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Abstract Human decisions are based on finite information, which makes them inherently

imprecise. But what determines the degree of such imprecision? Here, we develop an efficient

coding framework for higher-level cognitive processes in which information is represented by a

finite number of discrete samples. We characterize the sampling process that maximizes perceptual

accuracy or fitness under the often-adopted assumption that full adaptation to an environmental

distribution is possible, and show how the optimal process differs when detailed information about

the current contextual distribution is costly. We tested this theory on a numerosity discrimination

task, and found that humans efficiently adapt to contextual distributions, but in the way predicted

by the model in which people must economize on environmental information. Thus, understanding

decision behavior requires that we account for biological restrictions on information coding,

challenging the often-adopted assumption of precise prior knowledge in higher-level decision

systems.

’We rarely know the statistics of the messages completely, and our knowledge may change . . . what

is redundant today was not necessarily redundant yesterday.’ Barlow, 2001.

Introduction
It has been suggested that the rules guiding behavior are not arbitrary, but follow fundamental prin-

ciples of acquiring information from environmental regularities in order to make the best decisions.

Moreover, these principles should incorporate strategies of information coding in ways that minimize

the costs of inaccurate decisions given biological constraints on information acquisition, an idea

known as efficient coding (Attneave, 1954; Barlow, 1961; Niven and Laughlin, 2008;

Sharpee et al., 2014). While early applications of efficient coding theory have primarily been to early

stages of sensory processing (Laughlin, 1981; Ganguli and Simoncelli, 2014; Wei and Stocker,

2015), it is worth considering whether similar principles may also shape the structure of internal rep-

resentations of higher-level concepts, such as the perceptions of value that underlie economic deci-

sion making (Louie and Glimcher, 2012; Polanı́a et al., 2019; Rustichini et al., 2017). In this work,

we contribute to the efficient coding framework applied to cognition and behavior in several

respects.

A first aspect concerns the range of possible internal representation schemes that should be con-

sidered feasible, which determines the way in which greater precision of discrimination in one part

of the stimulus space requires less precision of discrimination elsewhere. Implementational architec-

tures proposed in previous work assume a population coding scheme in which different neurons

have distinct ’preferred’ stimuli (Ganguli and Simoncelli, 2014; Wei and Stocker, 2015). While this

is clearly relevant for some kinds of low-level sensory features such as orientation, it is not obvious

that this kind of internal representation is used in representing higher-level concepts such as eco-

nomic values. We instead develop an efficient coding theory for a case in which an extensive magni-

tude (something that can be described by a larger or smaller number) is represented by a set of
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processing units that ’vote’ in favor of the magnitude being larger rather than small. The internal

representation therefore necessarily consists of a finite collection of binary signals.

Our restriction to representations made up of binary signals is in conformity with the observation

that neural systems at many levels appear to transmit information via discrete stochastic events

(Schreiber et al., 2002; Sharpee, 2017). Moreover, cognitive models with this general structure

have been argued to be relevant for higher-order decision problems such as value-based choice. For

example, it has been suggested that the perceived values of choice options are constructed by

acquiring samples of evidence from memory regarding the emotions evoked by the presented items

(Shadlen and Shohamy, 2016). Related accounts suggest that when a choice must be made

between alternative options, information is acquired via discrete samples of information that can be

represented as binary responses (e.g., ’yes/no’ responses to queries) (Norman, 1968; Weber and

Johnson, 2009). The seminal decision by sampling (DbS) theory (Stewart et al., 2006) similarly pos-

its an internal representation of magnitudes relevant to a decision problem by tallies of the out-

comes of a set of binary comparisons between the current magnitude and alternative values

sampled from memory. The architecture that we assume for imprecise internal representations has

the general structure of proposals of these kinds; but we go beyond the above-mentioned investiga-

tions, in analyzing what an efficient coding scheme consistent with our general architecture would

be like.

A second aspect concerns the objective for which the encoding system is assumed to be opti-

mized. Information maximization theories (Laughlin, 1981; Ganguli and Simoncelli, 2014; Wei and

Stocker, 2015) assume that the objective should be maximal mutual information between the true

stimulus magnitude and the internal representation. While this may be a reasonable assumption in

the case of early sensory processing, it is less obvious in the case of circuits involved more directly in

decision making, and in the latter case an obvious alternative is to ask what kind of encoding scheme

will best serve to allow accurate decisions to be made. In the theory that we develop here, our pri-

mary concern is with encoding schemes that maximize a subject’s probability of giving a correct

response to a binary decision. However, we compare the coding rule that would be optimal from

this standpoint to one that would maximize mutual information, or to one that would maximize the

expected value of the chosen item.

