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Abstract

African trypanosomes are digenetic parasites that undergo part of their developmental cycle in mammals and part in tsetse
flies. We established a novel technique to monitor the population dynamics of Trypanosoma brucei throughout its life cycle
while minimising the confounding factors of strain differences or variation in fitness. Clones derived from a single
trypanosome were tagged with short synthetic DNA sequences in a non-transcribed region of the genome. Infections were
initiated with mixtures of tagged parasites and a combination of polymerase chain reaction and deep sequencing were
used to monitor the composition of populations throughout the life cycle. This revealed that a minimum of several hundred
parasites survived transmission from a tsetse fly to a mouse, or vice versa, and contributed to the infection in the new host.
In contrast, the parasites experienced a pronounced bottleneck during differentiation and migration from the midgut to the
salivary glands of tsetse. In two cases a single tag accounted for $99% of the population in the glands, although minor tags
could be also detected. Minor tags were transmitted to mice together with the dominant tag(s), persisted during a chronic
infection, and survived transmission to a new insect host. An important outcome of the bottleneck within the tsetse is that
rare variants can be amplified in individual flies and disseminated by them. This is compatible with the epidemic population
structure of T. brucei, in which clonal expansion of a few genotypes in a region occurs against a background of frequent
recombination between strains.
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Introduction

A bottleneck is an event in which the population size of a species

is temporarily severely reduced. Bottlenecks can have strong

evolutionary effects because limited population sizes can lead to

dramatic shifts that favour certain genotypes (founder effects)

[1,2,3] and to the stochastic loss of others [4], with rare genotypes

being especially prone to being lost. Many digenetic parasites are

presumed to experience bottlenecks because their population sizes

are reduced during transmission between their two hosts, but there

is little information on the size of such bottlenecks or the impact

that this may have on genetic diversity. In addition, parasites may

also encounter bottlenecks within a host as they differentiate and

migrate from one tissue to another or infect different cell types.

The protozoan parasite Trypanosoma brucei brucei causes Nagana

in cattle, while its close relatives T. b. rhodesiense and T. b. gambiense

cause human sleeping sickness. All three sub-species undergo part

of their developmental cycle in their insect vector, the tsetse fly

(Glossina spp.), and part in their mammalian host. Within their life

cycles, there are several phases where parasite numbers are

severely reduced (shown schematically in Figure 1). When a fly

feeds on an infected mammal, the parasites that are taken up reach

the midgut together with the blood meal. Depending on the

trypanosome density in the mammalian host, the fly may ingest

anywhere from a few hundred to several hundred thousand

organisms. Many species of tsetse are completely refractory to

infection by a particular species of trypanosome (reviewed in [5]).

Even when a fly species is susceptible, the number of parasites in

the midgut can decrease by three orders of magnitude after 3–5

days [6] (Figure 1; A). Attrition of the parasite population also

occurs when an infection is initiated with procyclic forms fed to

flies through a silicon membrane [7] indicating that the drop in

numbers is not solely due to parasites failing to differentiate. In

many flies the infection is eradicated at this point; in flies that

sustain an infection, the surviving parasites multiply as procyclic

forms and colonise the ectoperitrophic space, reaching densities of

up to 56105 parasites per midgut [6].

To complete the life cycle, trypanosomes must migrate to the

salivary glands via the foregut and the proboscis [6,8]. In a large

proportion of tsetse flies with infected midguts, trypanosomes fail

to infect the salivary glands [9,10] (Figure 1; B). The factors that

promote or hinder colonisation of the salivary glands are not

known and it is under debate whether migration is continuous [8]

or restricted to a defined period [6]. It has been proposed that only

a few trypanosomes undertake this journey and that asymmetri-

cally dividing epimastigotes are the only forms capable of

colonising the salivary glands [6]. Two lines of evidence support

the notion of a limited founder population in the glands: first,
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fewer than ten epimastigote forms could be detected in the salivary

gland ducts of individual flies [6] and second, in mixed infections

with two strains of trypanosomes, each tagged with a different

fluorescent protein, colonisation of a gland by only one strain was

observed on several occasions [11,12].

