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OBJECTIVE—Heart failure is a major cause of mortality in
diabetes and may be causally associated with altered metabo-
lism. Recent reports indicate a role of inflammation in peripheral
insulin resistance, but the impact of inflammation on cardiac
metabolism is unknown. We investigated the effects of diet-
induced obesity on cardiac inflammation and glucose metabo-
lism in mice.

RESEARCH DESIGN AND METHODS—Male C57BL/6 mice
were fed a high-fat diet (HFD) for 6 weeks, and heart samples
were taken to measure insulin sensitivity, glucose metabolism,
and inflammation. Heart samples were also examined following
acute interleukin (IL)-6 or lipid infusion in C57BL/6 mice and in
IL-6 knockout mice following an HFD.

RESULTS—Diet-induced obesity reduced cardiac glucose me-
tabolism, GLUT, and AMP-activated protein kinase (AMPK)
levels, and this was associated with increased levels of macro-
phages, toll-like receptor 4, suppressor of cytokine signaling 3
(SOCS3), and cytokines in heart. Acute physiological elevation of
IL-6 suppressed glucose metabolism and caused insulin resis-
tance by increasing SOCS3 and via SOCS3-mediated inhibition of
insulin receptor substrate (IRS)-1 and possibly AMPK in heart.
Diet-induced inflammation and defects in glucose metabolism
were attenuated in IL-6 knockout mice, implicating the role of
IL-6 in obesity-associated cardiac inflammation. Acute lipid infu-
sion caused inflammation and raised local levels of macrophages,
C-C motif chemokine receptor 2, SOCS3, and cytokines in heart.
Lipid-induced cardiac inflammation suppressed AMPK, suggest-
ing the role of lipid as a nutrient stress triggering inflammation.

CONCLUSIONS—Our findings that nutrient stress activates
cardiac inflammation and that IL-6 suppresses myocardial glu-
cose metabolism via inhibition of AMPK and IRS-1 underscore
the important role of inflammation in the pathogenesis of dia-
betic heart. Diabetes 58:2536–2546, 2009

T
ype 2 diabetes is the most common metabolic
disease in the world, affecting �250 million
people, and cardiovascular disease is the leading
cause of mortality in diabetes (1). Although the

underlying mechanism by which diabetes increases car-
diovascular events is unknown, perturbations in cardiac
metabolism are among the earliest diabetes-induced alter-
ations in the myocardium, preceding both functional and
pathological changes, and may play a causative role in
diabetic heart failure (2,3). Studies using isolated per-
fused-heart preparations, cultured cardiomyocytes, and
positron emission tomography uniformly showed insulin
resistance in human and animal models of diabetic heart
(4,5). Diabetic heart is also characterized with elevated
lipid oxidation with reciprocal reduction in glucose me-
tabolism (6). Our recent study (7) found that chronic
high-fat feeding impairs myocardial glucose metabolism,
and this was associated with ventricular hypertrophy and
cardiac dysfunction in obese mice. These findings high-
light the importance of understanding the mechanism by
which obesity and diabetes affect cardiac metabolism.

Increasing evidence indicates the role of chronic inflam-
mation and macrophage activation in insulin resistance
(8,9). A cohort of recent studies (10–13) demonstrated
increases in macrophage infiltration and cytokine expres-
sion in adipose tissue and their association with insulin
resistance in obese humans and animal models. Tumor
necrosis factor (TNF)-� is a proinflammatory cytokine that
is secreted by macrophages and adipocytes and is shown
to cause insulin resistance by inhibiting insulin signaling,
AMP-activated protein kinase (AMPK), and the glucose
transport system (14,15). Interleukin (IL)-6 is another
proinflammatory cytokine that is elevated in obese dia-
betic subjects and is shown to cause insulin resistance by
activating STAT3-suppressor of cytokine signaling 3
(SOCS3) expression and inhibiting the insulin signaling
pathway in liver and adipose tissue (16–18). However, the
role of IL-6 in insulin resistance remains debatable largely
due to its differential effects on glucose metabolism in
skeletal muscle, adipose tissue, and liver (19). Despite the
wealth of information on the role of inflammation in
peripheral insulin resistance, the impact of inflammation
on cardiac metabolism has not been previously addressed.
In this article, we demonstrate that diet-induced obesity
increases macrophage and cytokine levels in heart. IL-6
reduces glucose metabolism by suppressing AMPK and
insulin receptor substrate (IRS)-associated insulin signal-
ing in heart, whereas IL-6–deficient mice are protected
from diet-induced alterations in glucose metabolism. The
fact that acute lipid infusion increases the inflammatory
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response and impairs myocardial glucose metabolism,
similar to the effects of high-fat feeding, suggests the role
of nutrient stress in the activation of toll-like receptor
(TLR) 4 signaling and inflammation in heart. Since glucose
is an important source of energy for a working heart,
particularly during ischemia, our findings identify an im-
portant role of inflammation in the pathogenesis of dia-
betic heart failure.

