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In the last decade refractometric sensors have attracted an increasing interest by the scientific community due to their ability to
perform ambient monitoring, to assess food quality and safety, and also to the fact that they enable the development of label free
sensors in the biomedical area.These advances result, namely, from the use of long period fibre gratings in the turning points and/or
with thin films in the transition region that allows resolutions of 10−6 to changes in the refractive index of the surroundingmedium.
Resolutions exceeding 10−8 can also be achieved when long period fibre gratings are combined with evanescent field based devices.
This paper reviews the recent path towards the development of ultrahigh sensitive optical fibre refractometric sensors.

1. Introduction

According to recent designations such as smart cities, smart
buildings, smart structures, smart grids, or smart clothes, one
may conclude that we are living in the “Smart World Era.”
Generally speaking, these environments require intelligent
devices that incorporate sensors, communication systems,
and data processing unities that are able to perform home
automation, to monitor structural health of buildings and
bridges, to increase the efficiency of energy production, and
to manage an electric power grid or to localize patients and
monitor their vital parameters. Further developments are
expected with the so-called “Internet of Things” in which
intelligence is extended to, virtually, all objects [1, 2].

At the same time the world faces the challenge caused
by the destructive cycle of environmental pollution, global
warming, climate changes, reduction of arable land, and
water contamination, added to the demographic pressure
and a huge ecological footprint that demands for another
planet. Furthermore, the occidental society has a higher life
expectancy and diseases, such as, Alzheimer, which are more
frequent. Therefore, the future development requires special
attention to these issues and the smart technology plays an

important role in order to increase the efficiency of food
production and to control its safety, to monitor the quality of
air and water, and to localize and monitor the health of elder
people [3].

In this context, sensors are fundamental devices inde-
pendently of being the conventional electronic ones (that
may constitute a wireless sensor network when, for instance,
mobility is required) or optical fibre sensors used in appli-
cations where low dimensions, low weight, electromagnetic
immunity, and material chemically inert and biocompatible
are essential. Since the optical fibre can be, simultaneously, a
waveguide and a sensor, it is straightforward to implement
optical fibre sensor networks that enable multiplexing of
sensors monitoring different physical parameters. As far as
the measurement of temperature and strain is concerned,
for instance, for health structure monitoring, the fibre Bragg
gratings technology has already proved its excellence [4].
Distributed sensing based on the Brillouin effect is paving
the way towards the development of temperature sensors, for
instance, in the area of energy production. However, in appli-
cations such as environmentalmonitoring or food quality and
safety, other approaches are needed. Refractometric sensors
based on long period fibre gratings (LPFGs) have shown very
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promising results in this context [5]. Therefore, this paper
reviews the recent achievements related to this technology.

The first section discusses the fabrication of long period
fibre gratings in the turning points using the simple, flexible,
and low cost electric arc technique. Based on the knowledge
of the properties of these gratings a reflection configuration
is also presented. The deposition of thin films over the
grating, namely, when the film has a particular thickness
and refractive index that enables the grating to work in
the transition region increasing considerably the sensitivity
to changes in the external refractive index, is discussed in
Section 2. Section 3 present other configurations for refrac-
tometric sensing based on evanescent field that may combine
different devices in order to reach ultimate resolutions, for
instance, schemes comprising long period fibre gratings and
surface plasmon resonances (SPR).

2. Properties of Arc-Induced Gratings

A long period fibre grating is a wavelength selective filter
whose transmission spectra exhibit several resonances (Fig-
ure 1) resulting from coupling between the coremode and the
different copropagating cladding modes at wavelengths that
obey the resonance condition [6]:

𝜆res = (𝑛
eff
co − 𝑛

eff
cl,𝑚)Λ, (1)

where𝜆res represent the resonancewavelengths,Λ the grating
period, and 𝑛effco and 𝑛

eff
cl,𝑚 the effective refractive index of the

core mode and the effective refractive index of the cladding
modes, respectively.

Several techniques are available in order to produce
LPFGs, among them, those based onUV, CO2, and femtosec-
ond laser radiation, with the later being themost versatile one
[6–9]. However, we focused our attention on the electric arc
technique for being simple, flexible and having low cost [10].
The main drawback is the fact that so far it was not possible
to write LPFGs with grating periods shorter than 200 𝜇m [11].
Arc-induced gratings are fabricated by placing an uncoated
fibre, under tension, between the electrodes of a splicing
machine.The fibre is then submitted to an arc discharge with
an electric current of 7 to 15mA and a duration ranging from
200ms up to 2 s. Afterwards the fibre is displaced by the
grating period, typically, from 200𝜇m to 1mm and the whole
process of arc-discharge/fibre displacement is then repeated
20 to 50 times.