Epimastigotes in the salivary glands attach to the epithelium and

proliferate, giving rise to the mammalian-infective metacyclic

forms [13] that are transmitted to a susceptible mammal during a

blood meal. It has been estimated that flies can inject up to several

thousand trypanosomes when they feed on a new host [14,15], but

it is not known how many of these differentiate into bloodstream

forms and establish an infection (Figure 1; C). Within the

mammalian host, a chronic infection is characterised by repeated

waves of parasitaemia (Figure 1; D). These are due to the interplay

between three phenomena: the host immune response to the

parasite’s variant surface glycoprotein (VSG) coat, resulting in

elimination of the population that expresses this particular variant,

outgrowth of minor populations that have switched to a different

VSG, and differentiation of proliferating slender bloodstream

forms to non-dividing stumpy forms at high parasite densities.

Stumpy forms are preadapted for further differentiation in the fly

and have a lifespan of only a few days in the mammalian

bloodstream [16].

Given the right conditions, trypanosomes can infect their

mammalian and insect hosts very efficiently: a single parasite is

sufficient to infect a tsetse fly [17] and one bite of an infected fly is

sufficient to infect a mammal [18] with a minimal infective dose of

one metacyclic trypanosome [19]. This high infectivity implies that

trypanosomes can cope with very narrow bottlenecks. If

transmission bottlenecks are so small and so frequent, however,

trypanosomes might risk a loss of fitness and the accumulation of

deleterious mutations [20]. In addition, any acquired mutations

(such as drug resistance) that are beneficial to the parasite in one

host might be lost during transmission through the second host.

In the case of endoparasites, the quantification of bottlenecks

can be difficult because populations are not easily observed over

time. Furthermore, it is not straightforward to distinguish between

random and selective population reduction. To resolve these

problems we used a novel methodology to monitor the population

dynamics of T. b. brucei in tsetse. This was subsequently extended

to the rest of the life cycle, including transmission from the fly to

the mammalian host and vice versa. Different strains of

trypanosomes can vary greatly in their ability to be transmitted

by tsetse [21,22]. Genetic differences were minimised by tagging

the progeny of a single trypanosome with short unique DNA

sequences that were integrated into a non-transcribed region of the

genome. These tags were subsequently used to identify the

different populations by amplifying them by polymerase chain

reaction and subjecting them to deep sequencing. This approach

has the advantage that it yields quantitative data about the

different populations that co-exist, as well as allowing an estimate

of the population size after a bottleneck.

Results

Repeated syringe passage of bloodstream forms in rodents or

prolonged culture of procyclic forms can reduce infectivity for flies.

We therefore used the following protocol (Figure 2A) to obtain

trypanosomes that were genetically homogeneous and capable of

completing the life cycle: procyclic forms of T. b. brucei were cloned

and a single clone was transmitted through a fly and a mouse.

Bloodstream forms isolated from the mouse were triggered to

differentiate to procyclic forms in culture. To generate parasites

that were distinguishable from each other, aliquots of the culture

were transfected with plasmids containing a unique 40bp tag

(Figure 2B and Table S1). The tag in each plasmid lies upstream of

the promoter and should not be transcribed, and therefore not

influence the fitness of the parasite.

Trypanosome clones (one for each of eight tags) were isolated

and tested for growth in culture. All grew at similar rates (Figure

S1). Cultures of the eight clones were mixed and used to infect

tsetse. Three flies (A, B, and C) that were positive for metacyclic

forms were selected and allowed to infect mice. Parasites were first

detected in the corresponding mice 6, 7 and 4 days, respectively,

after the infective bite. Subsequently, the salivary glands and

midguts of the flies were isolated by dissection and DNA was

extracted. Tail blood samples were collected from each mouse to

monitor the parasitaemia and DNA was prepared from samples in

weeks 1, 2, 3 and 4 and at the termination of the experiment after

7–10 weeks. Two batches of ten flies were fed on mouse C 18 and

30 days post infection. Midguts were dissected after 10 and 12 days

and one positive midgut from each batch was taken for tag analysis

(fly D and fly E in Figure 3). Tags were amplified by PCR,

sequenced by 454 massively parallel pyrosequencing and analysed

for their frequency and distribution. In total, we identified 30,592

sequences, an average of 1330 per sample (Figure S2). Control

experiments confirmed that the barcoded primers did not affect

the frequency with which individual sequences were detected

(Figure S2).