RESEARCH DESIGN AND METHODS

Animals and high-fat feeding. Male C57BL/6 mice at �10 weeks of age were
obtained from The Jackson Laboratory and housed under controlled temper-
ature and lighting (0700–1900 light cycle, 1900–0700 dark cycle) with free
access to food and water. Mice were fed a high-fat diet (HFD) (55% fat by
calories; Harlan Teklad TD93075, Madison, WI) or standard diet (Harlan
Teklad LM-485) ad libitum for 6 weeks (n � 5–7). IL-6–deficient (IL-6
knockout [KO]) breeder mice (C57BL/6 background) were obtained from The
Jackson Laboratory, and IL-6 KO mice have been bred to form colonies.
Immediately after weaning (�4 weeks of age), male IL-6 KO mice and
wild-type littermates were fed standard diet or HFD for 3 weeks (n � 6–7).
Additional male C57BL/6 mice were used for the acute IL-6 infusion and lipid
infusion studies. Whole-body fat and lean mass were noninvasively measured
in conscious mice using proton magnetic resonance spectroscopy (1H-MRS)
(Echo Medical Systems, Houston, TX). All procedures were approved by the
institutional animal care and use committee of the University of Massachu-
setts Medical School and the Pennsylvania State University College of
Medicine.
Metabolic studies to measure myocardial glucose metabolism. At 4–5
days before the metabolic experiments, mice were anesthetized, and an
indwelling catheter was inserted in the right internal jugular vein. Following
overnight fast (�15 h), basal myocardial glucose uptake was measured using
an intravenous injection of 2-deoxy-D-[1-14C]glucose (2-[14C]DG; 10 �Ci)
(PerkinElmer, Boston, MA) in conscious mice. Following injection, blood
samples were taken at 5-min intervals for 30 min for the measurement of
plasma 2-[14C]DG concentrations. At the end of experiments, mice were
anesthetized and heart samples were collected for analysis (20).

For the assessment of myocardial insulin sensitivity, a 2-h hyperinsuline-
mic-euglycemic clamp was conducted with a primed (150 mU/kg body wt) and
continuous infusion of human regular insulin (Humulin; Eli Lilly, Indianapolis,
IN) at a rate of 2.5 mU � kg�1 � min�1 to raise plasma insulin within a
physiological range (21). Blood samples (20 �l) were collected at 20-min
intervals for the immediate measurement of plasma glucose concentration,
and 20% glucose was infused at variable rates to maintain glucose at basal
concentrations. To estimate insulin-stimulated glucose uptake in individual
organs, 2-[14C]DG was administered as a bolus (10 �Ci) at 75 min after the
start of clamps. Blood samples were taken before, during, and at the end of
clamps for the measurement of plasma [3H]glucose, 3H2O, 2-[14C]DG concen-
trations, and/or insulin concentrations. At the end of the clamps, mice were
anesthetized and tissues were taken for biochemical and molecular analysis
(21).
Biochemical assays. Glucose concentrations during clamps were analyzed
using 10 �l plasma by a glucose oxidase method on Analox GM9 Analyser
(Analox Instruments, Hammersmith, London, U.K.). Plasma free fatty acid
(FFA) concentrations were measured using Sigma diagnostic kits (Sigma
Diagnostics, St. Louis, MO) and spectrophotometry. Plasma IL-6 and TNF-�
levels were determined using enzyme-linked immunosorbent assays. Plasma
concentrations of [3-3H]glucose, 2-[14C]DG, and 3H2O were determined follow-
ing deproteinization of plasma samples as previously described (21). For the
determination of tissue 2-[14C]DG-6-P content, tissue samples were homoge-
nized, and the supernatants were subjected to an ion-exchange column to
separate 2-[14C]DG-6-P from 2-[14C]DG. Basal and insulin-stimulated glucose
uptake in individual tissues was assessed by determining the tissue content of
2-[14C]DG-6-P and plasma 2-[14C]DG profile. We acknowledge that 2-[14C]DG is
used to measure glucose uptake into cells, but it does not directly assess
glucose transport versus glucose phosphorylation steps.
Acute IL-6 infusion study. Following an overnight fast, mouse recombinant
IL-6 (16 ng/h; Sigma) or saline (matched volume; control) was continuously
infused for 4 h in order to cause an acute physiological elevation of IL-6.
Metabolic studies were performed toward the end of IL-6 or saline infusion,
and heart samples were collected for analysis.
Acute lipid infusion study. Following an overnight fast, lipids (2.5 ml � kg�1 �
h�1, triglyceride emulsion) and heparin (6 units/h) or glycerol (matching
volume; control) were continuously infused for 5 h to raise plasma fatty acid
levels in male C57BL/6 mice (n � 10–11 for each group). Before and at the end
of the 5-h infusion, blood samples were taken for the measurement of plasma

