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Abstract: Mucus is an integral part of the respiratory physiology. It protects the respiratory 
tract by acting as a physical barrier against inhaled particles and microbes. Excessive 
inflammation in conditions such as COVID-19 can result in over-production of mucus 
which obstructs the airway. Build-up of mucus can also contribute to recurrent airway 
infection, causing further obstruction. This article summarizes the current understanding 
and knowledge of respiratory mucus production and proposes the role of cytokine storm in 
inducing sudden mucus hypersecretion in COVID-19. Based on these cascades, the active 
constituents that inhibit or activate several potential targets are outlined for further research. 
These may be explored for the discovery and design of drugs to combat cytokine storm and 
its ensuing complications. 
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Introduction
Nasal blockage or respiratory congestion is among the most common symptoms 
experienced in primary care as well as tertiary care. It can be particularly severe and 
even lethal in COVID-19 due to the formation of mucus plugs. Transmission of 
COVID-19 appears to occur primarily through dispersal of droplets generated from 
the respiratory tract when an infected person talks, coughs, or sneezes. Large 
amounts of the SARS-CoV-2 virus have been reported in sputum and nasal speci-
mens, which account for the transmission through respiratory droplets. Numerous 
studies conclude that the recent coronavirus infection causes an allergic reaction in 
respiratory tract mucosa, which activates mucin secretion and modulates its che-
mical structure to enable the virus to enter the cells.1–3 Thereafter, SARS-CoV-2 
initiates neutrophil and mucus-mediated inflammatory pathways.4

SARS-CoV-2 is shed predominantly in upper and lower airway tract secretions.5–9 

Patients with severe COVID-19 infections are likely to develop acute respiratory distress 
syndrome (ARDS), consisting of hypoxemic respiratory failure associated with neutro-
philia, mucus deposition in bronchi, and bronchiectasis.10 Therefore, better understand-
ing is needed of the mechanisms underlying secretions, and how to control them. The 
increase in mucus production and secretion is likely due to mucus cell metaplasia since 
pulmonary inflammatory diseases are often associated with excessive mucus secretion. 
Computerized tomography (CT) images of COVID-19 depict the incidence of mucoid 
impaction in lungs. Studies of CT imaging in the pulmonary parenchymal region of 
COVID-19 patients have reported a 64% occurence of pathological fluid in the alveolar 
sacs which appears multifocal, patchy, or segmented and is distributed around sub-pleural 
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areas or along broncho-vascular bundles.11,12,13 Increase in 
sputum volume and mucus hypersecretion associated symp-
toms have been seen in up to 40% of patients. The mucus in 
these patients is also found to be more viscous than that in 
those with chronic obstructive pulmonary disease (COPD). 
Lastly, the formation of colloidal mucus plugs is more frequent 
in these patients.

The role of inflammatory stimuli in influencing mucus 
cell levels remains uncertain. Here we review recently pub-
lished work which defines events in the immune system and 
downstream epithelial cascade related to continuous meta-
plasia of mucus cells.

Physiology of Airway Mucus 
Secretion
In the pulmonary system, mucus is a component of the 
epithelial lining fluid (ELF) or airway surface liquid 

(ASL). The major part of the respiratory tract is covered 
by it. The ASL comprises a sol layer and an overlying gel 
layer which are known as the perciliary liquid layer (PCL) 
and the mucus layer, respectively (see Figure 1).

Mucus consists primarily of water (~95%). The major non- 
aqueous component is mucin, while proteoglycans, lipids, 
proteins, and DNA are also present in smaller quantities.15 

Mucin is secreted by goblet cells which are columnar epithe-
lial cells present in the respiratory, gastrointestinal and repro-
ductive tracts. Mucin-containing secretory vesicles are present 
at the upper surface of goblet cells. Short microvilli projections 
are present on the upper surface of goblet cells which give an 
increased surface area for secretion.16,17

Mucin, the main protein component of mucus, functions 
primarily as a barrier, and consists of MUC5AC and MUC5B 
as important secreted mucin genes. Their sizes range from 
200 kDa to 200 MDa. Chains of carbohydrates make up 