A common pattern in all three experiments (Figure 3) was the

large number of different tags detected in the midgut, many of

them at high frequency (.5%). Each midgut contained at least 6

different tags and, taken together, all 8 tags could be detected in

the three flies. This demonstrates that the procyclic culture forms

used to infect the flies maintained their diversity in the gut lumen.

The frequency of individual tags in the salivary glands changed

compared to the midgut (Figure 3). This was most striking in fly A,

in which tag 1 was minor (0.2%) and tag 6 dominant (52%) in the

midgut, whereas in the salivary glands tag 1 was dominant (99.9%)

and tag 6 undetectable. In fly B, four tags were dominant in the

midgut, but only one of these (tag 2) was dominant in the salivary

glands. In fly C, the three tags that were dominant in the midgut

(tags 2, 4 and 6) were also dominant in the salivary glands, with tag

Author Summary

African trypanosomes cause human sleeping sickness and
Nagana in domestic animals. These parasites undergo part
of their life cycle in mammalian hosts and part in their
insect host, the tsetse fly, and are transmitted when the fly
takes a blood meal. Within the fly, successful transmission
involves two steps: colonisation of the midgut, and
migration to the salivary glands. Although there are
estimates of the number of trypanosomes that a fly can
pick up from an infected host or transmit to a new host, it
is not known how many parasites actually survive and
contribute to an infection. We established a method to
track parasites during transmission between individual
mammals and flies, as well as in different host tissues. The
same method can be applied to other parasites in a wide
range of hosts and conditions. We found that a minimum
of several hundred trypanosomes survived the transfer
between hosts and contributed to a new infection. In
contrast, parasites within a fly experienced a bottleneck
during migration. An important outcome of this event is
that even minor populations can be amplified in the
glands of individual flies and disseminated, which could
result in the rapid spread of new traits.

Bottleneck in the Life Cycle of T. brucei
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6 constituting 74% of the population. In addition, tag 1, which was

present at ,1% in the midgut, accounted for 6.9% of the parasites

in the salivary glands. This analysis demonstrates that tags that are

dominant in the midgut are not necessarily so in the salivary

glands, and that their relative frequencies can be altered. This is

reflected by the diverse correlation coefficients: r2 = 0.08, 0.86 and

0.25 for flies A, B, and C respectively, and implies that when

trypanosomes are equally fit, any of the parasites from the midgut

is capable of migrating to the salivary glands and founding the

dominant population.

At the beginning of the infection in mice, the distribution and

frequency of tags was very similar to the parasite populations in

the salivary glands of the corresponding tsetse fly. The dominant

tags in the salivary glands retained their dominance in mouse A

and mouse B from the first sample onwards. In mouse C, tags 2

(32%), 4 (43%), and 6 (25%) were present in the first week of

infection. Tag 4 was the only dominant tag from the second week

onwards and finally the only one detectable after ten weeks. Tag 1,

with a frequency of 6.9% in the salivary glands of fly C, became

very minor in the following mouse infection and was detected only

once after four weeks. The presence of one dominant tag and a

few minor tags during mouse infections led to a very uneven

distribution of individual tags, which showed up to a thousand-fold

variation in frequency within a single sample. This uneven

distribution is also reflected in a low Simpson’s diversity index [23]

during the course of infection in the mice (Table 1). Based on the

parasite density and the frequency with which each tag occurred at

the different time points sampled, the parasitaemia of individual

populations could be extrapolated from the data (Figure S3). This

revealed that the dominant and minor populations showed similar

fluctuations in parasitaemia, although their titres differed by

several orders of magnitude.