FFA concentrations. At the end of the experiment, mice were anesthetized
and heart samples were collected for analysis.
Molecular analysis for inflammatory signaling. Heart samples were
obtained at the basal state for the following analysis. STAT3 protein expres-
sion and tyrosine phosphorylation were measured in heart using STAT3
phospho-Tyr705 antibody (1:1,000 dilution; Cell Signaling Technology, Dan-
vers, MA). For heart levels of CD68, C-C motif chemokine receptor (CCR)-2,
SOCS3, TLR4, and MyD88, heart tissues (50 mg) were grounded, and pow-
dered tissues were lysed in 800 �l of ice-cold lysis buffer containing protease
inhibitor cocktail and 1% Triton X-100. Tissue lysates were sonicated, incu-
bated, and centrifuged for 40 min. A total of 100 �g of each protein were
mixed with sample loading buffer (2� concentration) and loaded in 10% gel.
Proteins resolved by SDS-PAGE were transferred to nitrocellulose membrane.
The membrane was blocked and incubated with polyclonal antibodies for
CD68, CCR2, SOCS3 (Santa Cruz Biotechnology, Santa Cruz, CA), TLR4 (Cell
Signaling Technology), and MyD88 (Millipore, Billerica, MA). The membrane
was washed and incubated with the horseradish peroxidase–conjugated
secondary antibody (Bio-Rad Laboratories, Hercules, CA) in 1% BSA in
Tris-buffered saline Tween 20 (TBST) (50 mmol/l Tris-HCl, pH 7.5, 100 mmol/l
NaCl, 0.1% Tween 20) for 1 h at room temperature. Detection of immunore-
active bands were achieved and quantified.
Co-immunoprecipitation assay. A total of 50 mg of heart tissue were lysed
and prepared as described. A total of 20 �l of protein A sepharose CL-4B beads
(Amersham Biosciences, Uppsala, Sweden) per reaction were equilibrated
with 500 �l of lysis buffer for 15 min, centrifuged, and supernatants removed.
A total of 10 �l of the equilibrated beads were added to the extract to preclear
extract. This mixed extract was incubated for 20 min and centrifuged, and the
precleared extract was transferred. A total of 20 �l of the equilibrated beads
per reaction were added to the lysis buffer. Each 2 �g of antibody (phospho-
AMPK�, AMPK�, or SOCS3) was added and incubated for 1 h. After centri-
fuge, supernatant was removed. Antibody-coupled beads were dispensed into
tubes, and protein extracts were added and incubated at 4°C overnight. The
solution was washed five times using lysis buffer. In the final wash, superna-
tant was removed. A total of 50 �l of sample loading buffer (2� concentration)
was added and boiled at 95°C for 3 min. The tube was shaken for 5 min to
ensure the release of most immunoprecipitated proteins and centrifuged.
Precipitated proteins were loaded in 10% gel for SDS-PAGE. Proteins resolved
by SDS-PAGE were transferred to nitrocellulose membrane. The membranes
were blocked with 5% BSA in TBST for 1 h and incubated with phospho-
AMPK�, AMPK�, and SOCS3 antibody in 1% BSA in TBST overnight at 4°C.
Immunoreactive bands were detected.
Molecular analysis of metabolic signaling. For IRS-1 tyrosine phosphory-
lation, heart samples were obtained at the end of euglycemic clamps to
measure in vivo insulin signaling activity. Immunoblotting was performed
using powdered heart tissue samples dissolved in lysis buffer (50 mmol/l
HEPES, pH 7.3, 137 mmol/l NaCl, 1 mmol/l MgCl2, 1 mmol/l CaCl2, 2 mmol/l
NaVO4, 10 mmol/l sodium pyrophosphate, 10 mmol/l NaF, 2 mmol/l EDTA, 2
mmol/l PMSF, 10 mmol/l benzamidine, 10% glycerol, 1% Triton X-100, 1 mmol/l
microcystin LR, and 100 nmol/l Okadaic acid) (Sigma-Aldrich, St. Louis, MO)
and cocktail protease inhibitor (Roche Diagnostic, Mannheim, Germany) and
sonicated for 10 s. The samples were incubated on ice for 30 min, centrifuged
at 15,000g for 15 min at 4°C, and the supernatants harvested. Protein
concentrations were determined using the Bio-Rad DC protein assay (Bio-Rad
Laboratories). Immunoprecipitation was performed with 3 mg total protein
and 4 �g anti–IRS-1 antibodies (Upstate Biotechnology, Lake Placid, NY),
rotating overnight at 4°C. IRS-1 and anti–IRS-1 antibody complex was pulled
down by protein A–sepharose CL-4B beads (Amersham Biosciences, Upsala,
Sweden), and the beads were rinsed three times in PBS. Gel sample buffer was
added, boiled for 10 min, and loaded onto SDS gels. Western blot was
performed, and the membranes were blocked by incubation in 5% BSA in
TBST and then incubated in anti-phosphotyrosine antibodies (1:1,000 dilution;
Upstate Biotechnology, Charlottesville, VA) overnight at 4°C. Membranes
were then stripped to be reprobed by anti–IRS-1 antibodies. For AMPK
phosphorylation and total protein levels, heart samples were obtained in the
basal state, and immunoblotting was performed using antibodies against
AMPK� and phospho-Thr172 AMPK� (Cell Signaling Technology).
Immunohistochemistry assay. Heart samples were fixed for 24 h at room
temperature in Bouin’s solution (Sigma-Aldrich), and the samples were placed
into cassettes, which were immersed in 70% EtOH. A total of 70% EtOH was
changed several times to wash away the fixative until it became clear. Heart
tissue was embedded in paraffin. Tissue sections (5 �m) were mounted on
charged glass slides. For deparaffinizing tissue, a slide was incubated for 5 min
in clean xylene, 100% EtOH, 95% EtOH, 85% EtOH, 70% EtOH, and ultrapure
water. Tissue section was immersed in Tris-EDTA buffer (10 mmol/l Tris, 1
mmol/l EDTA, 0.05% Tween 20, pH 9.0) (Sigma-Aldrich) at 95°C for 20 min to
retrieve antigen and cooled at room temperature for 20 min. Tissue sections
were rinsed with TBST for 5 min two times, blocked in TBST (20 mmol/l Tris,
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137 mmol/l NaCl, 0.05% Tween 20, pH 7.5) containing 10% BSA at room
temperature for 40 min, and incubated in TBST containing anti-CD68 antibody
at room temperature for 2 h. Tissue slide was washed for 5 min with TBST
three times. A horseradish peroxidase–conjugated secondary antibody (Bio-
Rad) was used for staining at room temperature for 1 h. After washing three
times, metal-enhanced 3,3-diaminobenzidine substrate was added to tissue
and incubated for 15 min. Tissue was also counterstained with hematoxylin
stain for 1 min, washed with ultrapure water, and mounted with mounting
media (Thermo Fisher Scientific, Waltham, MA).
Immunofluorescence assay. Briefly, heart tissue sections were fixed in
acetone/methanol (1:3) for 10 min and washed with PBS Tween 20 (PBST) (10
mmol/l sodium phosphate, 150 mmol/l sodium chloride, 0.3% Tween 20, pH
7.8) two times. Tissue sections were blocked in PBST containing 5% goat
serum for 1 h at room temperature and washed with PBST two times. For
immunostaining of cardiomyocyte and SOCS3, monoclonal cardiac troponin T
and SOCS3 antibodies were used. For STAT3, phospho-STAT3 (Tyr705) and
STAT3 antibodies (Cell Signaling Technology) were used. An anti-rabbit IgG
fluorescein isothiocyanate and anti-mouse IgG tetramethylrhodamine isothio-
cyanate (Sigma-Aldrich) were used as a secondary antibody. Seventy, 80, and
100% ethanol were used each for 1 min for dehydration, and tissue sections
were dried by air. Nuclei were stained with 4�,6-diamidino-2-phenylindole
(VECTA Laboratories, Burlingame, CA). Fluorescence was analyzed using a
fluorescence microscope.
Statistical analysis. Data are expressed as means 	 SE. The significance of
the difference in mean values was evaluated using the Student’s t test. The
statistical significance was at the P 
 0.05 level.