Third, we extend our theory of efficient coding to consider not merely the nature of an efficient

coding system for a single environmental frequency distribution assumed to be permanently relevant

— so that there has been ample time for the encoding rule to be optimally adapted to that distribu-

tion of stimulus magnitudes — but also an efficient approach to adjusting the encoding as the envi-

ronmental frequency distribution changes. Prior discussions of efficient coding have often

considered the optimal choice of an encoding rule for a single environmental frequency distribution

that is assumed to represent a permanent feature of the natural environment (Laughlin, 1981;

Ganguli and Simoncelli, 2014). Such an approach may make sense for a theory of neural coding in

cortical regions involved in early-stage processing of sensory stimuli, but is less obviously appropri-

ate for a theory of the processing of higher-level concepts such as economic value, where the idea

that there is a single permanently relevant frequency distribution of magnitudes that may be encoun-

tered is doubtful.

A key goal of our work is to test the relevance of these different possible models of efficient cod-

ing in the case of numerosity discrimination. Judgments of the comparative numerosity of two visual

displays provide a test case of particular interest given our objectives. On the one hand, a long liter-

ature has argued that imprecision in numerosity judgments has a similar structure to psychophysical

phenomena in many low-level sensory domains (Nieder and Dehaene, 2009; Nieder and Miller,

2003). This makes it reasonable to ask whether efficient coding principles may also be relevant in

this domain. At the same time, numerosity is plainly a more abstract feature of visual arrays than

low-level properties such as local luminosity, contrast, or orientation, and therefore can be com-

puted only at a later stage of processing. Moreover, processing of numerical magnitudes is a crucial

element of many higher-level cognitive processes, such as economic decision making; and it is argu-

able that many rapid or intuitive judgments about numerical quantities, even when numbers are pre-

sented symbolically, are based on an ’approximate number system’ of the same kind as is used in

judgments of the numerosity of visual displays (Piazza et al., 2007; Nieder and Dehaene, 2009). It

has further been argued that imprecision in the internal representation of numerical magnitudes may

underly imprecision and biases in economic decisions (Khaw et al., 2020; Woodford, 2020).
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It is well-known that the precision of discrimination between nearby numbers of items decreases

in the case of larger numerosities, in approximately the way predicted by Weber’s Law, and this is

often argued to support a model of imprecise coding based on a logarithmic transformation of the

true number (Nieder and Dehaene, 2009; Nieder and Miller, 2003). However, while the precision

of internal representations of numerical magnitudes is arguably of great evolutionary relevance

(Butterworth et al., 2018; Nieder, 2020), it is unclear why a specifically logarithmic transformation

of number information should be of adaptive value, and also whether the same transformation is

used independent of context (Pardo-Vazquez et al., 2019; Brus et al., 2019). Here, we report new

experimental data on numerosity discrimination by human participants, where we find that our data

are most consistent with an efficient coding theory for which the performance measure is the fre-

quency of correct comparative judgments, and where people economize on the costs associated to

learn about the statistics of the environment.

Results

A general efficient sampling framework
We consider a situation in which the objective magnitude of a stimulus with respect to some feature

can be represented by a quantity v. When the stimulus is presented to an observer, it gives rise to

an imprecise representation r in the nervous system, on the basis of which the observer produces

any required response. The internal representation r can be stochastic, with given values being pro-

duced with conditional probabilities pðrjvÞ that depend on the true magnitude. Here, we are more

specifically concerned with discrimination experiments, in which two stimulus magnitudes v1 and v2

are presented, and the subject must choose which of the two is greater. We suppose that each mag-

nitude vi has an internal representation ri, drawn independently from a distribution pðrijviÞ that

depends only on the true magnitude of that individual stimulus. The observer’s choice must be

based on a comparison of r1 with r2.

One way in which the cognitive resources recruited to make accurate discriminations may be lim-

ited is in the variety of distinct internal representations that are possible. When the complexity of

feasible internal representations is limited, there will necessarily be errors in the identification of the

greater stimulus magnitude in some cases, even assuming an optimal decoding rule for choosing the

larger stimulus on the basis of r1 and r2. One can then consider alternative encoding rules for map-

ping objective stimulus magnitudes to feasible internal representations. The answer to this efficient

coding problem generally depends on the prior distribution f ðvÞ from which the different stimulus

magnitudes vi are drawn. The resources required for more precise internal representations of individ-

ual stimuli may be economized with respect to either or both of two distinct cognitive costs. The first

goal of this work is to distinguish between these two types of efficiency concerns.

One question that we can ask is wheter the observed behavioral responses are consistent with

the hypothesis that the conditional probabilities pðrjvÞ are well-adapted to the particular frequency

distribution of stimuli used in the experiment, suggesting an efficient allocation of the limited encod-

ing neural resources. The assumption of full adaptation is typically adopted in efficient coding formu-

lations of early sensory systems (Laughlin, 1981; Wei and Stocker, 2017), and also more recently in

applications of efficient coding theories in value-based decisions (Louie and Glimcher, 2012;

Polanı́a et al., 2019; Rustichini et al., 2017).