Figure 1 Schematic illustration of a goblet cell, associated signalling for mucous secretion and microscopic images of goblet cells: (i) The gel on brush model describes 
mucus existing in two discrete layers, a more viscous gel layer on top and a periciliary layer (PCL) below. The gel layer contains the secreted mucins MUC5AC and MUC5B 
whilst the PCL contains the membrane-tethered mucins MUC1, MUC2 & MUC4; (ii) Viral infection induced signalling involved in mucus secretion; (iii) Lung tissue sections 
from a COPD-smoker showing goblet cells of large airway epithelium. 
Notes: Figure 1 (iii) reproduced with permission from Shukla SD, Mahmood MQ, Weston S, et al. The main rhinovirus respiratory tract adhesion site (ICAM-1) is 
upregulated in smokers and patients with chronic airflow limitation (CAL). Respir Res. 2017;18(1):6.14 
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around 80% of the weight of mucins.18 Since mucin is quite 
large, it is packaged in secretory vesicles in a dehydrated 
state.8 The release of mucin is governed by fusion proteins 
such as SNARE (N-ethyl-maleimide-sensitive factor attach-
ment protein receptor) and MARCKS (Myristoylated 
Alanine-Rich C Kinase Substrate). The secretion occurs in 
the presence of high pH and low calcium concentration.19–22

Past studies have shown that cytokines IL4, IL5, IL9, 
and IL13 upregulate mucus gene expression and mucus cell 
hypersecretion.23,24 Apart from cytokines, various other sti-
muli such as smoking generate reactive oxygen species. 
These stimuli upregulate numerous downstream cascades, 
which trigger multiple signaling pathways via mitogen- 
activated protein kinase and other signaling cascades. 
These signaling cascades induce goblet cell differentiation 
in the airway, causing excessive synthesis and secretion of 
mucin.25,26 Such rampant hypersecretion leads to clinical 
conditions such as chronic obstructive pulmonary disease, 
asthma, bronchiectasis, and other respiratory disease condi-
tions such as those observed in COVID-19 patients.

Association Between Viral Infection 
and Mucus Production
The inflammatory response that occurs after viral infection is 
similar to that observed in asthma and other respiratory 
conditions in which the role of mucus is profound. Viruses 
such as influenza, negative-strand RNA viruses such as 
respiratory syncytial virus (RSV) and rhinoviruses (RV) 
and lung colonization by pathogenic opportunistic bacteria 
have shown enhanced exacerbation in bronchial epithelial 
cells.27,28 For example, RSV infection in the upper respira-
tory tract is distinguished by inflammation and obstruction in 
the airways tract due to the formation of mucus plugs con-
taining mucus, fibrin protein, cellular debris, and lympho-
cytes. Generally, these viruses activate the downstream 
signaling cascades of inflammatory markers through chemo-
kines, as shown in Figure 1C. These in turn trigger multiple 
signaling pathways that result in goblet cell differentiation 
and hyperplasia in the airway, leading to the synthesis of 
MUC proteins, particularly MUC5AC, MUC5B, MUC1, 
MUC2, and MUC4 followed by their secretion.29 Studies 
have shown that RSV and human metapneumovirus (hMPV) 
stimulate varying production of mucin in A549 cell line.30 

Despite similarities in the structure and pathogenicity of 
these two viruses, they cause different expressions of 
MUC2, MUC5AC, and MUC5B as well as membrane- 

bound mucins.31 Thus, certain viral infections may uniquely 
alter the composition of mucus in respiratory epithelium.