Analysis of the tags present in the midguts of flies D and E,

which became infected after feeding on mouse C, revealed two

interesting outcomes. First, the tag that was dominant in the

mouse remained so in the midgut of both flies (Figure 3). Second,

minor tags in the bloodstream form population were also present.

For example tags with frequencies of 0.5–3% in the bloodstream

form population (tags 2, 5, and 6) were detectable in the midgut.

Interestingly, tag 3 was detectable in fly E even though it was

Figure 1. Schematic depiction of population bottlenecks during the life cycle of Trypanosoma brucei. The relative population size is
shown on the y-axis. When trypanosomes are taken up by a tsetse fly, the population collapses during the adaptation to the midgut (A) and recovers
thereafter. Only a few trypanosomes at a time are presumed to migrate to the salivary glands (B). Migration might take place during a defined period
[6] or continuously [8]. Long epimastigote forms can reach the salivary glands where they deposit the short epimastigote forms that colonise the
epithelia and give rise to metacyclic forms. During a blood meal, metacyclic forms are injected into a mammalian host. The injection and the
relocation of trypanosomes from the site of injection into the bloodstream may reduce its number (C). In the mammalian host, the trypanosome
population is periodically reduced in size owing to the adaptive immune response and to the differentiation of long slender bloodstream forms into
non-dividing short stumpy forms (D).
doi:10.1371/journal.ppat.1001023.g001

Bottleneck in the Life Cycle of T. brucei
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under the detection limit in all the samples from mouse C.

Together, the two flies took up five different tags. This mouse had

a parasitaemia of 4.96106 and 7.76106 per ml on days 18 and 30,

respectively. Assuming the flies imbibed approximately 20ml of

blood, about 1–1.56105 trypanosomes might reach the midgut of

each fly. If approximately 1% survived [6] even very minor tags

would be represented by 2–30 individual trypanosomes that could

contribute to establishing the midgut infection.

Discussion

By using tagged trypanosomes originating from a single clone, we

have been able to monitor the dynamics of a parasite population

throughout the life cycle without the confounding factor of strain

differences. This analysis revealed that a major bottleneck in the life

cycle occurs during migration of parasites from the midgut to the

salivary glands, leading to the establishment of one or a few

dominant genotypes in each fly. Minor genotypes constituting ,1%

of the population could also be detected in the glands, however.

These were transmitted to mice together with the dominant

genotype(s), and were found to persist during a chronic infection

and survive transmission to a new insect vector.

The frequency and diversity of tags enabled us to extrapolate

the minimum number of parasites transferred between hosts and

provide an estimate of the size of the bottleneck (Figure 4). We

estimate that at least 500–1000 trypanosomes must have survived

the transfer from mouse C to flies D and E and colonised their

midguts. The population structure was similar to that in the mouse

blood at the time of the blood meal, indicating that despite the

reduction in parasite numbers, transmission from the mammal to

the insect does not represent a severe bottleneck.

Likewise, the minimum number of trypanosomes that survived

the transfer from infected flies and initiated the infection in the 3

mice was estimated by drawing simulation to range from 500–

2500 (Figures 4 and S4). This is similar to the number of

metacyclic forms extruded by infected flies [14,15], implying that

most of the parasites that are inoculated can contribute to an

infection. With the exception of a single major tag that was present

in the salivary glands of fly C, parasites isolated from mice during

the first week of infection reflected the diversity and distribution of

parasites in salivary glands of the infecting fly. A large number of

tags were detected during the chronic infections, but their

frequency was highly variable. Some tags were detected only

once in a total of 6800 sequences obtained from five blood samples

(e.g. tag 1 or tag 8 in mouse B). Considering that the parasitaemia

never fell below 105 ml21, we consider it likely that most tags

transmitted by the tsetse were present continuously during mouse

infection although they were under the detection limit in

individual samples. Antigenic variation must have occurred several

times during the course of these infections, since the mice were

immunocompetent. Ordered (hierarchical) VSG expression is a

widely accepted model for antigenic variation [24,25,26]. Since

the tagged trypanosomes derive from a clone, it is possible that

they obeyed the same hierarchy, which would result in

synchronised VSG expression by trypanosomes with different

tags. This is not mandatory, however, as simultaneous expression

of several variants is both predicted by the model of Lythgoe et al.