There is also a second cost in which it may be important to economize on cognitive resources. An

efficient coding scheme in the sense described above economizes on the resources used to repre-

sent each individual new stimulus that is encountered; however, the encoding and decoding rules

are assumed to be precisely optimized for the specific distribution f ðvÞ of stimuli that characterizes

the experimental situation. In practice, it will be necessary for a decision maker to learn about this

distribution in order to encode and decode individual stimuli in an efficient way, on the basis of

experience with a given context. In this case, the relevant design problem should not be conceived

as choosing conditional probabilities pðrjvÞ once and for all, with knowledge of the prior distribution

f ðvÞ from which v will be drawn. Instead, it should be to choose a rule that specifies how the proba-

bilities pðrjvÞ should adapt to the distribution of stimuli that have been encountered in a given con-

text. It then becomes possible to consider how well a given learning rule economizes on the degree

of information about the distribution of magnitudes associated with one’s current context that is
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required for a given level of average performance across contexts. This issue is important not only to

reduce the cognitive resources required to implement the rule in a given context (by not having to

store or access so detailed a description of the prior distribution), but in order to allow faster adap-

tation to a new context when the statistics of the environment can change unpredictably

(Młynarski and Hermundstad, 2019).

Coding architecture
We now make the contrast between these two types of efficiency more concrete by considering a

specific architecture for internal representations of sensory magnitudes. We suppose that the repre-

sentation ri of a given stimulus will consist of the output of a finite collection of n processing units,

each of which has only two possible output states (’high’ or ’low’ readings), as in the case of a simple

perceptron. The probability that each of the units will be in one output state or the other can

depend on the stimulus vi that is presented. We further restrict the complexity of feasible encoding

rules by supposing that the probability of a given unit being in the ’high’ state must be given by

some function �ðviÞ that is the same for each of the individual units, rather than allowing the different

units to coordinate in jointly representing the situation in some more complex way. We argue that

the existence of multiple units operating in parallel effectively allows multiple repetitions of the

same ’experiment’, but does not increase the complexity of the kind of test that can be performed.

Note that we do not assume any unavoidable degree of stochasticity in the functioning of the indi-

vidual units; it turns out that in our theory, it will be efficient for the units to be stochastic, but we do

not assume that precise, deterministic functioning would be infeasible. Our resource limits are

instead on the number of available units, the degree of differentiation of their output states, and the

degree to which it is possible to differentiate the roles of distinct units.

Given such a mechanism, the internal representation ri of the magnitude of an individual stimulus

vi will be given by the collection of output states of the n processing units. A specification of the

function �ðvÞ then implies conditional probabilities for each of the 2
n possible representations. Given

our assumption of a symmetrical and parallel process, the number ki of units in the ’high’ state will

be a sufficient statistic, containing all of the information about the true magnitude vi that can be

extracted from the internal representation. An optimal decoding rule will therefore be a function

only of ki, and we can equivalently treat ki (an integer between 0 and n) as the internal representa-

tion of the quantity vi. The conditional probabilities of different internal representations are then

pðkijviÞ ¼ n

k

� �

�ðviÞkið1� �ðviÞÞn�ki : (1)

The efficient coding problem for a given environment, specified by a particular prior distribution

f ðvÞ; will be to choose the encoding rule �ðvÞ so as to allow an overall distribution of responses

across trials that will be as accurate as possible (according to criteria that we will elaborate further

below). We can further suppose that each of the individual processing units is a threshold unit, that

produces a ’high’ reading if and only if the value vi �hi exceeds some threshold t ; where hi is a ran-

dom term drawn independently on each trial from some distribution fh (Figure 1). The encoding

function �ðvÞ can then be implemented by choosing an appropriate distribution fh. This implementa-

tion requires that �ðvÞ be a non-decreasing function, as we shall assume.

Limited cognitive resources
One measure of the cognitive resources required by such a system is the number n of processing

units that must produce an output each time an individual stimulus vi is evaluated. We can consider

the optimal choice of fh in order to maximize, for instance, average accuracy of responses in a given

environment f ðvÞ, in the case of any bound n on the number of units that can be used to represent

each stimulus. But we can also consider the amount of information about the distribution f ðvÞ that

must be used in order to decide how to encode a given stimulus vi. If the system is to be able to

adapt to changing environments, it must determine the value of � (the probability of a ’high’ read-

ing) as a function of both the current vi and information about the distribution f , in a way that must

now be understood to apply across different potential contexts. This raises the issue of how precisely

the distribution f associated with the current context is represented for purposes of such a
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calculation. A more precise representation of the

prior (allowing greater sensitivity to fine differen-

ces in priors) will presumably entail a greater

resource cost or very long adaptation periods.