Mucus Hypersecretion in COVID-19
Formation of mucus plugs has been observed in COVID 19 
patients, causing airway obstruction and respiratory failure 
in a significant proportion of such patients. Severe mucoid 
tracheitis is detected in 33% of COVID-19 autopsies.32

Association of Immune Response 
with Mucus Secretion
Sungnank et al. have stated that the nasal epithelial serves 
as the point of infection of SARS-CoV-2, from where it 
moves to the lower respiratory tract.33 The respiratory 
mucosa functions as a defensive layer against pathogens. 
The layer has the ability to trap an invading pathogen 
through sticky secretions and then move it out via ciliary 
action.34 Arumugham et al. suggest that SARS-CoV-2 
overstimulates the mucosa in a pathophysiology similar 
to other viruses such as dengue virus. This leads to the 
activation of an inflammatory cascade and the release of 
various inflammatory cytokines and chemokines.35 This is 
in line with other studies that show SARS-CoV-2 activates 
the inflammatory response and induces increased secretion 
of respiratory mucosa.36

In an experiment by Cohn et al., the role of IL-4 and 
IL-5 in mucus production and cell recruitment mediated by 
TH2 cells is well described. Activation of CD4 T cells by 
IL-4 causes the differentiation of th0 cells to th2 cells 
which in turn activates IL-4 secretion, maintaining 
a positive feedback loop.37 Interleukin 4 induces the tran-
scription of MUC5AC by activation of the JAK3/STAT 6 
pathway. STAT 6 is involved in the activation of CLCA1 
(calcium activated chloride channel 1) which activates 
MAPK signaling ultimately resulting in mucin production. 
Th2 cells help in recruitment of lymphocytes and eosino-
phils into lungs causing the over-secretion of MUC5AC in 
the airway resulting in goblet cell hyperplasia and damage 
of the ciliary layer of epithelial cells.38 Very-Late- 
Activation-Antigen-4 (VLA-4) is present on eosinophils 
and T lymphocytes which has the ability to bind with 
Vascular Cell Adhesion Molecule 1 (VCAM-1) and allows 
selective entry of eosinophils into injured tissues.38

In various studies it has been found that defects in gene 
expression and function of Cystic Fibrosis Transmembrane 
Conductance Regulator (CFTR) is associated with airway 
mucus hypersecretion. CFTR acts as a cAMP-dependent 
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chloride channel.39 In an experiment performed on murine 
cell lines, tissue expression pattern of CLCA1 intersecting 
with that of CFTR confirms the fact that both genes 
participate in the pathogenesis of cystic fibrosis. The chan-
nel transports chloride ions, controlling the movement of 
water in tissues, which is necessary for the production of 
mucus.40 Mutation in the CFTR gene disrupts the move-
ment of water and chloride ions out of the cell causing the 
mucus to be thick and sticky. Trapped chloride ions in 
cells cannot attract the fluids necessary to hydrate the cell 
surface and in the absence of the fluids, mucus becomes 
dehydrated and takes on a viscous consistency.41 CFTR 
modulator therapy proposed by Jarosz-Griffiths and co- 
workers could confer additional benefit to patients and 
may also contribute to improved clinical outcomes.42

Role of Inflammation in Airway 
Mucus Hypersecretion
The symptoms in COVID-19 and elevated levels of inflam-
matory markers in patients indicate that a severe cytokine 
storm develops in this disease. Recent studies support that 
inflammation causes mucus hypersecretion. Studies have 
shown that most cases infected with SARS-CoV-2 have 
normal WBC counts or in some cases lymphocytopenia. 
Patients showing severe conditions have significant 
increases in neutrophil levels. Their blood urea and 
D-dimer levels are also significantly high, whereas there is 
a reduction in their lymphocyte count.43 The levels of 
several pro-inflammatory cytokines such as IL6, IL10, and 
TNF-α are elevated. Moreover, the blood report of patients 
admitted to intensive care units (ICUs) have shown 
increases in IL-2, IL-7, and IL-10.44–46 The inflammatory 
response can induce mucus hypersecretion which can 
obstruct the respiratory tract, limiting airflow and thereby 
aggravating the already declining lung function.47

Furthermore, the pro-inflammatory cascades alter the com-
position of mucus and compromise its clearance by cilia.48 

This leads to recurrent infection in airway tracts, causing more 
obstruction in the respiratory tract, thereby creating a vicious 
cycle. COVID-19 patients have higher levels of several pro- 
inflammatory markers, namely IL-1β, IL-6, IL-2, IL-13, and 
TNFα as shown in Figure 2 along with their crosstalk.49

The crosstalk of these cytokines and their downstream 
signaling upregulates several other inflammatory cytokines. 
IL-2, IL-4, and IL-6 upregulate the levels of IL-4, IL-5, IL-6, 
and IL-13 via STAT5, STAT6, and NFAT, respectively. IL-5 
also upregulates levels of IL-6, IL-1, and TNFα via STAT1. 