The reproducibility of the technique can be compromised
by the degradation of the electrodes due to oxidation.
However, the control of the position of the fibre in the arc
discharge and the monitoring of the discharge parameters
and of the ambient conditions would allow the technique
to be used for mass production of gratings with precise and
reproducible characteristics [12].

Figure 2 shows the setup used to inscribe the gratings
where it can also be seen that the arc discharge is directional.
It was demonstrated that, in this particular arrangement, the
arc possesses a thermal gradient that is responsible for the
main formation mechanism of these gratings in standard
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Figure 1: Typical spectrum of a 400 𝜇m-LPFG inscribed in an Al-
doped fibre.

Figure 2: Setup for the fabrication of arc-induced gratings.

fibres, that is, microdeformations [12]. For the typical fab-
rication parameters used the fibre reaches a temperature of
the order of 1400∘C [13] which softens the fibre under tension
and the arc thermal gradient induces the microdeformations
responsible for the grating. Arc-induced gratings can stand
temperatures as high as 1000∘C for several days without
significant deterioration in their spectrum [14]. It was also
demonstrated that the resonance wavelengths are defined
not only by the choice of the grating period but also by the
fabrication parameters used [15]. Moreover, the fabrication
parameters also modify the sensitivity of the resonances to
changes of physical parameters such as temperature and
strain. Thus, by changing the fabrication parameters during
the inscription of a gratingwe obtained a set of two neighbour
resonances showing different sensitivities that enabled to
implement a sensor for the simultaneous measurement of
temperature and strain requiring a single optical source [16].
It is interesting to note that in the case of the fibre codoped
with B/Ge the main mechanism of grating formation is
not microdeformations but a reversible densification of the
core that leads to coupling to symmetric cladding modes
in opposition to the asymmetric ones due to the former
mechanism [17, 18]. However, by a proper choice of the
fabrication parameters and by placing the fibre in a region
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Figure 3: Phase matching curves. LPFGs turning points (adapted from [27]).

of the arc with lower average temperature and grater ther-
mal gradient (i.e., also an optimum point to increase the
reproducibility of the technique) it is possible to fabricate
simultaneously two superimposed gratings showing a dual
set of resonances resulting from two different mechanisms:
microdeformations and densification [19]. The resonances
show different sensitivities to changes in physical parameters
and the ones due to densification are erased as the tempera-
tures rise towards 1000 ∘C.The development of sensors based
on these properties will be discussed below.

The resonance wavelengths depend on the effective
refractive index of the cladding modes which in turn depend
on the refractive index of the external medium.Thus, LPFGs
are intrinsically sensitive to changes in the surrounding
medium and, therefore, can be used as refractive index sen-
sors. Several techniques have been used in order to increase
the gratings sensitivity to changes in the external refractive
index that depends on the interaction of the cladding modes
with the surrounding medium. For that purpose several
approaches were implemented: gratings were written in fibres
having a cladding refractive index closer to the one of the
surrounding medium, written in etched or tapered fibres, by
producing microtapered gratings or by bending the grating.
In this context, interferometric configurationswere also used.
The resolutions obtained ranged from 10−3 to 10−5 [20–26].

3. LPFGS in the Turning Points

It is well known that the LPFGs sensitivity depends on the
order of the cladding modes and reaches its maximum close
to the so-called turning points [27]. In these regions the
slope of the phase matching curves changes from positive
to negative and beyond this turning point, and for each
grating period, there are two resonance wavelengths for each
cladding mode (Figure 3). This is due to the dependence
on wavelength of the core and cladding effective refractive
indices. For a particular grating period, the phase matching
condition can be satisfied for more than one resonance
wavelength (for the same cladding mode) since, as the

wavelength increases, the effective refractive index of the
cladding mode decreases faster than that of the core [28].

In the context of refractometric sensing, the dependence
of the resonant wavelengths on changes in the refractive
index of the surrounding medium can be understood by the
following equations [27]:

𝑑𝜆res
𝑑𝑛surr
= 𝜆res𝛾Γsurr, (2)

where 𝛾, the general sensitivity factor, describes the waveg-
uide dispersion and is expressed by

𝛾 =
𝑑𝜆res/𝑑Λ

𝑛effco − 𝑛
eff
cl,𝑚
, (3)

where 𝑑𝜆res/𝑑Λ represents the slope of the dispersion curves.
Γsurr is expressed by

