0.713 1.128 1.238 0.750 0.964

D 1.2794 0.907 1.209 1.130 - 0.961 0.907 1.273 0.770

E 1.1628 1.199 1.124 1.224 0.909 - 1.055 1.602 0.847

F 1.3975 1.235 1.222 0.696 1.311 1.448 - 1.519 0.798

G 1.5376 1.211 0.830 1.161 1.060 1.200 1.053 - 0.923

H 0.4728 0.886 0.594 0.622 0.737 1.078 0.839 1.098 -

doi:10.1371/journal.pone.0138640.t005

Table 6. Theta values (Θ) and immigration rates (M) of the six clusters defined in the second round of
hierarchical STRUCTURE analysis (For cluster codes see Fig 4, + receiving population).

Θ a+ b+ c+ d+ e+ f+

a 2.0281 - 0.912 1.520 1.051 0.963 1.380

b 1.2179 0.911 - 0.804 1.161 0.758 1.061

c 1.3359 1.060 0.963 - 1.016 0.935 1.281

d 3.4662 0.926 0.749 0.720 - 0.866 0.802

e 1.7108 0.751 0.769 0.635 0.846 - 0.796

f 1.6411 1.726 0.977 1.071 0.861 0.902 -

doi:10.1371/journal.pone.0138640.t006

Table 7. Within “a” cluster theta values (Θ) and immigration rates (M). Clusters defined in the third
round of hierarchical STRUCTURE analysis. + receiving population (For cluster codes see Fig 4).

Θ 1+ 2+ 3+

1 6.4478 - 1.014 1.030

2 9.8231 0.698 - 0.753

3 4.8238 1.519 1.091 -

doi:10.1371/journal.pone.0138640.t007
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Genetic and spatial structure
This study presents the first data on the population genetic structure of threatened and
endemic European mudminnow for the centre of its distribution range. In general, remarkable
genetic differentiation was found among the 33 populations originating from eight regions.
The spatial structure revealed seems to be quite fixed with negligible migration among the
studied regions (Table 5). The genetic structure corresponded clearly to past and recent geo-
graphical migratory routes (i.e., it reflected natural distribution patterns). The only identified
anthropogenic alteration within this pattern is a result of a documented stock transfer from
Middle Hungary to the Hanság-Szigetköz region (i.e., from region E to region F) in April 2005
[42]. Results of Bayesian cross validation tests (Fig 5), confirmed by migration tests (Fig 6),
suggest that 10% and 5% of the specimens occurring here are closely related to Middle Hungar-
ian (E) and Hanság-Szigetköz (F) populations respectively (Figs 5 and 6; Tables 5–9.). An alter-
native explanation for the mixed genetic composition of the Hanság-Szigetköz (F) region
population could be the dispersion along the Danube valley route, as has been proven for many
other species [72, 73]. In any case, SRUCTURE analysis showed (Fig 4) that the aforemen-
tioned stocking activity had only a moderate effect on the genetic pattern of mudminnow
assemblages inhabiting this region.

Some of the studied populations showed complete isolation and a high level of relatedness
(Figs 2 and 5). Populations which are characterised by special environmental requirements and
restricted expansion ability may hold unique pieces of genetic diversity, and their loss can
therefore cause a significant reduction in genetic diversity in general [74]. Therefore, to con-
serve the genetic diversity of this species, special attention must be paid to the preservation of
these separated stocks (e.g., B2, D1, and G2 on Fig 2).

Although European mudminnow has a restricted dispersal ability [28], and historical pro-
cesses therefore mainly underlie the pronounced spatial pattern in the genetic structure, our
analyses also captured some human-induced effects related to the anthropogenic modification
of the Carpathian Basin floodplains. Historical hydrological data [75, 76] suggest that prior to

Table 9. Within “f” cluster theta values (Θ) and immigration rates (M). Clusters defined in the third
round of hierarchical STRUCTURE analysis. + receiving population (For cluster codes see Fig 4).

Θ 12+ 13+ 14+ 15+ 16+

12 2.6243 - 0.772 1.153 1.113 0.757

13 1.7503 0.949 - 0.99 0.582 1.509

14 2.0176 1.293 0.992 - 0.782 0.799

15 0.6494 0.986 0.657 0.798 - 0.566

16 1.4528 0.921 1.196 0.831 1.000 -

doi:10.1371/journal.pone.0138640.t009

Table 8. Within “e” cluster theta values (Θ) and immigration rates (M). Clusters defined in the third
round of hierarchical STRUCTURE analysis. + receiving population (For cluster codes see Fig 4).

Θ 7+ 8+ 9+ 10+ 11+

7 1.1948 - 0.846 1.055 0.781 1.475

8 2.4763 0.961 - 1.123 1.021 1.013

9 2.7797 0.685 1.132 - 1.055 1.552

10 1.8118 1.023 1.524 1.363 - 1.419

11 3.0720 0.529 1.120 1.270 0.942 -

doi:10.1371/journal.pone.0138640.t008
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river regulation there were no notable barriers among some sub-drainage basins in the flood-
plain of the Tisza River (Fig 1). Periodic floods inundated almost the entire floodplain, some-
times for more than 3 months at a time (see: [22]), and migration could therefore take place
freely among A-B-D regions in the Tisza drainage basin. As a result of river regulation, which
began in 1846 and ended in the 1930s [77], the connections between regions became much
more restricted. The strong distinctiveness of populations inhabiting the Tápió region (i.e., the
“C” region here), outside the main floodplain, also supports this hypothesis (Fig 3).