[26] and can occur in vivo [27].

In contrast to transmission between hosts, migration from the

midgut to the salivary glands of tsetse caused profound changes in

relative frequencies of different tags, with up to five tags per

experiment changing from dominant to minor, or vice versa. Two

flies had a single dominant tag accounting for more than 99% of the

population in the glands, while the remaining fly had 4 dominant

tags (one of which accounted for 74% of the population). When

minor populations from the glands and the corresponding mice were

Figure 2. Cloning procedure and generation of tagged trypanosomes. A. Cloned procyclic trypanosomes were passaged through a tsetse fly
and a mouse and bloodstream forms were triggered to differentiate to procyclic forms in vitro. The plasmids piTag 1–8 were then transfected
separately into T. brucei. Cloned stable transformants containing each of the eight tags were isolated. B. Construction of the plasmid piTag. Eight
different 40mers were integrated into the plasmid upstream of the procyclin promoter. Expression of the neomycin resistance gene (NeoR) in
trypanosomes is controlled by the EP1 procyclin promoter and 59 untranslated region (UTR) and the last 19 bases of the 39 untranslated region and
intergenic region (IGR) of EP2 procyclin. The linearised plasmid integrates into an rDNA spacer in the genome. Tags were amplified from genomic
DNA by nested PCR.
doi:10.1371/journal.ppat.1001023.g002

Bottleneck in the Life Cycle of T. brucei
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taken into account, all the tags that were found in the midgut were

represented, meaning that at least 6 trypanosomes must have

reached the salivary glands in each fly. The strong dominance of one

tag each in flies A and B, and to a slightly lesser extent in Fly C, could

best be explained by waves of migration by very few parasites at a

time. Trypanosomes are tightly packed in infected glands and have

to compete for space. Early migration might be a more important

factor than dominance in the midgut if parasites that arrive first can

disperse and colonise the glands more readily than latecomers. This

‘‘race for space’’ would account for the shift in frequencies between

the midgut and salivary glands of a single fly and also explain why a

single tag can dominate the population while others remain very

minor. It would also be compatible with publications that have

reported changes in the relative frequencies of two strains of

trypanosomes between the midgut and glands, as well as glands

colonised by only one of the two strains [11,12]. The latter study

catalogued whether each of the pair of salivary glands contained one

or both strains, thus allowing the minimum number of founder

trypanosomes in each fly to be extrapolated from the data. In these

experiments the salivary gland infections of approximately two-

thirds of the flies could have been established by as few as one or two

trypanosomes, while the remaining third would have required at

least three or four. It could not be excluded, however, that several

trypanosomes of one strain migrated to the same gland, or that very

minor populations might have been overlooked.

An important outcome of the extreme bottleneck that can occur

between the midgut and the salivary glands is that rare variants

can be amplified in individual flies and be disseminated by them. If

Figure 3. Diversity and frequency of tagged trypanosomes in three experiments. The bars in each chart represent the 8 tags. Frequency is
shown on a log scale ranging from 0.01–100 per cent with dominant tags (.5%) highlighted in black. Tsetse flies were infected with procyclic
trypanosomes with an even distribution of the tags. Three flies (A, B, and C) had infected midguts (mg) and salivary glands (sg). These flies each
infected one mouse whose parasitaemia was monitored over a period of 2–3 months. Since the mice are immunocompetent, antigenic variation
occurs, with each peak of parasitaemia containing trypanosomes expressing new VSGs compared to the preceding peaks. Five blood samples were
taken from each mouse for analysis of the tags (indicated by large diamonds in the right panel) after 1, 2, 3, and 4 weeks and at the end of the
experiment after 7–10 weeks. Flies D and E were infected on mouse C 18 and 30 days after infection (indicated with the grey arrows in the right
panel). Midguts were dissected after 12 days (ID12) and 10 days (ID10). The number of sequences obtained from each sample is shown in Figure S2A.
doi:10.1371/journal.ppat.1001023.g003

Table 1. Diversity index (Simpson’s index).