Γsurr = −
𝑢
2

𝑚

𝜆
3

res𝑛surr

8𝜋𝑟3cl𝑛cl (𝑛
eff
co − 𝑛

eff
cl,𝑚) (𝑛

2

cl − 𝑛
2

surr)
3/2

(valid for 𝑛surr < 𝑛cl)

(4)

and describes the dependence of the waveguide dispersion
on the surrounding refractive index (𝑛surr). The term 𝑢

𝑚

is the 𝑚th root of the zero-order Bessel function and the
other symbols have their common meaning. From (2) and
(3) it can be concluded that the sensitivity increases with the
slope of the dispersion curves (requires higher order cladding
modes and/or working near the turning points). Note that
for a particular mode the resonance wavelengths beyond the
turning points show higher sensitivities (see also Figure 3).
Equation (4) also shows that the sensitivity increases as the
refractive index of the surrounding approaches that of the
cladding. In this case the evanescent field extends further
into the surroundingmedium leading to a higher interaction.
However, when the surrounding refractive index equals
that of the cladding (it becomes an infinite medium), the
resonances disappear. For refractive indices above that of the
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Figure 4: (a) Phase matching curve of a particular mode as a function of the external refractive index. (b) Displacement of the resonance
wavelengths for different refractive indices (adapted from [27, 33]).

cladding the resonances reappear but at longer wavelengths
[29]. In this case, the modes are guided by Fresnel reflection
and not by total internal reflection (when 𝑛surr > 𝑛cl, there
is no critical angle) and loose part of the energy at each
reflection at the interface being called lossy modes. As the
refractive index increases the modes become more confined
and the dips more pronounced. However, the resonance
wavelengths are insensitive to changes in the surrounding
refractive index because the phase of the partially reflected
field at the surrounding-cladding interface does not change
with the external index [30, 31].

In general, grating periods shorter than 200𝜇m are
required in order to have access to this sensitive region
(around the turning points), but this possibility was not
yet demonstrated for arc-induced gratings. Presently we are
developing a new power supply to produce a stable arc with
reduced dimensions. At the same time, it is known that
during an arc discharge the fibre reaches thermal equilibrium
in less than half a second [32] and, therefore, a shorter arc
duration will mitigate the effect of thermal diffusion. Thus,
the combination of these two factors will allow us to fabricate
arc-induced gratings in the turning points. Depending on the
choice of the grating period around the turning point, the
changes on the surrounding refractive index can be moni-
tored by following either the wavelength shift or the intensity
variation [27, 33] (see Figure 4). Recently, two sensors
based on LPFGs in the turning points (intensity/wavelength)
showed a resolution of 3-4 × 10−6 [34, 35].

In the case of the wavelength measurement a 𝜋-shifted
LPFG in the turning points was used. It should be stressed
that a proper choice of the grating period allows some tuning
of the sensitivity for a particular refractive index range to
be measured (see Figure 5). Further tuning can also be
accomplished by etching the fibre cladding [36].

A drawback of using sensors based on LPFGs is the fact
that they need access to both ends of the fibre. In a recent

publication [37], the authors proposed the inscription of a 𝜋-
shifted LPFG [38, 39] by the deposition of a mirror at the end
of the fibre at a distance of Λ/4 to the grating (Figure 6). In
this way they implemented a sensor working in a reflection
configuration for the simultaneous measurement of temper-
ature and refractive index. The difference in the sensitivity
obtained for both resonances is small due to the proximity
of the resonance wavelengths. However the sensitivities can
be increased considerably if one inscribes simultaneously
two gratings, near the turning points, exhibiting a dual set
of resonances with different symmetries in the B/Ge-doped
fibre (Figure 7) [19]. In this way we end up with a sensor
head having the advantage of working in reflection, plus
the higher sensitivity of the turning points and the distinct
sensitivities of the resonances belonging to two 𝜋-shifted
LPFGs of different symmetries. This configuration enables
the simultaneous measurements of different parameters by
using either the resonance wavelengths or the resonances of
the bandpass filters. This ability is important to overcome
the problem of cross-sensitivity to other parameters, such as
temperature. Note that the separation between the symmetric
and asymmetric resonance wavelengths can be increased by
using shorter grating periods. This sensor head is currently
under development (at this stage the gratingswere notwritten
in the turning points) and the results will be published
elsewhere.