According to data from the literature (cited in: [28, 39]), mudminnow may spawn at the age
of one year for the first time. The separation of some Tiszanian regions could therefore have
begun more than 100 generations ago. The separation of the Danubian and Tiszanian systems,
as well as the mudminnow stocks, is presumably much older. The within-region separations
are not complete in many cases, however, because the continuous flood-protection and regula-
tion activity (i.e., dredging, flow direction shifts within the drain-canal systems) could have
caused the connections between stocks to be re-established from time to time [78]. E1 is the
only population among the 33 studied which seems to be misclassified by both the STRUC-
TURE and the pairwise population genetic distance analyses (Figs 3 and 4). Although this site
currently belongs to the Danubian drainage system, the E1 population seems to be more related
to those of the Tisza catchment. This relationship can be explained by paleohydrological
changes caused by the emergence of GödöllőHilly Region in the Quaternary period [79], when

Fig 7. Results of Mantel tests conducted on the entire dataset (A), on the Tisza (B), and on the Danube drainage basin (C).

doi:10.1371/journal.pone.0138640.g007
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the river system of this area was partly disjointed and the flow direction of the upper sections
of the streams were diverted to the NW (i.e., to the Danube). At the same time, the two catch-
ment areas were separated only by marshy areas referred to as “intra-valley drainage basin
divides” [80], which these assemblages can traverse. This assumption is supported by the fact
that the closest populations (C1-C2) to the Tápió system showed the highest similarities and
bidirectional gene flow was found between the two areas. However, it should be noted that
both assemblages showed high levels of isolation and inbreeding, and the connection between
them is therefore presumably strictly limited. Similarly, contact between the G and H regions is
plausible, because the isolation of the Middle and South Danubian catchments started only at
the end of Pleistocene (by the formulation of the Lake Balaton basin) and this separation is still
not complete [81]. Our results correspond with the findings of Brauer et al. [11], who investi-
gated a South Australian endemic fish species with very similar environmental requirements to
those of European mudminnow, the pygmy perch (Nannoperca obscura Klunzinger, 1872),
and found similarly high levels of isolation, and designed CUs in very similar ranges. These
results therefore show that preferred habitat type and dispersion abilities may have major roles
in the formulation of these features rather than the geographic range (i.e., Australia vs. Europe)
or the taxonomic position (i.e., Perciformes vs. Esociformes) of the studied species.

Implications for conservation and management
Although pairwise Fst computation showed significant differentiation in most cases, none of
the small stocks differed considerably from their neighbouring populations (Table 5; Fig 5).

Fig 8. Correlograms showing autocorrelations calculated for the entire dataset. Coefficient “r” as a function of increasing cumulated distances (A).
Correlogram “B” showing “R” as a function of distance classes designated by a similar number of pairwise comparisons for each class. Intercept value for the
“x” axis is 124 km. Red dotted lines show the upper and lower confidence limits bounding the 95% CI of the null hypothesis of 'No Difference' across the
populations using 999 random permutations, and for estimates of correlation coefficients by bootstrapping 1,000 pairwise comparisons for each distance
class. Whiskers represent the highest and lowest values within a dataset.

doi:10.1371/journal.pone.0138640.g008
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Moreover, these small stocks did not carry any private alleles (Table 3). It is therefore likely
that these small stocks belonged to a larger metapopulation system, and could have been iso-
lated only recently. Therefore, special consideration for their preservation is necessary only if
there is no larger population nearby presenting the same genetic features.

Based on the current data, it is recommended that any reconstructed or newly established
habitats should be stocked by individuals originating from the same CU, namely from popula-
tions within an 80–90 km range. The 16 clusters separated in the third step of the hierarchical
STRUCTURE analysis can be accepted as MUs for conservation, instead of populations. In
many cases, the MUs agree with some strongly isolated populations (e.g., populations C1, E1,
G1, and G2). These separate entities need special attention to prevent substantial genetic diver-
sity loss. The ex situ preservation of these populations could also be considered, preferably by
artificially recruiting and translocating them to fish-free revitalized or newly established
nature-like habitats (see e.g., [43]).

Conclusions
The investigations reported here reveal unexpectedly high genetic diversity of this endemic fish
species, despite its declining and fragmented populations. The studied stocks show high levels
of genetic variability, and this pattern seems to have been only slightly influenced by anthropo-
genic impacts (i.e., resettlements) so far. Continued habitat loss, along with the invasion of

Fig 9. Correlograms showing the autocorrelation coefficients as a function of increasing distances (“r”) and distance classes (“R”) designated by
a similar number of pairwise comparisons for each class, for the Tisza (A, C) and Danube drainage basin (B, D) respectively. Red dotted lines show
the upper and lower confidence limits bounding the 95% CI of the null hypothesis of 'No Difference' across the populations using 999 random permutations,
and for estimates of r by bootstrapping 1,000 pairwise comparisons for each distance class. Whiskers represent the highest and lowest values within a
dataset. Intercept values for the “x” axes are 80.1 and 86.7kms for the Tisza and Danube drainage basins respectively.

doi:10.1371/journal.pone.0138640.g009
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non-native competitors, strongly threaten this habitat specialist, endemic fish. Climate change
increases the probability and severity of dry periods in the area, and represents a high risk for
European mudminnow with its shrunken and fragmented population structure [82]. Conse-
quently, there is a strong need for implementing comprehensive conservation management
programs. Nevertheless, the extremely small and/or isolated populations (e.g., in region “C”)
would require special attention, and thus should be prioritized for conservation.
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