RESULTS

Effects of diet-induced obesity on cardiac metabo-
lism. Male C57BL/6 mice were fed an HFD or standard diet
for 6 weeks. High-fat feeding increased body weight and
caused a threefold increase in whole-body fat mass, mea-
sured using 1H-MRS, in mice (Fig. 1A). Myocardial glucose
metabolism was measured using an intravenous injection

of 2-[14C]DG in conscious mice. Basal myocardial glucose
uptake was significantly reduced in HFD-fed mice (Fig.
1B), and this was associated with �60% reductions in
myocardial levels of total GLUT1 and GLUT4, the major
glucose transporters in cardiomyocytes (Fig. 1C and D).
These results are consistent with previous observations of
reduced myocardial glucose metabolism in obese humans
and animal models (5,22). AMPK is an important regulator
of cardiac metabolism (23), and Thr172 phosphorylation of
AMPK was markedly reduced in the heart following HFD
(Fig. 1E). Total AMPK protein levels in heart tended to be
lower following HFD. These data indicate that diet-in-
duced reductions in glucose metabolism may be due to
blunted AMPK levels in heart.
Diet-induced obesity induces inflammation in heart.

Consistent with the previous observation of increased
inflammatory cytokines in obese humans (16), plasma IL-6
and TNF-� levels were significantly elevated in HFD-fed
mice (Fig. 2A). We also measured myocardial cytokine
levels following HFD. Local IL-6 levels in heart were
increased by 40% in HFD-fed mice (0.45 	 0.02 vs. 0.32 	
0.03 pg/100 �g in standard diet heart; P 
 0.05). Local
TNF-� levels tended to increase in the HFD heart, but this
difference did not reach statistical significance (data not
shown). These data indicate that while elevated serum
cytokine levels following HFD are largely contributed by
peripheral organs, such as adipose tissue, increased cyto-
kine levels in heart may be partly due to local production
either from cardiomyocytes or infiltrating macrophages.
Interestingly, a modest systemic inflammation was associ-

*

A

Fat Mass

B
od

y 
C

om
po

si
tio

n
(g

)

Body Weight

*
B

Chow

G
lu

co
se

 U
pt

ak
e

(n
m

ol
/g

/m
in

)

HFD

*

C

*

H
ea

rt
 G

LU
T1

 L
ev

el
s

(G
LU

T1
 / 
β-

ac
tin

) 

H
ea

rt
 G

LU
T4

 L
ev

el
s

(G
LU

T4
 / 
β-

ac
tin

) 

Chow HFD Chow HFD

Chow HFD

β-actin β-actin
β-actin

GLUT1

*

Chow HFD

GLUT4

D E

H
ea

rt
 A

M
PK

(P
-T

hr
17

2  AM
PK

 / 
AM

PK
)

*

Chow HFD

P-Thr172 AMPK

AMPK

Chow HFD

0 

10 

20 

30 

0 

100 

200 

300 

400 

0 

0.3 

0.6 

0.9 

1.2 

0 

0.3 

0.6 

0.9 

1.2 

0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 

β

β

FIG. 1. High-fat feeding reduces glucose metabolism in heart. Male C57BL/6 mice were fed a HFD or standard (chow) diet for 6 weeks, and heart
samples were taken at the end. A: Whole-body fat mass measured using 1H-MRS and body weight were increased following 6 weeks of HFD. f,
Standard diet; u, HFD. B: Basal rate of myocardial glucose uptake, measured using 2-[14C]deoxyglucose injection, was reduced following HFD. C:
Total GLUT1 protein levels in heart were reduced in HFD-fed mice. D: Total GLUT4 protein levels. E: Thr172-phosphorylation of AMPK normalized
to total AMPK protein levels in heart was reduced following HFD. Values are means � SE for five to seven mice in each experiment. *P < 0.05
vs. standard diet–fed mice.