4. Thin Film-Coated LPFGs

Although the inscription of LPFGs in the turning points
increases their sensitivity to changes in the surrounding
refractive index, it is known that the sensitivity is higher as
the refractive index of the surrounding approaches that of
the cladding. This imposes a limitation to work with gases
or water solutions. Furthermore, gratings are also insensitive
to refractive indices above that of the cladding. Therefore,
means to overcome those limitations were required. In 2002,
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Rees et al. [40] demonstrated that the deposition of a thin
film over the grating, with a refractive index exceeding that
of the cladding, changes the position of the resonances. As
the film thickness increases, the average external refractive
index also increases leading to a down shift of the resonances.
A point is reached where the resonances disappear. This was
attributed to the fact that the average index of the external
medium equals that of the cladding. With further deposition
the resonances reappear but at a higher wavelength followed
by a down shift towards the values obtained for the case of a
LPFG surrounded by an infinite medium.The deposition of a
thin film over the grating slightly increased the sensitivity to
changes in the refractive index of the surrounding medium
lower than that of the cladding. On the other hand, it
allowed the measurement of refractive index changes of the
surrounding medium with a refractive index above that of
the cladding [41]. For instance, the deposition of a 110 nm
thin film with a refractive index of 1.57 allowed assessing the
quality of fried oil with a refractive index of ∼1.47 (Figure 8)
[42].

Subsequent research [43–46] enabled a deeper interpre-
tation of the transition region, that is, the region where
the resonances of LPFGs coated with the Langmuir-Blodgett
technique disappear. In fact, with the increase of the film
thickness a cladding mode is allowed to be guided in the
film leading to a rearrangement of the cladding modes in
which a cladding mode order will replace the position of the
cladding mode with the precedent order (e.g., LP

08

replaces
LP
07

; see Figure 9). This is a fast transition leading to the
highest sensitivity.

The higher the film refractive index, the lower the thick-
ness required to reach the transition region (see Figure 10).

The thickness also decreases as the surrounding refractive
index approaches that of the cladding [46]. Both facts as
well as higher cladding modes order lead to faster transitions
(higher sensitivity).

On the other hand the transition region occurs for
lower values of the surrounding refractive index as the film
thickness increases. This also contributes to a decrease of the
sensitivity [47] (Figure 11). Therefore, a proper choice of the
refractive index and thickness of the film would allow the
implementation of sensors optimized for refractive indices
lower than that of the cladding such as applications in air or
water environments.

However in the optimum point, that is, a particular
film thickness, the resonances almost disappear making it
impossible to follow the resonance change. The reasons
for that disappearing are the film loss and the fact that
during the transition the modes also change from HE to
EH before replacing the HE mode of lower order [48–52].
Note that for high loss films it is not always the lowest order
cladding modes to be guided first by the film (Figure 12).
The resonances below the one that is guided by the film
behave differently from those above it. Figure 13 shows that,
as the film thickness increases, other transitions will occur.
Transitions are faster for higher order transitions [50].

Therefore care must be taken in order to stop the film
deposition before the optimum point and to control the film
loss by a proper choice of the deposition technique. In fact
it is known that the dip-coating technique leads to films
with lower loss but at the same time does not allow a good
control of the thickness [5]. Figure 14 shows that, although
the coupling strengths decrease in the transition region, the
resonances are still visible [47]. Thus, the best option would
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Figure 6: (a) Reflection configuration based on a 𝜋-shifted LPFG;
(b) spectrum of the bandpass filter (taken from [32]).
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be a combination of two techniques, first dip-coating to
control loss and then electrostatic self-assembly to control the
thickness [53].

The deposition of two thin films in which the first layer
has a smaller refractive index than the second layer forms
a tunnel effect that leads to a more pronounced two step
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transitions [54]. On the other hand, it is possible to use a first
layer to increase the overall sensitivity and a second one being
selective to a particular chemical or biologic component
[55]. Thin films sensitive to specific components, such as,
for pH measurement or for detection of Cl−, chloroform,
hydrogen,methane, and ethanol, have also been used [44, 56–
62]. In this case, the sensitivity of the film increases if its
refractive index approaches that of the cladding [56]. Finally,
the combination of LPFGs in the turning points with thin
films in the transition region led to the implementation of a
sensor with a resolution of the order of 10−6@1.35 [5]. LPFGs
in the turning points coated with thin films have been used
for detection of ammonia, E. coli, and glucose [63–65]. In the
latter case the properties of the film, such as its permeability to
the analyte, were taken into account in order to increase the
sensitivity (Figure 15). Thus, instead of a simple adsorption
to the surface that mainly increases the film thickness, there
is diffusion into the film leading to an overall increase on its
refractive index. It is expected that future research on these
subjects will contribute to a further increase in the sensitivity
of refractometric sensors.