TNFα through NF-κB activation leads to upregulation of IL- 
1beta and IL-8. Apart from cytokines, histamine released 
from mast cell degranulation during inflammatory response 
results in EGF and adenosine synthesis via ERk1/2 upregula-
tion, as shown in Figure 2. The inflammation caused by these 
cytokines can result in mucus hypersecretion which corre-
sponds to the complication arising in COVID-19 patients. 
The subsequent section describes these mechanisms of 
inflammatory cytokines in mucus hypersecretion.

Overexpression of Mucin Through STAT 
Mediated Signaling
The JAK-STAT signaling pathway is a series of interac-
tions between proteins in the cytoplasm. It is involved in 
various processes leading to STAT dimerization and acti-
vation of transcription genes in the DNA. IL-4 via its 
receptor activates STAT6, leading to self-upregulation 
and activation of the MUC5AC gene complex consisting 
of MUC1/2/4.50 Meanwhile IL-8 via its receptor leads to 
SOCS1 protein (Suppressor of cytokine signaling) upregu-
lation leading to IL-4 mRNA synthesis via STAT1. IL-4 
mRNA also induces Ca(2+)-activated Cl(-) channel 
(CLCA1). Binding of CLCA1 to its receptor (CLCA1- 
R), leads to the inhibition of FOXA2 (Forehead Box A2) 
which has a down regulatory effect on MUC5AC gene, 
through MAPK via SAM Pointed Domain Containing ETS 
Transcription Factor (SPDEF) protein.51 The same signal-
ing pathway is used by interleukin 13 and IL-18 that are 
modulated by IL-6,52–56 as shown in Figure 3

IL-9 can induce pleiotropic function in various immune 
cells as well as normal cells.57 IL-9 signal transduction 
requires the receptors which have a common γ chain.58 IL- 
9R receptor activates JAK1 and JAK3, which through 
downstream signal transduction leads to the activation of 
STAT1, STAT3, and STAT5. Dimerization of these STATs 
enhances the mucus hypersecretion.59 IL-2 via its receptor 
IL-2R causes the activation of Janus kinases family pro-
teins, followed by recruitment to phosphorylated STAT5, 
which dimerize and attach to the nucleus and initiate IL-5 
mRNA transcription. Therefore IL-2 causes the upregula-
tion of IL-5 via the JAK/STAT pathway.60,61

Overexpression of Mucin Through MAPK 
Mediated Signaling
The MAPK mediated signaling (known as Ras-Raf-MEK- 
ERK pathway) consists of a chain protein molecule that trans-
duces signal from a receptor induced by pro-inflammatory 
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cytokines from the cell surface to the DNA present in the 
nucleus. Elevated levels of IL-6 found in COVID-19 would 
contribute to pathogenesis by promoting mucus hypersecre-
tion. Studies have demonstrated that IL-6 is an important 
cytokine for the development of mucus metaplasia in the air-
ways in response to inhaled allergens.62 As shown in Figure 4, 
IL-6 binds to its receptor IL-6R and activates Growth factor 
receptor-bound protein 2 and Son of Sevenless complex 
(GRB2/SOS) which further leads to the activation of Ras and 
Raf signaling cascades. These cascades activate JNK via the 
p38/MAPK pathway. Activated JNK upregulates MUC5AC 
gene in the airway epithelium which enhances the mucus 
hypersecretion followed by exocytosis of mucin via 
MARCKS & SNARE.63,64

The expression of IL-5 is upregulated by IL-2, an 
interleukin which is elevated in severely affected 
COVID-19 patients. Mucus production due to IL-5 was 
initially observed in a pulmonary transgenic mouse model. 
The mechanism consists of IL-5 binding to IL-5R and 

activating GRB2/SOS which leads to activation of mucus 
genes (MUC5AC, MUC5B, and MUC1/2/4) in the airway 
epithelium, which enhances mucin synthesis and hyperse-
cretion via MARCKS and SNARE.65,66