Fly Mouse

midgut
sal.
gland week 1 week 2 week 3 week 4

week
7–10

Exp. A 0.595 0.002 0.009 0.005 0.006 0.399 0.007

Exp. B 0.660 0.006 0.006 0.000 0.018 0.008 0.003

Exp. C 0.550 0.428 0.652 0.088 0.079 0.023 0.000

Fly E 0.015

Fly D 0.051

doi:10.1371/journal.ppat.1001023.t001

Bottleneck in the Life Cycle of T. brucei
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a variant has a selective advantage in mammals, such as altered

host range or increased resistance to drugs, this might cause it to

become the major species circulating locally [28,29]. Such a

phenomenon could explain the epidemic population structure of

T. brucei documented by MacLeod and coworkers, in which clonal

expansion of a few genotypes in a region occurs against a

background of frequent recombination between strains [30].

Our data indicate that both mammals and tsetse can readily

acquire and transmit more than one genotype in the course of a

single blood meal. Mixed genotypes have been detected fairly

frequently in field isolates from cattle, humans and tsetse

[30,31,32,33], and it is possible that they might be even more

widespread since minor populations would escape detection. Co-

infection of susceptible flies with different strains of trypanosomes

might affect parasite population dynamics [34] and also increase

the chances of genetic exchange [35,36] if the parasites develop

and migrate in parallel.

The approach that we have used here can be extended to study

other facets of infection with trypanosomes, for example the

population found in the central nervous system during the late

stage of sleeping sickness or the parasites causing relapse infections

after drug treatment. It can also be applied to the analysis of

population dynamics of any other parasite that is amenable to

transfection, including other African trypanosomes that do not

infect the salivary glands and may therefore show different

dynamics in the tsetse fly.

Materials and Methods

Ethics statement
Animal experiments were approved by the local veterinary

authorities (Veterinäramt Basel-Stadt) in compliance with Swiss

federal law (TSchG) and cantonal by-laws (TSchV Basel-Stadt).

Trypanosomes
Trypanosoma brucei brucei AnTat 1.1 [37] procyclic forms were

cloned by the micro-drop method [38] and stabilates were made

after 22 days. Tsetse flies (see below) were infected with one

clone, and the infected salivary glands of one fly were dissected at

day 27 and inoculated intraperitoneally into a female NMRI

mouse (RCC, Ittingen, Switzerland), which developed a parasit-

aemia of 108 trypanosomes ml21 at day 5 post infection.

Bloodstream forms, obtained by heart puncture, were triggered

to differentiate into procyclic forms in SDM-79 supplemented

with 10% foetal bovine serum, 3 mM sodium citrate and cis-

aconitate (CCA) [39], and 20mM glycerol at 27uC for 3 days

[40]. Procyclic forms were cultured thereafter in the same

medium without CCA.

Infection of tsetse flies
Pupae of Glossina morsitans morsitans were obtained from the

Institute of Zoology, Bratislava, Slovakia. The flies were

maintained at 25uC and 70% relative humidity with 12 hours of

light per day. Teneral tsetse flies (under the age of 72 hours) were

infected with procyclic forms as described previously [22]. Starting

twenty days post-infection, tsetse flies were examined for the

presence of metacyclic forms in their saliva. Tsetse flies with a

mature infection were allowed to feed on NMRI mice 2 to 4 days

after the appearance of first metacyclic forms. Subsequently the

paired ducts of the salivary glands were extracted from the neck of

the tsetse flies. This prevented contamination with midgut forms.