NUTRIENT STRESS ACTIVATES INFLAMMATION IN THE HEART

2538 DIABETES, VOL. 58, NOVEMBER 2009 diabetes.diabetesjournals.org



ated with an approximately four- to fivefold increase in
macrophage levels (CD68 as a marker) in heart following
HFD (Fig. 2B–D). Although macrophage infiltration in
adipose tissue was previously observed in obese humans
and animal models (8), to our knowledge, this is the first
demonstration of increased macrophage levels in the heart
of modestly obese animals. TLR4 was recently shown to
regulate obesity-associated inflammation (24,25). After 6
weeks of HFD, TLR4 and MyD88 expression levels were
increased by threefold (Fig. 2E), suggesting the role of
TLR4 signaling in diet-induced inflammation in heart.
Additionally, myocardial levels of SOCS3, which is synthe-
sized in response to cytokine stimulation, were elevated in
HFD-fed mice (Fig. 2F). To determine whether SOCS3 is
increased within the cardiomyocytes, we performed im-
munofluorescence staining using antibodies to cardiomyo-
cyte-specific troponin T and SOCS3. Our data indicate that
HFD induced a notable increase in SOCS3 immunofluores-
cence staining that overlapped with troponin T fluores-
cence, suggesting cardiomyocyte elevation of SOCS3
following HFD (Fig. 3). Taken together, these results
indicate that modest obesity induced by HFD causes
inflammation by increasing TLR4 and local macrophage
levels in heart. Elevated cytokines, such as IL-6 and
TNF-�, increase intracellular SOCS3 levels and downregu-
late myocardial glucose metabolism by suppressing AMPK
and GLUT1 and -4 protein levels, similar to their effects in
peripheral organs (21,26).
Effects of acute IL-6 infusion on cardiac metabolism.
To further examine the role of inflammatory cytokines in
modulating myocardial metabolism, a physiological dose

of mouse recombinant IL-6 (16 ng/h) or saline (control)
was intravenously infused for 4 h in conscious C57BL/6
mice. Such IL-6 dose was previously shown to elevate
plasma IL-6 levels to approximately fourfold above basal,
which approximates the levels found in obese subjects
(16,26,27). Tyr705 phosphorylation of STAT3 was increased
by twofold following IL-6 infusion, demonstrating IL-6
stimulation of heart (Fig. 4A). IL-6 infusion caused a 40%
reduction in basal myocardial glucose uptake, which re-
sembled the effects of HFD (Fig. 4B). We performed a 2-h
hyperinsulinemic-euglycemic clamp to assess cardiac in-
sulin action in conscious mice (21). IL-6 infusion reduced
insulin-stimulated heart glucose uptake by �50% as com-
pared with the controls (Fig. 4C), and this was associated
with profound reductions in total AMPK protein and
AMPK phosphorylation (Thr172) levels in heart (Fig. 4D
and E). The ratio of phospho-AMPK to AMPK was further
reduced in IL-6–treated heart (0.23 	 0.06 vs. 1.17 	 0.43
in controls). These data suggest that IL-6 downregulates
myocardial glucose metabolism by suppressing AMPK,
and this is consistent with the inhibitory effects of TNF-�
on AMPK signaling in skeletal muscle (15). Additionally,
IL-6 infusion reduced insulin-stimulated tyrosine phos-
phorylation of IRS-1, a key insulin signaling protein in
heart (Fig. 4F).
IL-6 causes cardiac inflammation and suppresses
AMPK. We next determined whether a systemic increase
in IL-6 level causes local inflammation in heart. Similar to
the effects of HFD, IL-6 infusion increased local macro-
phage levels in heart (Fig. 5A). Although this increase was
statistically significant, it was less remarkable than the
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effects of HFD, suggesting that other cytokines, such as
TNF-�, likely contribute to the diet-induced cardiac in-
flammation. Myocardial SOCS3 levels following IL-6 infu-
sion were markedly elevated (Fig. 5B), suggesting that
SOCS3 may be involved in IL-6–mediated downregulation
of insulin signaling in heart. Previously observed interac-
tion between SOCS3 and IRS-1 raises the possibility that
SOCS3 may interact with AMPK. To test this hypothesis,