5. LPFGs-Assisted SPR

The sensitivity of refractometric sensors depends strongly
on the interaction between the evanescent field and the
analyte. Therefore, it can be increased by reducing the fibre
diameter. Tapering the fibre to dimensions of a few microm-
eters or even to nanometers scale leads to resolutions of
10−6–10−7 RIU [66–68].The interaction can also be increased
by introducing the analyte in the holes of a PCF fibre leading
to similar resolutions [69–71]. Another remarkable approach
is based on the coupling towhispering gallerymodes (WGM)
of a resonator [72]. The combination of nanotapers and
microresonators led to the detection of a single virus [73].
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It is well known that the refractometric sensors based
on surface plasmon resonance (SPR) have demonstrated the
highest sensitivity, although for bulk configurations where
intensity or phase was measured [74–76]. In which concerns
optical fibre based SPR, for whichminiaturization is possible,
the results obtained so far are similar to the ones demon-
strated by other configurations based on LPFGs with thin
films. The interaction of a mode guided by the fibre and the
free electrons of a metallic film, deposited over the cladding,
results in coupling to a surface plasmon wave that originates
from a resonance dip in the transmission spectrum [77, 78].
For high sensitivity a single mode fibre is tapered in order
to allow the interaction of the core mode with the thin film
[79]. This approach has an added advantage of allowing the
sensor to work in the 1.55𝜇m wavelength range (Figure 16).
Alternatively, under certain constrains (grating period and
length), LPFG-assisted SPR can be employed [80–82]. This
approach does not compromise the fibre integrity but limits
the use of the sensor to the visible or near-infrared range
(Figure 17).

When the film consists of metallic nanoparticles, the
incident radiation interacts with the conduction electrons
confined to the nanoparticles and is absorbed and scattered
giving rise to localized SPR (LSPR) [83–85]. The resonance
wavelength is strongly dependent on the particles size, shape,
composition, and the dielectric properties of the surrounding
medium. Although SPR is more sensitive, the response of
LSPR sensors is more linear and its sensitivity can be tuned
since it depends on the dimensions of the nanoparticles. A
thin film surrounded by two media of close refractive index
gives rise to the so-called long range SPR (LR-SPR), that
is, a strong interaction on both sides of the metallic film
that leads to a higher sensitivity (despite the larger FWHM)
and low loss (for films with thickness lower than 25 nm)

Sensing area

of transmitted
Evaluation

optical power

Single-mode fiber

LPG

SPR
cladding mode

Gold
layer

Analyte
medium

Cladding
mode

Fundamental
core mode

Figure 17: Refractometric sensor in a reflection configuration based
on a LPFG-assisted SPR (taken from [82]).
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Figure 18: High resolution refractometric sensor comprising a
LPFG, a WGM, and SPR (adapted from [93]).

[86, 87]. Moreover, it allows coupling assisted by LPFGs
with periods of hundreds of micrometers at a resonance
wavelength of 1550 nm [88]. Recently, it was found that the
deposition of a high refractive index silicon coating (doped
with phosphorus), with 5 to 10 nm thickness, over themetallic
layer increases considerably the sensitivity of the SPR sensor
besides protecting the silver film from oxidation [89, 90].
Thus SPR with silicon coatings has been applied to the
measurement of urea and pH [91, 92]. These innovative con-
figurations involving SPR and LPFGs can be further extended
to other devices such as nanotapers and WGM pushing
forward the sensors sensitivity [93]. Figure 18 shows the
possible inscription of a LPFG to assist coupling to a WGM
avoiding the requirement of using small curvature radius
that may damage the sensor. Refractive index resolutions
exceeding 10−8maybe achieved by this configuration. Similar
results are expected for optical fibre SPR based on phase
measurements [94].

6. Conclusions

Sensors and, in particular, refractometric sensors have a
key role in this smart era. Long period fibre gratings are
intrinsically sensitive to the surrounding refractive index
and have already demonstrated their potential for the imple-
mentation of this kind of sensors. The fabrication of highly
sensitive sensors requires the inscription of LPFGs in the
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turning points. However, this procedure must be combined
with the deposition of thin films over the grating, with the
proper refractive index and thickness, in order to optimize
the sensitivity to the measurement of refractive indices far
from that of the cladding. Further increase in the sensitivity
demands for the association of different techniques that
lead to a higher interaction of the evanescent field with the
parameter to be measured.Therefore, a reduction of the fibre
cladding and/or a combination of LPFGs with SPR and/or
WGMs may be the path for the development of ultrahigh
sensitive refractometric sensors (exceeding resolutions of
10
−8). As a final remark, it should be stressed that to make

commercial devices available, besides the high resolution and
the multiparameter measurement (namely, refractive index
and temperature) exhibited by some sensor configurations,
minor product engineering is still required in order to
prevent cross-sensitivity of the sensor head to other physical
parameters, such as strain and bending.
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