We can quantify the precision with which the

prior f is represented by supposing that it is rep-

resented by a finite sample of m independent

draws ~v1; . . . ;~vm from the prior (or more precisely,

from the set of previously experienced values, an

empirical distribution that should after sufficient

experience provide a good approximation to the

true distribution). We further assume that an

independent sample of m previously experienced

values is used by each of the processing units

(Figure 1). Each of the n individual processing

units is then in the ’high’ state with probability

�ðvi; ~v1; . . . ;~vmÞ. The complete internal representa-

tion of the stimulus vi is then the collection of n

independent realizations of this binary-valued

random variable. We may suppose that the

resource cost of an internal representation of this

kind is an increasing function of both n and m.

This allows us to consider an efficient coding

meta-problem in which for any given values ðn;mÞ
the function �ðvi; ~v1; . . . ;~vmÞ is chosen so as to

maximize some measure of average perceptual

accuracy, where the average is now taken not

only over the entire distribution of possible vi

occurring under a given prior f ðvÞ; but over some range of different possible priors for which the

adaptive coding scheme is to be optimized. We wish to consider how each of the two types of

resource constraint (a finite bound on n as opposed to a finite bound on m) affects the nature of the

predicted imprecision in internal representations, under the assumption of a coding scheme that is

efficient in this generalized sense, and then ask whether we can tell in practice how tight each of the

resource constraints appears to be.

Efficient sampling for a known prior distribution
We first consider efficient coding in the case that there is no relevant constraint on the size of m,

while n instead is bounded. In this case, we can assume that each time an individual stimulus vi must

be encoded, a large enough sample of prior values is used to allow accurate recognition of the dis-

tribution f ðvÞ; and the problem reduces to a choice of a function �ðvÞ that is optimal for each possi-

ble prior f ðvÞ:

Maximizing mutual information
The nature of the resource-constrained problem to be optimized depends on the performance mea-

sure that we use to determine the usefulness of a given encoding scheme. A common assumption in

the literature on efficient coding has been that the encoding scheme maximizes the mutual informa-

tion between the true stimulus magnitude and its internal representation (Ganguli and Simoncelli,

2014; Polanı́a et al., 2019; Wei and Stocker, 2015). We start by characterizing the optimal �ðvÞ for
a given prior distribution f ðvÞ, according to this criterion. It can be shown that for large n, the mutual

information between � and k (hence the mutual information between v and k) is maximized if the

prior distribution f̂ over � is Jeffreys’ prior (Clarke and Barron, 1994)

f̂ ð�Þ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p ; (2)

also known as the arcsine distribution. Hence, the mapping �ðvÞ induces a prior distribution f̂ over �

Figure 1. Architecture of the sampling mechanism. Each processing unit receives noisy

versions of the input v, where the noisy signals are i.i.d. additive random signals

independent of v. The output of the neuron for each sample is ’high’ (one) reading if

v� h>t and zero otherwise. The noisy percept of the input is simply the sum of the outputs

of each sample given by k.
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given by the arcsine distribution (Figure 2a, right panel). Based on this result, it can be shown that

the optimal encoding rule �ðvÞ that guarantees maximization of mutual information between the ran-

dom variable v and the noisy encoded percept k is given by (see Appendix 1)

�ðvÞ ¼ sin
p

2
FðvÞ

� �h i2

; (3)

where FðvÞ is the CDF of the prior distribution f ðvÞ.

Accuracy maximization for a known prior distribution
So far, we have derived the optimal encoding rule to maximize mutual information. However, one

may ask what the implications are of such a theory for discrimination performance. This is important

to investigate given that achieving channel capacity does not necessarily imply that the goals of the

organism are also optimized (Park and Pillow, 2017). Independent of information maximization

assumptions, here, we start from scratch and investigate what are the necessary conditions for mini-

mizing discrimination errors given the resource-constrained problem considered here. We solve this

problem for the case of two alternative forced choice tasks, where the average probability of error is

given by (see Appendix 2)

Figure 2. Overview of our theory and differences in encoding rules. (a) Schematic representation of our theory.

Left: example prior distribution f ðvÞ of values v encountered in the environment. Right: Prior distribution in the

encoder space (Equation 2) due to optimal encoding (Equation 3). This optimal mapping determines the

probability � of generating a ’high’ or ’low’ reading. The ex-ante distribution over � that guarantees maximization

of mutual information is given by the arcsine distribution (Equation 2). (b) Encoding rules �ðvÞ for different
decision strategies under binary sampling coding: accuracy maximization (blue), reward maximization (red), DbS

(green dashed). (c) Mutual information Iðv; kÞ for the different encoding rules as a function of the number of

samples n. As expected Iðv; kÞ increases with n, however the rule that results in the highest loss of information is