IL-17, a proinflammatory cytokine secreted by T cells, 
is elevated by IL-6. IL-17 has been found to be upregu-
lated in the mice model of asthma which be inhibited by 
anti-IL-17 antibody which cause reduction in granulocyte 
influx.67,68 Mucin expression is induced by IL-17 in cell 
cultures of airway epithelial cells via upregulation of the 
MUC5AC gene through IL-5 and IL-6 mediated signaling.

IL-1β acts as an early response pleiotropic cytokine that 
is produced by different cells in the pulmonary inflammatory 
cascade, which is elevated in severely affected COVID-19 
patients. Upon binding to its receptor IL1R it causes the 
activation of MyD88 which leads to the activation of MAPK 
via MAP3K and MAP2K.69,70 IL-1β has been recently 
shown to increase the expression of MUC5AC gene and 
mucin secretion in bronchial epithelial cell line.71

Figure 2 Crosstalk of interleukins, IL-4, IL-2, IL-6, IL-5, TNF-α, histamine and the downstream signaling pathways leading to the production of interleukins involved in mucus 
hypersecretion. Note: The cytokines written in red are elevated in COVID-19 patients.
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Overexpression of Mucin Through NF-κB 
Mediated Signaling
NF-κB (Nuclear factor kappa-light-chain-enhancer of acti-
vated B cells) comprises a group of protein complexes that 
controls the transcription of DNA, cytokine production 
namely Il-6, TNFα, IL-8, and IL-1 Beta and cell survival. 
TNFα is one of the most extensively studied pleiotropic 
cytokines of the TNF family which is also induced by IL- 
5.72 TNFα has an important role in the innate immune 
response against invading pathogens before triggering the 
adaptive immune system.73 It acts on the ubiquitously 
expressed TNFR1.74 This receptor ligand interaction causes 
downstream signaling, leading to phosphorylation of IκB 
kinase (IKK) composed of subunits IKKα, IKKβ, and thus 
nuclear factor kappa beta (NF-kB) activation. NF-kB forms 
a heterodimer composed of p50 and p65 proteins73,75 This 
heterodimer interacts with the DNA to increase transcription 
of pro-inflammatory cytokine genes, such as IL-1B, IL-6, IL- 
8, and TNFα itself, as shown in Figure 5. All of these cause 
pulmonary inflammation and are known to cause mucus 
hypersecretion. It also induces MUC5AC overexpression 
through p38-mitogen activated protein kinases/ERK 
(MAPK/ERK) and Sp1 in human airway epithelial cells.75

TNF-α increases the expression of EGFR in the airways. 
EGF binds to its receptor (EGFR) and increases the expres-
sion of the MUC5AC gene via ERK signaling. EGFR also 
cause activation of Ras, Raf, and MUC2 via Erk1/2 which 
enhances the mucus hypersecretion.76 The role of ATP in 
MUC5AC release was examined by stimulating cells with 
polyinosine-polycytidylic acid.77 They found that the con-
centration of extracellular ATP increased in the NCI-H292 
cells due to dsRNA stimulation and viral infection. Binding 
of adenosine triphosphate (ATP) to P2Y2 receptors causes 
activation of IP3 and DAG via PIP2 and releases calcium 
from endoplasmic reticulum which enhances the expression 
of MUC5AC gene in the airway epithelium. Adenosine via 
its receptor adenosine A1 receptor (Ad1R) through PLC beta 
also causes activation of the same signaling cascade leading 
to mucin production.