we performed a coimmunoprecipitation assay using anti-
bodies against AMPK� and SOCS3. Here, we report that
SOCS3 was detected in AMPK and pAMPK immunopre-
cipitates (Fig. 5C). To the best of our knowledge, this is the
first demonstration of interaction between SOCS3 and
AMPK and supports the notion that SOCS3-induced target-
ing of AMPK to ubiquitin-mediated degradation, as shown
to occur with IRS-1, may be responsible for reduced total
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FIG. 3. Immunofluorescence staining using cardiomyocyte-specific troponin T-tetramethyl rhodamine isothiocyanate (TRITC) (red), nuclear
4�,6-diamidino-2-phenylindole (DAPI) (blue), SOCS3–fluorescein isothiocyanate (FITC) (green), and combined TRITC-DAPI-FITC. Yellow
coloration in combined staining indicates intense overlap staining of red TRITC-troponin T and green FITC-SOCS3. (A high-quality color digital
representation of this figure is available in the online issue.)
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Acute IL-6 infusion reduced insulin-stimulated glucose uptake in heart. D: Total AMPK protein levels normalized to �-actin were reduced in the
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AMPK protein levels in IL-6–treated heart. Alternatively,
IL-6 infusion may reduce the cardiomyocyte synthesis of
AMPK, resulting in lower levels of total AMPK. Thus, these
results indicate that IL-6, at least partly, contributes to
diet-induced inflammation in heart and downregulates
glucose metabolism by increasing SOCS3 and SOCS3-
mediated suppression of IRS-1 and possibly AMPK in
heart.
Diet-induced cardiac insulin resistance and inflam-
mation are attenuated in IL-6–deficient mice. To
further determine the role of IL-6, the effects of HFD on
cardiac metabolism were determined in IL-6 KO mice.
HFD was fed in both groups of mice shortly after weaning
(�4 weeks of age) in order to match diet-induced adipos-
ity in these mice. Following 3 weeks of HFD, whole-body
fat mass was similarly increased in IL-6 KO and wild-type
mice (Fig. 6A). Whole-body lean mass was comparable
between the groups, suggesting a similar growth pattern in
these mice during HFD (Fig. 6B). A 2-h hyperinsulinemic-
euglycemic clamp was performed in IL-6 KO and wild-type
mice following HFD. HFD reduced insulin-stimulated
heart glucose uptake in wild-type mice, but IL-6 KO mice
were protected from diet-induced myocardial insulin re-
sistance (Fig. 6C). Myocardial AMPK phosphorylation was
reduced in wild-type mice following HFD, but such effects
were attenuated in IL-6 KO heart (Fig. 6D).

HFD increased STAT3 phosphorylation in heart, which
is consistent with enhanced inflammation in diet-induced
obese heart (Fig. 7A and B). Improved myocardial glucose

metabolism in HFD-fed IL-6 KO mice was associated with
significant reductions in STAT3 phosphorylation, macro-
phages, and SOCS3 levels in these mice as compared with
HFD-fed wild-type mice (Fig. 7B–D). These results dem-
onstrate that IL-6 deficiency attenuates diet-induced car-
diac inflammation and increases myocardial glucose
metabolism, supporting the deleterious role of IL-6 in
obese heart.
Acute lipid infusion causes cardiac inflammation. Our
findings indicate that inflammation plays an important role
in obesity-associated alterations in myocardial glucose
metabolism. Obesity affects peripheral glucose metabo-
lism through diverse mechanisms, including alterations in
adipose secretion of fatty acids, hormones, and cytokines
(27–30). In this regard, we hypothesized that fatty acids
may trigger cardiac inflammation and alter glucose metab-
olism. Lipid emulsion plus heparin were intravenously
infused for 5 h to raise circulating fatty acids levels in
conscious C57BL/6 mice. Plasma FFA levels were raised
by 3.5-fold over the glycerol-infused control groups (Fig.
8A), and heart samples were taken at the end of experi-
ments. Acute lipid infusion induced cardiac inflammation,
and local levels of IL-6 and TNF-� were increased by 1.5-
to 2-fold in the heart (Fig. 8B and C). Local macrophage
levels were also elevated by threefold following lipid
infusion (Fig. 8D). We measured myocardial expression of
CCR2, which binds the monocyte chemoattractant protein
(MCP)-1 and regulates macrophage recruitment (31,32).
CCR2 expression was elevated by 70% following lipid

FIG. 5. Acute IL-6 infusion stimulates inflammatory response in heart. A: Macrophage-specific CD68 levels normalized to �-actin were elevated
in heart following IL-6 infusion. B: SOCS3 protein levels normalized to �-actin were increased in IL-6–infused heart. C: We performed
coimmunoprecipitation assay using antibodies to phospho-AMPK�, AMPK�, and SOCS3 in heart samples obtained from C57BL/6 mice. SOCS3
antibody pulled down both AMPK and phospho-AMPK, and AMPK antibody pulled down SOCS3 in normal heart, indicating the direct interaction
between SOCS3 and AMPK. Immunoprecipitation of AMPK (or phospho-AMPK) and immunoblotting the AMPK-targeted site with SOCS3
antibody or immunoprecipitation of SOCS3 and immunoblotting the SOCS3 targeted site with AMPK (or phospho-AMPK) were used as negative
controls. Values are means � SE for four to five mice in each experiment. *P < 0.05 vs. control.
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infusion (Fig. 8E), and this was associated with increased
levels of MyD88 in heart (Fig. 8F), supporting the role of
TLR4 signaling in lipid-induced cardiac inflammation. El-
evated levels of local cytokines in response to fatty acids
tended to increase myocardial SOCS3 levels (0.101 	 0.028
vs. 0.057 	 0.016 in controls; P � 0.16) (Fig. 8G). Acute
lipid infusion further reduced total AMPK protein and
AMPK phosphorylation (Thr172) levels in heart (Fig. 8H
and I). These data are consistent with the role of
inflammation in the regulation of myocardial AMPK.
Overall, our results indicate that fatty acids act as
nutrient stress that mediates obesity-induced cardiac
inflammation and alterations in myocardial glucose
metabolism.