DbS. (d) Discriminability thresholds d (log-scaled for better visualization) for the different encoding rules as a

function of the input values v for the prior f ðvÞ given in panel a. (e) Graphical representation of the perceptual

accuracy optimization landscape. We plot the average probability of correct responses for the large-n limit using

as benchmark a Beta distribution with parameters a and b. The blue star shows the average error probability

assuming that f ð�Þ is the arcsine distribution (Equation 2), which is the optimal solution when the prior distribution

f in known. The blue open circle shows the average error probability based on the encoding rule assumed in DbS,

which is located near the optimal solution. Please note that when formally solving this optimization problem, we

did not assume a priori that the solution is related to the beta distribution. We use the beta distribution in this

figure just as a benchmark for visualization. Detailed comparison of performance for finite n samples is presented

in Appendix 7.
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E½error� ¼
Z Z

Perror½�ðv1Þ; �ðv2Þ�f̂ ð�1Þf̂ ð�2Þ d�1d�2; (4)

where Perror½� represents the probability of erroneously choosing the alternative with the lowest value

v given a noisy percept k (assuming that the goal of the organism in any given trial is to choose the

alternative with the highest value). Here, we want to find the density function f̂ ð�Þ that guarantees

the smallest average error (Equation 4). The solution to this problem is (Appendix 2)

f̂ ð�Þ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p ; (5)

which is exactly the same prior density function over � that maximizes mutual information (Equa-

tion 2). Crucially, please note that we have obtained this expression based on minimizing the fre-

quency of erroneous choices and not the maximization of mutual information as a goal in itself. This

provides a further (and normative) justification for why maximizing mutual information under this

coding scheme is beneficial when the goal of the agent is to minimize discrimination errors (i.e.,

maximize accuracy).

Optimal noise for a known prior distribution
Based on the coding architecture presented in Figure 1, the optimal encoding function �ðvÞ can

then be implemented by choice of an appropriate distribution fh. It can be shown that discrimination

performance can be optimized by finding the optimal noise distribution fh (Appendix 3)

(McDonnell et al., 2007)

fhðvÞ ¼
p

2
sin½pð1�Fðt � vÞÞ�f ðt � vÞ: (6)

Remarkably, this result is independent of the number of samples n available to encode the input

variable, and generalizes to any prior distribution f (recall that F is defined as its cumulative density

function).

This result reveals three important aspects of neural function and decision behavior: First, it

makes explicit why a system that evolved to code information using a coding scheme of the kind

assumed in our framework must be necessarily noisy. That is, we do not attribute the randomness of

peoples’ responses to a particular set of stimuli or decision problem to unavoidable randomness of

the hardware used to process the information. Instead, the relevant constraints are assumed to be

the limited set of output states for each neuron, the limited number of neurons, and the requirement

that the neurons operate in parallel (so that each one’s output state must be statistically indepen-

dent of the others, conditional on the input stimulus). Given these constraints, we show that it is effi-

cient for the operation of the neurons to be random. Second, it shows how the nervous system may

take advantage of these noisy properties by reshaping its noise structure to optimize decision

behavior. Third, it shows that the noise structure can remain unchanged irrespective of the amount

of resources available to guide behavior (i.e., the noise distribution fh does not depend on n, Equa-

tion 6). Please note however, that this minimalistic implementation does not directly imply that the

samples in our algorithmic formulation are necessarily drawn in this way. We believe that this imple-

mentation provides a simple demonstration of the consequences of limited resources in systems that

encode information based on discrete stochastic events (Sharpee, 2017). Interestingly, it has been

shown that this minimalistic formulation can be extended to more realistic population coding specifi-

cations (Nikitin et al., 2009).

Efficient coding and the relation between environmental priors and
discrimination
The results presented above imply that this encoding framework imposes limitations on the ability of

capacity-limited systems to discriminate between different values of the encoded variables. More-

over, we have shown that error minimization in discrimination tasks implies a particular shape of the

prior distribution of the encoder (Equation 5) that is exactly the prior density that maximizes mutual

information between the input v and the encoded noisy readings k (Equation 2, Figure 2a right

panel). Does this imply a relation between prior and discriminability over the space of the encoded
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variable? Intuitively, following the efficient coding hypothesis, the relation should be that lower dis-

crimination thresholds should occur for ranges of stimuli that occur more frequently in the environ-

ment or context.

Recently, it was shown that using an efficiency principle for encoding sensory variables (e.g., with

a heterogeneous population of noisy neurons [Ganguli and Simoncelli, 2016]) it is possible to obtain

an explicit relationship between the statistical properties of the environment and perceptual discrim-

inability (Ganguli and Simoncelli, 2016). The theoretical relation states that discriminability thresh-

olds d should be inversely proportional to the density of the prior distribution f ðvÞ. Here, we

investigated whether this particular relation also emerges in the efficient coding scheme that we pro-

pose in this study.