Leukotriene-Mediated Mucus 
Over-Secretion
Leukotrienes are from a class of inflammatory mediators 
that are produced in leukocytes by the oxidation of arachi-
donic acid (AA) and other essential fatty acids. Studies 
using exogenous viruses such as rhinovirus (RV) have 

Figure 3 STAT mediated signaling induced by cytokines leading to mucus hypersecretion.
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found CD4-activated efflux of cytokines like IL-5, IL-4, 
and IL-2, as shown in Figure 6, which leads to B cell 
proliferation and IgE mediated leukotriene synthesis.78

Activation of FcεRI via IgE activates the synthesis and 
release of arachidonic acid (AA).79 AA metabolises into 
hydroperoxyeicosatetraenoic acid (HPETE) and forms 

leukotriene (LT) A4 by enzyme 5-lipoxygenase. LTC4 
synthase converts LTA4 into LTC4, which further converts 
into LTF4 and LTD4 with the help of carboxypeptidase 
A and gamma glutamyl transpeptidase. Both LTF4 and 
LTD4 are converted by gamma glutamyl transpeptidase and 
dipeptidase separately into LTE4.80 LTE4 provokes mucus 

Figure 4 MAPK mediated signaling pathway induced by interleukins leading to mucus hypersecretion.
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hypersecretion via binding with its receptor, Cysteinyl 
Leukotriene Receptor 1 (CysLT1).81 IL-2 is confirmed to 
be elevated in severe SARS-CoV-2 infection as well. It is 
also likely that IL-4 and IL-5 would be elevated since they 
are downstream in the signaling cascade of TNFα. Thus, viral 
induced leukotriene synthesis and a corresponding increase 
in mucus secretion is likely to be present in COVID-19.

Protective Role of Cytokines
Considering the severity of inflammation and its impor-
tance in COVID-19 patients, it is crucial to identify factors 
that contribute in the inflammatory response. These 
include anti-inflammatory cytokines and antibodies, some 
of which are currently used to treat other inflammatory 
conditions in the respiratory tract.

Anti-Inflammatory Role of IL-37
Multiple studies have reported significant anti-inflammatory 
properties of IL-37 and its mode of action in recent years.86,87 

These studies demonstrated that IL-37 is capable of inhibiting 

pro-inflammatory effects that are mediated through activation 
of receptors belonging to the interleukin-1 receptor/toll-like 
receptor (TIR) superfamily such as TIRs 2 and 4 and the IL-1 
receptor.86

IL-37 has shown to modulate inflammation by down-
regulating response of Th1, Th2, and Th17 cells.88 Studies 
have demonstrated that locally administering IL-37 can 
reduce eosinophil levels in bronchoalveolar (BAL) fluid 
and respiratory tract tissues. Upon binding to IL-18R, IL- 
37 suppresses the expression of IL1α, IL6, IL1β, TNFα, 
GCSF, and GMCSF via JAK/STAT pathway.89,90 IL-37 
inhibits NF-κB activation of S100A9 via STAT3 and p62.

Anti-Inflammatory Role of IL-27
IL-27 is a heterodimeric cytokine. IL-27 is primarily 
secreted by activated macrophages and dendritic 
cells.91–93 Binding of IL-27 to its receptor Il-27R and 
gp130 leads to activation of STAT1 and inhibits GATA-3 
which further downregulates IL-4 and reduces mucin pro-
duction via MUC5AC.

Figure 5 NF-Kß mediated signaling pathway leading to mucus hypersecretion.
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Anti-Inflammatory Role of IL-35
Interleukin-35 acts as an anti-inflammatory cytokine which 
is secreted by T cells and B cells.94 Studied have found 
that IL-35 induces proliferation of regulatory T cells, inhi-
biting CD4+ effector cells, and suppressing the develop-
ment of Th17 cells.95 Upon binding to IL-12Rβ2/gp130, 
IL-35 activates the JAK/STAT pathway to inhibits 
GATA3, thereby regulating the expression of MUC5AC.96

Anti-Inflammatory Role of IL-38
IL-38 belongs to the interleukin-1 family.97 IL 38 plays 
a significant role in inflammation and immune responses, 
acting against pathogenic microorganisms. IL-38 has 
a binding affinity to IL-1R and IL-36R and inhibits the 
MAPK mediated downstream signaling, leading to the 
decreased activation of cytokines through AP1 thereby 
modulating inflammation, as shown in Figure 7.98–102

As shown in various in vitro studies and in animal 
models for chronic inflammatory diseases, inhibition of 
specific inflammatory pathways results in diminished pro-
duction of pro-inflammatory cytokines such as IL-1α, IL- 
1β, IL-6, IL-17. In addition to neutralization of single pro- 
inflammatory cytokines, the use of anti-IL6 and anti-IL1 
drugs may lead to better control of cytokine storms in 
COVID-19 patients.