The midgut (including the proventriculus) was then dissected out

of the abdomen. The tissues were dissected on separate slides in a

drop of PBS and then transferred to an Eppendorf tube containing

200ml lysis buffer (see below) and stored at 220uC prior to DNA

extraction.

Figure 4. Population size through the life cycle of T. brucei based on data from this study. A: establishment of infection in the fly midgut
following a blood meal; B: trypanosomes migrating to the salivary glands; C: establishment of infection in the mammal following fly transmission; D:
fluctuations in parasite numbers in the mammalian bloodstream. Numbers in boxes refer to minimum numbers of trypanosomes surviving the
transition between different tissues and hosts. The asterisk depicts the possibility that there might be waves of migration of a few parasites at a time
from the midgut to the salivary glands.
doi:10.1371/journal.ppat.1001023.g004

Bottleneck in the Life Cycle of T. brucei
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Infection of mice
Female NMRI mice (RCC, Ittingen) were kept at 22uC, 70%

relative humidity and with 12 hours of light per day. To determine

the parasitaemia, 10 ml tail blood were mixed with 40 ml 3.2%

sodium citrate, and 4 ml were uniformly distributed under a

20 mm2 cover slip. For each sample, 10–15 fields were counted.

The parasitaemia is given as the number of trypanosomes per ml

mouse blood. For analysis of the tags 50 ml of tail blood was

processed.

Plasmid constructs and stable transfection of
trypanosomes

The insert from the plasmid pKON [21], was amplified by PCR

using the primers Bgl II-promotor (ATAGATCTCGAA-

AACTCTTCGGGA) and KO 2 (TATCTAGAGGGCACTG-

CAGT). Bgl II and Xba I sites, respectively, are underlined. The

PCR product encompassing the EP1 promoter, the neomycin

resistance gene and 19bp of the EP2 39 untranslated region (UTR)

was digested with Bgl II and Xba I. The plasmid pLew111

(http://tryps.rockefeller.edu/) was digested with Bgl II and Nhe I

to provide the plasmid backbone with the rDNA spacer. The

digested PCR product was ligated to the backbone (Xba I and Nhe

I have compatible ends). The resulting construct, pIns has a single

Bgl II site between the rDNA spacer and the procyclin promoter

that was used for the insertion of unique tags (Figure 2B).

An oligonucleotide (ATCACGGCCGGGAGATCT(N)40AGA-

TCTGTGAGACCCATTAAGCTTCC) containing a variable

40mer flanked by two constant regions with Bgl II sites

(underlined), was purchased from Microsynth AG, Balgach,

Switzerland. Double-stranded DNA was produced by amplifica-

tion with the constant flanking sequences: iTag-oligo (AT-

CACGGCCGGGAGATCT) and BIL-4A (GGAAGCT-

TAATGGGTCTCAC). The PCR product was inserted into

pCR2.1 TOPO (Invitrogen, Carlsbad Ca, USA) according to the

manufacturer’s protocol and used to transform E. coli XL-1 blue.

Purified plasmids were sequenced using standard methods. Eight

tags were selected (Table S1a), the fragments released with Bgl II

and ligated into pIns to generate the plasmid series piTag1–8.

Transfection was performed with 10mg of each plasmid

(piTag1–8) linearised with Not I. Plasmids were electroporated

separately into 2.56107 procyclic trypanosomes. Transfection and

cloning by limiting dilution were carried out as described

elsewhere [40]. G418 (25mg ml21) was used to select stable

transformants.

DNA extraction, nested PCR and sequencing
Samples were resuspended in 200ml lysis buffer (100 mM NaCl,

5 mM sodium EDTA, 10 mM tris-HCl, pH 8), supplemented

with 20 ml RNAse A (1 mg/ml) and incubated for 1 h at 37uC,

followed by the addition of 10ml Pronase (20mg/ml) and

incubation for a further 2 h. Genomic DNA was isolated by

phenol/chloroform extraction, precipitated with ethanol and

resuspended in 50 ml water. Genomic DNA obtained from blood

samples was subjected to an additional precipitation using 0.5

volumes of 7.5M ammonium acetate and 5 volumes ethanol.