Remarkably, we obtain the following relation between discriminability thresholds, prior distribu-

tion of input variables, and the number of limited samples n (Appendix 4):

d ¼ 1
ffiffiffi
n

p
pf ðvÞ

/ 1

f ðvÞ

(7)

Interestingly, this relationship between prior distribution and discriminability thresholds holds

empirically across several sensory modalities (Appendix 4), thus once again demonstrating that the

efficient coding framework that we propose here seems to incorporate the right kind of constraints

to explain observed perceptual phenomena as consequences of optimal allocation of finite capacity

for internal representations.

Maximizing the expected size of the selected option (fitness maximization)
Until now, we have studied the case when the goal of the organism is to minimize the number of

mistakes in discrimination tasks. However, it is important to consider the case when the goal of the

organism is to maximize fitness or expected reward (Pirrone et al., 2014). For example, when

spending the day foraging fruit, one must make successive decisions about which tree has more

fruits. Fitness depends on the number of fruit collected which is not a linear function of the number

of accurate decisions, as each choice yields a different amount of fruit.

Therefore, in the case of reward maximization, we are interested in minimizing reward loss which

is given by the following expression

E½vðchosenÞ� ¼
Z Z

f ðv1;v2Þ½P1ð�ðv1Þ; �ðv2ÞÞv1þP2ð�ðv1Þ; �ðv2ÞÞv2� dv1dv2; (8)

where Pið�ðv1Þ; �ðv2ÞÞ is the probability of choosing option i when the input values are v1 and v2.

Thus, the goal is to find the encoding rule �ðvÞ which guarantees that the amount of reward loss is as

small as possible given our proposed coding framework.

Here we show that the optimal encoding rule �ðvÞ that guarantees maximization of expected

value is given by

�ðvÞ ¼ sin
p

2
� c
Z v

�¥
f ð~vÞ2=3d~v

� �2

; (9)

where c is a normalizing constant which guarantees that the expression within the integral is a proba-

bility density function (Appendix 5). The first observation based on this result is that the encoding

rule for maximizing fitness is different from the encoding rule that maximizes accuracy (compare

Equations 3 and 9), which leads to a slight loss of information transmission (Figure 2c). Additionally,

one can also obtain discriminability threshold predictions for this new encoding rule. Assuming a

right-skewed prior distribution, which is often the case for various natural priors in the environment

(e.g., like the one shown in Figure 2a), we find that discriminability for small input values is lower for

reward maximization compared to perceptual maximization, however this pattern inverts for higher

values (Figure 2d). In other words, when we intend to maximize reward (given the shape of our

assumed prior, Figure 2a), the agent should allocate more resources to higher values (compared to

the perceptual case), however without completely giving up sensitivity for lower values, as these val-

ues are still encountered more often.
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Efficient sampling with costs on acquiring prior knowledge
In the previous section, we obtained analytical solutions that approximately characterize the optimal

�ðvÞ in the limit as n is made sufficiently large. Note however that we are always assuming that is

finite, and that this constrains the accuracy of the decision maker’s judgments, while m is instead

unbounded and hence no constraint.

The nature of the optimal function �ðvi; ~v1; . . . ;~vmÞ is different, however, when m is small. We argue

that this scenario is particularly relevant when full knowledge of the prior is not warranted given the

costs vs benefits of learning, for instance, when the system expects contextual changes to occur

often. In this case, as we will formally elaborate below, it ceases to be efficient for � to vary only

gradually as a function of vi, rather than moving abruptly from values near zero to values near one

(Appendix 6). In the large-m limiting case, the distributions of sample values ð~v1; . . . ;~vmÞ used by the

different processing units will be nearly the same for each unit (approximating the current true distri-

bution f ðvÞ). Then if � were to take only the values zero and one for different values of its arguments,

the n units would simply produce n copies of the same output (either zero or one) for any given stim-

ulus vi and distribution f ðvÞ. Hence only a very coarse degree of differentiation among different stim-

ulus magnitudes would be possible. Having � vary more gradually over the range of values of vi in

the support of f ðvÞ instead makes the representation more informative. But when m is small (e.g.,

because of costs vs benefits of accurately representing the prior f ), this kind of arbitrary randomiza-

tion in the output of individual processing units is no longer essential. There will already be consider-

able variation in the outputs of the different units, even when the output of each unit is a

deterministic function of ðvi; ~v1; . . . ;~vmÞ, owing to the variability in the sample of prior observations

that is used to assess the nature of the current environment. As we will show below, this variability

will already serve to allow the collective output of the several units to differentiate between many

gradations in the magnitude of vi, rather than only being able to classify it as ’small’ or ’large’

(because either all units are in the ’low’ or ’high’ states).