DISCUSSION

Circulating levels of inflammatory cytokines are elevated
in obese diabetic subjects, and the notion that type 2
diabetes has an inflammatory component is being widely
accepted (9,33). Recent reports (8,11,34,35) indicate that
obesity is associated with increased macrophage infiltra-
tion in adipose tissue and elevated adipocyte expression of
MCP-1 and macrophage inflammatory protein-1�. IL-6 and
TNF-�, derived from macrophages and adipocytes, alter
glucose metabolism in insulin-sensitive organs (14,21,26).
Mice with adipocyte-specific overexpression of MCP-1
develop insulin resistance associated with increased mac-
rophage infiltration in adipose tissue (34). Additionally,
CCR2 binds to MCP-1 and regulates macrophage recruit-
ment, and CCR2 KO mice show increased insulin sensitiv-
ity with reduced macrophage level in adipose tissue (32).
While the effects of obesity on adipose inflammation are

well established, whether obesity causes inflammation in
other organs remains poorly understood.

In this study, we report for the first time that diet-
induced obesity causes inflammation and increases mac-
rophage infiltration in heart. Similar to the effects in
adipose tissue, diet-induced inflammatory response was
associated with blunted myocardial glucose metabolism.
TNF-�–induced insulin resistance in skeletal muscle was
recently shown to involve transcriptional upregulation of
protein phosphatase 2C and suppression of AMPK (15).
Interestingly, plasma IL-6 and TNF-� levels were elevated
in our diet-induced obese mice, and the cardiac inflamma-
tory response was associated with significant reductions
in AMPK phosphorylation. These results suggest that local
macrophages and cytokines may be responsible for sup-
pressing myocardial AMPK and downregulating glucose
metabolism in heart. Since IL-6 was shown to alter glucose
metabolism in peripheral organs (21,26), we examined the
effects of acute IL-6 infusion on cardiac metabolism. IL-6
infusion markedly reduced basal myocardial glucose up-
take, and this was associated with dramatic reductions in
AMPK protein and phosphorylation levels in heart. IL-6
infusion also decreased IRS-1 tyrosine phosphorylation
and insulin-stimulated glucose uptake in heart. These
results support the notion that IL-6, at least in part, is
responsible for diet-induced reductions in myocardial
AMPK and glucose metabolism in mice. Acute IL-6 infu-
sion caused a more dramatic reduction in total AMPK
protein levels in heart as compared with chronic HFD,
which may be due to elevated leptin levels associated with
HFD-induced obesity. Furthermore, a recent study from
Miller et al. (36) showed that macrophage migration
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inhibitory factor (MIF) stimulates AMPK in ischemic heart.
It is unclear why MIF, which is an upstream regulator of
inflammation, stimulates AMPK under ischemia, but obesity-
associated inflammation suppresses AMPK in normal heart.
More studies are clearly needed to determine whether this is
associated with dose-dependent effects of MIF or in vivo
versus in vitro effects of inflammation.

If IL-6 mediates diet-induced defects in cardiac glucose
metabolism, mice lacking IL-6 may be protected from the
deleterious effects of HFD. Surprisingly, IL-6 KO mice
were previously found to be glucose intolerant and devel-
oped mature-onset obesity (37). However, glucose intoler-
ance may be due to obesity, and not necessarily due to IL-6
deficiency, in IL-6 KO mice (38). Therefore, we designed a
study to match the diet-induced adiposity by feeding an
HFD to young IL-6 KO and wild-type mice, shortly after
weaning, for 3 weeks. We have previously shown that
myocardial glucose metabolism was reduced following 3
weeks of HFD in C57BL/6 mice (7). While HFD reduced
myocardial glucose metabolism and AMPK phosphoryla-
tion in wild-type heart, IL-6 KO mice showed a partial
protection from diet-induced defects in myocardial glu-
cose uptake and AMPK. IL-6 deletion also attenuated and
reduced myocardial levels of STAT3, CD68, and SOCS3
following HFD. Taken together, these data indicate that
IL-6 plays an important role in regulating cardiac inflam-
mation and glucose metabolism in diet-induced obesity.