Nested PCR was performed on 1 ml of each DNA sample. The

oligonucleotides rDNAsense/ep2sas2 (Table S1b) were used to

generate a product of ,700 bp using the following conditions:

3 min at 96uC, 30 cycles of 1 min 94uC, 1 min 45uC, and 45 sec

72uC, followed by 10 min extension at 72uC. The second PCR

performed with 1 ml from the first reaction as template and the

fusion primers A and B, these consist of two regions: a template

specific region for PCR amplification and a fusion region for 454

sequencing (Microsynth, Balgach, Switzerland). The primers A1–

A6 can be distinguished by a variable 6mer barcode that connects

the two regions (Table S1b). This barcode was used to allocate

samples in the same region on the pyrosequencing plate (see

below). The PCR conditions with the primers A and B were:

3 min at 96uC, 30 cycles of 1 min 94uC, 50 sec 52uC and 30 sec

72uC followed by 10 min extension at 72uC, yielding products of

177 bp. 454 picotiter plate pyrosequencing was performed by

Microsynth, Balgach, Switzerland, with the Roche Genome

Sequencer FLX System as described elsewhere [41,42]. Five

regions of a picotiter plate were used for this study: one (I) for the

control DNA and four regions (II–V) for the samples (Figure S2,

panel A). For the control sequencing reactions, cultures of

individual clones were mixed, genomic DNA extracted, and split

into 6 aliquots. DNA from each aliquot was amplified with a

different barcoded fusion primer A1–A6 together with the primer

B. The samples collected from the flies and mice were amplified

with the primers A1/B–A6/B as indicated in Figure 2. The

barcodes were identified with the SFF file program sfffile (included

in the 454 software package), allowing one mismatch. The

distribution of the tags (Figure S2, panel B) was very similar

among all control samples (two-sided paired T-test; p.0.3 for all

combinations).

Supporting Information

Figure S1 Growth of tagged procyclic forms in culture. Each

colour corresponds to a clone carrying one of the tags.

Found at: doi:10.1371/journal.ppat.1001023.s001 (0.02 MB PDF)

Figure S2 A: Organisation of samples on the pyrosequencing

plate. Each row represents one region (I–V) where six samples

were mixed, each amplified with a forward primer with a different

barcode (A1–6). The number of sequences obtained for each

sample is given. B: A control culture containing a mixture of all 8

tags was amplified with each of the barcoded primers. The

distribution was very similar, indicating that the different barcodes

did not bias the analysis.

Found at: doi:10.1371/journal.ppat.1001023.s002 (0.06 MB PDF)

Figure S3 Parasitaemia of each ‘tag population’ in the three

mouse experiments.

Found at: doi:10.1371/journal.ppat.1001023.s003 (0.06 MB PDF)

Figure S4 Drawing simulation of the minimum number of

trypanosomes transmitted from tsetse flies to the three mice.

Different numbers of individuals were randomly drawn (with

replacement) 10000 times from the distribution of tags in the

salivary glands and the number of different tags drawn recorded

each time. Tags not observed in the salivary glands but recorded in

the subsequent mouse or fly samples were added at half the

frequency of tags found in only one sequence in the salivary gland.

The number of individuals below which one or more tags would

be lost in 95% of cases was taken as the most conservative estimate

of the minimum bottleneck size. A, B and C correspond to the

transmission in the respective experiments (see Fig. 3).

Found at: doi:10.1371/journal.ppat.1001023.s004 (0.06 MB PDF)

Table S1 Tags and primers used in this study A. Sequences of

Tags 1–8. B. Sequence of primers used for nested PCR. The

primers A1–A6 and B consist of a fusion region (in italics on the

left) and a template specific region (on the right). The variable

6mer barcode of the primers A1–A6 is underlined. The barcode

allows the allocation of samples in the same region on the

pyrosequencing plate.

Found at: doi:10.1371/journal.ppat.1001023.s005 (0.08 MB PDF)
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