Robust optimality of decision by sampling
Because of the way in which sampling variability in the values ð~v1; . . . ;~vmÞ used to adapt each unit’s

encoding rule to the current context can substitute for the arbitrary randomization represented by

the noise term hi (see Figure 1), a sharp reduction in the value of m need not involve a great loss in

performance relative to what would be possible (for the same limit on n) if m were allowed to be

unboundedly large (Appendix 7). As an example, consider the case in which m ¼ 1, so that each unit

j’s output state must depend only on the value of the current stimulus vi and one randomly selected

draw ~vj from the prior distribution f ðvÞ. A possible decision rule that is radically economical in this

way is one that specifies that the unit will be in the ’high’ state if and only if vi>~vj: In this case, the

internal representation of a stimulus vi will be given by the number ki out of n independent draws

from the contextual distribution f ðvÞ with the property that the contextual draw is smaller than vi, as

in the model of decision by sampling (DbS) (Stewart et al., 2006). However, it remains to be deter-

mined to what degree it might be beneficial for a system to adopt such coding strategy.

In any given environment (characterized by a particular contextual distribution f ðvÞ), DbS will be

equivalent to an encoding process with an architecture of the kind shown in Figure 1, but in which

the distribution fh ¼ f ðvÞ (compare to the optimal noise distribution fh for the full prior adaptation

case in Equation 6). This makes �ðvÞ vary endogenously depending on the contextual distribution

f ðvÞ. And indeed, the way that �ðvÞ varies with the contextual distribution under DbS is fairly similar

to the way in which it would be optimal for it to vary in the absence of any cost of precisely learning

and representing the contextual distribution. This result implies that �ðvÞ will be a monotonic trans-

formation of a function that increases more steeply over those regions of the stimulus space where

f ðvÞ is higher, regardless of the nature of the contextual distribution. We consider its performance in

a given environment, from the standpoint of each of the possible performance criteria considered

for the case of full prior adaptation (i.e., maximize accuracy or fitness), and show that it differs from

the optimal encoding rules under any of those criteria (Figure 2b–d). In particular, here, we show

that using the encoding rule employed in DbS results in considerable loss of information compared

to the full-prior adaptation solutions (Figure 2c). An additional interesting observation is that for the

strategy employed in DbS, the agent appears to be more sensitive for extreme input values, at least

for a wide set of skewed distributions (e.g., for the prior distribution f ðvÞ in Figure 2a, the
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discriminability thresholds are lower at the extremes of the support of f ðvÞ). In other words, agents

appear to be more sensitive to salience in the DbS rule. Despite these differences, here it is impor-

tant to emphasize that in general for all optimization objectives, the encoding rules will be steeper

for regions of the prior with higher density. However, mild changes in the steepness of the curves

will be represented in significant discriminability differences between the different encoding rules

across the support of the prior distribution (Figure 2d).

While the predictions of DbS are not exactly the same as those of efficient coding in the case of

unbounded m, under any of the different objectives that we consider, our numerical results show

that it can achieve performance nearly as high as that of the theoretically optimal encoding rule;

hence radically reducing the value of m does not have a large cost in terms of the accuracy of the

decisions that can be made using such an internal representation (Appendix 7 and Figure 2e). Under

the assumption that reducing either m or n would serve to economize on scarce cognitive resources,

we formally prove that it might well be most efficient to use an algorithm with a very low value of m

(even m ¼ 1; as assumed by DbS), while allowing n to be much larger (Appendix 6, Appendix 7).

Crucially, here, it is essential to emphasize that the above-mentioned results are derived for the

case of a particular finite number of processing units n (and a corresponding finite total number of

samples from the contextual distribution used to encode a given stimulus), and do not require that n

must be large (Appendix 6, Appendix 7).

Testing theories of numerosity discrimination
Our goal now is to compare back-to-back the resource-limited coding frameworks elaborated above

in a fundamental cognitive function for human behavior: numerosity perception. We designed a set

of experiments that allowed us to test whether human participants would adapt their numerosity

encoding system to maximize fitness or accuracy rates via full prior adaptation as usually assumed in

optimal models, or whether humans employ a ’less optimal’ but more efficient strategy such as DbS,

or the more established logarithmic encoding model.

In Experiment 1, healthy volunteers (n = 7) took part in a two-alternative forced choice numerosity

task in which each participant completed ~2400 trials across four consecutive days (Materials and

methods). On each trial, they were simultaneously presented with two clouds of dots and asked

which one contained more dots, and were given feedback on their reward and opportunity losses on

each trial (Figure 3a). Participants were either rewarded for their accuracy (perceptual condition,

where maximizing the amount of correct responses is the optimal strategy) or the number of dots

they selected (value condition, where maximizing reward is the optimal strategy). Each condition

was tested for two consecutive days with the starting condition randomized across participants. Cru-

cially, we imposed a prior distribution f ðvÞ with a right-skewed quadratic shape (Figure 3b), whose

parametrization allowed tractable analytical solutions of the encoding rules �AðvÞ, �RðvÞ and �DðvÞ,
that correspond to the encoding rules for Accuracy maximization, Reward maximization, and DbS,

respectively (Figure 3e and Materials and methods). Qualitative predictions of behavioral perfor-

mance indicate that the accuracy-maximization model is the most accurate for trials with lower

numerosities (the most frequent ones), whereas the reward-maximization model outperforms the

others for trials with larger numerosities (trials where the difference in the number of dots in the

clouds, and thus the potential reward, is the largest, Figure 2d and Figure 3f). In contrast, the DbS

strategy presents markedly different performance predictions, in line with the discriminability predic-

tions of our formal analyses (Figure 2c,d).