The role of IL-6 in insulin resistance is controversial
(19). We have previously shown that IL-6 suppresses
muscle insulin signaling and glucose metabolism in mice
(21). In contrast, Carey et al. (39) showed that IL-6
increases AMPK activity and glucose uptake in L6 myo-
tubes. Additionally, Geiger et al. (40) demonstrated that
IL-6 increases AMPK and insulin sensitivity only at super-
physiological levels in rat skeletal muscle. Exercise has
also been shown to increase IL-6 and SOCS3 gene expres-
sion in rat skeletal muscle (41), suggesting that IL-6 may
impart differential effects under exercise condition (42).
Although the role of IL-6 in muscle insulin action remains
debatable, the metabolic effects of IL-6 in liver and adipose
tissue are consistent and well established. IL-6 was shown
to cause insulin resistance and alter insulin signaling in
liver and adipocytes (17,18,26). Intracellular IL-6 signaling
involves the tyrosine phosphorylation gp130 and activa-
tion of STAT3, which leads to the expression of SOCS3
(43). Previous studies (18,44–46) using isolated adipo-
cytes and hepatocytes have shown that IL-6 downregulates
insulin signaling by increasing SOCS3 that targets IRS-1 to
ubiquitin-mediated degradation or blocks insulin receptor
tyrosine phosphorylation. In the current study, HFD or
IL-6 infusion also elevated SOCS3 expression in heart. In
contrast, HFD-fed IL-6 KO mice showed lower SOCS3
levels in heart as compared with the HFD-fed wild-type
mice. Furthermore, our findings that SOCS3 coimmuno-
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precipitates with AMPK raises a possibility that IL-6–
induced SOCS3 may target AMPK for ubiquitin-mediated
degradation, similar to the established effects of SOCS3 on
IRS proteins. However, we acknowledge the preliminary
nature of these data due to limited antibodies used in the
current study, and more studies are clearly needed to
understand the possible regulation of AMPK by SOCS3.
Nonetheless, our findings implicate that IL-6 modulates
cardiac glucose metabolism possibly via STAT3/SOCS3-
mediated downregulation of AMPK and insulin signaling in
heart.

How does diet-induced obesity activate inflammation in
heart? TLR4 was recently identified to bind to fatty acids
and regulate lipid-mediated activation of inflammation and
genes that encode inflammatory cytokines, such as TNF-�
and IL-6 (24,25). Since high-fat feeding increased myocar-
dial levels of TLR4 and MyD88, we examined the role of

fatty acids in diet-induced cardiac inflammation. Surpris-
ingly, acute lipid infusion for 5 h, which raised circulating
fatty acids, promoted dramatic inflammatory and meta-
bolic events resembling the effects of high-fat feeding or
IL-6 infusion. In this regard, acute lipid infusion markedly
raised local macrophage, CCR2, MyD88, and cytokine
levels in heart. Lipid-induced cardiac inflammation was
associated with increased SOCS3 expression and pro-
found reductions in AMPK protein and phosphorylation
levels in heart. These results suggest that fatty acids may
act as a nutrient stress that signals cardiac inflammation
and downregulates myocardial glucose metabolism.

In conclusion, our findings identify a novel role of
inflammation in obesity-associated alterations in myocar-
dial glucose metabolism and insulin resistance. Fatty acids
may act as a nutrient stress that induces inflammation in
heart by activating TLR4 signaling and increasing local

*

*

*
*

* *

* * A

Control

Pl
as

m
a 

FF
A 

Le
ve

ls
(m

M
)

Lipid

B

H
ea

rt
 IL

-6
(p

g 
/ 1

00
 µ

g 
pr

ot
ei

n)
 

H
ea

rt
 T

N
F-
α

(p
g 

/ 1
00

 µ
g 

pr
ot

ei
n)

 

Control Lipid

C

Control Lipid

F
MyD88

Control Lipid

Control Lipid

H

Control Lipid

Control Lipid

AMPK

A
M

PK
Ph

os
ph

or
yl

at
io

n
(P

-T
hr

17
2 A

M
PK

 / 
A

M
PK

) 

I

Control Lipid

Control Lipid

P-Thr172AMPK

AMPK

D

Control Lipid

CD68

β-actin

β-actin β-actin

β-actin β-actin

Control Lipid

Contro

E

l Lipid

CCR2

Control Lipid

G

Control Lipid

Control Lipid

SOCS3

0 
1 
2 
3 
4 
5 
6 

0 
1 
2 
3 
4 
5 
6 
7 

0 
2 
4 
6 
8 

10 

0 

0.1 

0.2 

0.3 

0.4 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

0 
0.2 
0.4 
0.6 
0.8 

1 

0.02 
0 

0.04 
0.06 
0.08 

0.12 
0.1 

0.14 P=0.16

0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 

0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 

H
ea

rt
 C

D
68

(C
D

68
 / 
β-

ac
tin

)
SO

C
S3

 L
ev

el
s

(S
O

C
S3

 / 
β-

ac
tin

)

AM
PK

 T
ot

al
 P

ro
te

in
(A

M
PK

/ β
-a

ct
in

)
C

C
R

2 
Le

ve
ls

 
(C

C
R

2 
/ β

-a
ct

in
)

M
yD

88
 L

ev
el

s
(M

yD
88

 / 
β-

ac
tin

)
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macrophage and cytokine levels. IL-6 downregulates myo-
cardial glucose metabolism and causes insulin resistance
by suppressing AMPK and insulin signaling in heart. The
underlying mechanism involves an IL-6–induced increase
in SOCS3 and SOCS3-mediated degradation of IRS-1 and
possibly AMPK in heart. Since AMPK activation and glu-
cose metabolism provide an important source of energy
for heart under stress conditions, such as ischemia, obe-
sity-induced cardiac inflammation and defects in myocar-
dial glucose metabolism may play an important role in the
pathogenesis of diabetic heart.
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