Discussion
Inflammation in the mucosa is the main pathophysiologi-
cal mechanism leading to congestion in several respiratory 
tract diseases. It is particularly heightened in COVID-19 
due to elevated pro-inflammatory cytokines. The build-up 
of mucus can also contribute to other complications found 
in COVID-19 such as venous engorgement, elevation in 
nasal secretions, and pulmonary edema. Thus, regulation 

Figure 6 Activation of Viral Induced Leukotriene Initiated Mucus Secretion.
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of these inflammatory cascades might be crucial in the 
treatment of severely ill COVID-19 patients.

Anti-Interleukin Drugs
The use of drugs that inhibit key inflammatory signaling 
molecules (viz. IL-1β, IL-6, TNFα) may be used. Th2 cyto-
kines, such as IL-5, have been the main therapeutic targets 
for eosinophilic inflammation-associated pulmonary disease. 
For the treatment of asthma, the Food and Drug 
Administration (FDA) approved the use of mepolizumab, 
an anti IL-5 drug candidate, in 2015.82 Since then, reslizumab 
and benralizumab are two more anti-IL-5 drugs that have 
also been given FDA approval for use in asthma.83–85 

Sarilumab, siltuximab and tocilizumab are inhibitors of IL- 

6 that are approved by the FDA for use in diseases such as 
Castleman disease, rheumatologic disorders and cytokine 
release syndrome.103 Anakinra is an IL-1 inhibitor that the 
FDA approved for use in rheumatoid arthritis and cryopyrin- 
associated periodic syndromes.104 Several clinical trials are 
underway for the use of these inhibitors in COVID-19. 
A pilot multicentre study found encouraging results with 
tocilizumab given to patients with severe COVID-19.105 

Current drugs and their trials are shown in Table 1.

Anti-Inflammatory Cytokines
The use of anti-inflammatory cytokines such as IL-27, IL- 
35, IL-37 and IL-38 can also be explored as a novel 

Figure 7 Signaling Pathways of Anti-Inflammatory Cytokines.
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treatment modality. At present, there is no data available 
for the safety and efficacy of such cytokine therapy.105,106

Anti-Inflammatory Active Constituents
Lastly, regular intake of anti-inflammatory food pro-
ducts may be helpful in mitigating the cytokine storm. 
Many everyday food products have anti-inflammatory 
active constituents whose properties have been studied 
extensively. Ginger, turmeric, and green tea have active 
constituents that inhibit IL-1β, IL-6, TNFα, and 
NF-κB.107–110

In Figures 2–7, several anti-inflammatory active con-
stituents are mentioned in green boxes at the site of their 
reported action. These active constituents along with 
the natural sources are listed in Supplementary Table S1 
that contain active constituents which are known to inhi-
bit various inflammatory cascades that arise due to the 
cytokine storm. The effect of incorporating such anti- 
inflammatory food substances in the diet of COVID-19 
patients can be studied without the risk of any undesired 
effects. Developing such a modality seems particularly 
crucial in the absence of specific therapies for targeting 
cytokine storms in COVID-19.

Conclusion
Since mucus is a fundamental mechanism for defense 
against allergens and pathogens, its production increases 
in the respiratory tract in nearly every instance of airway 
inflammation. The cytokine storm in COVID-19 is 

particularly potent for the build-up of mucus due to the 
onset of several inflammatory cascades associated with 
mucus production. It is therefore important to understand 
these cascades for identification of new therapeutic targets 
and drug discovery. In the meantime, dietary supplementa-
tion of COVID-19 patients with foods that are known to 
inhibit key inflammatory molecules may provide some 
degree of relief in the mucus production and other symp-
toms of airway inflammation.
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