In our modelling specification, the choice structure is identical for the three different sampling

models, differing only in the encoding rule �ðvÞ (Materials and methods). Therefore, answering the

question of which encoding rule is the most favored for each participant can be parsimoniously

addressed using a latent-mixture model, where each participant uses �AðvÞ, �RðvÞ or �DðvÞ to guide

their decisions (Materials and methods). Before fitting this model to the empirical data, we con-

firmed the validity of our model selection approach through a validation procedure using synthetic

choice data (Figure 3d, Figure 3—figure supplement 1, and Materials and methods).

After we confirmed that we can reliably differentiate between our competing encoding rules, the

latent-mixture model was initially fitted to each condition (perceptual or value) using a hierarchical

Bayesian approach (Materials and methods). Surprisingly, we found that participants did not follow

the accuracy or reward optimization strategy in the respective experimental condition, but favored

the DbS strategy (proportion that DbS was deemed best in the perceptual pDbSfavored ¼ 0:86 and
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Figure 3. Experimental design, model simulations and recovery. (a) Schematic task design of Experiments 1 and 2. After a fixation period (1–2 s)

participants were presented two clouds of dots (200 ms) and had to indicate which cloud contained the most dots. Participants were rewarded for

being accurate (perceptual condition) or for the number of dots they selected (value condition) and were given feedback. In Experiment 2 participants

collected on correctly answered trials a number of points equal to a fixed amount (perceptual condition) or a number equal to the dots in the cloud

they selected (value condition) and had to reach a threshold of points on each run. (b) Empirical (grey bars) and theoretical (purple line) distribution of

the number of dots in the clouds of dots presented across Experiments 1 and 2. (c) Distribution of the numerosity pairs selected per trial. (d) Synthetic

data preserving the trial set statistics and number of trials per participant used in Experiment 1 was generated for each encoding rule (Accuracy (left),

Reward (middle), and DbS (right)) and then the latent-mixture model was fitted to each generated dataset. The figures show that it is theoretically

possible to recover each generated encoding rule. (e) Encoding function �ðvÞ for the different sampling strategies as a function of the input values v (i.

e., the number of dots). (f) Qualitative predictions of the three models (blue: Accuracy, red: Reward, green: Decision by Sampling) on trials from

Experiment 1 with n ¼ 25. Performance of each model as a function of the sum of the number of dots in both clouds (left), the absolute difference

between the number of dots in both clouds (middle) and the ratio of the number of dots in the most numerous cloud over the less numerous cloud

(right).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Model recovery for a fixed.

Figure supplement 2. Model recovery with both a and n as free parameters.

Figure supplement 3. Discriminability differences between the different encoding rules.
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value pDbSfavored ¼ 0:93 conditions, Figure 4). Importantly, this population-level result also holds at

the individual level: DbS was strongly favored in 6 out of 7 participants in the perceptual condition,

and seven out of seven in the value condition (Figure 4—figure supplement 1). These results are

not likely to be affected by changes in performance over time, as performance was stable across the

four consecutive days (Figure 4—figure supplement 2). Additionally, we investigated whether

biases induced by choice history effects may have influenced our results (Abrahamyan et al., 2016;

Keung et al., 2019; Talluri et al., 2018). Therefore, we incorporated both choice- and correctness-

dependence history biases in our models and fitted the models once again (Materials and methods).

We found similar results to the history-free models (pDbSfavored ¼ 0:87 in perceptual and

pDbSfavored ¼ 0:93 in value conditions, Figure 4c). At the individual level, DbS was again strongly

favored in 6 out of 7 participants in the perceptual condition, and 7 out of 7 in the value condition

(Figure 4—figure supplement 1).

In order to investigate further the robustness of this effect, we introduced a slight variation in the

behavioral paradigm. In this new experiment (Experiment 2), participants were given points on each

trial and had to reach a certain threshold in each run for it to be eligible for reward (Figure 3a and

Materials and methods). This class of behavioral task is thought to be in some cases more ecolog-

ically valid than trial-independent choice paradigms (Kolling et al., 2014). In this new experiment,

either a fixed amount of points for a correct trial was given (perceptual condition) or an amount

equal to the number of dots in the chosen cloud if the response was correct (value condition). We

recruited a new set of participants (n = 6), who were tested on these two conditions, each for two

consecutive days with the starting condition randomized across participants (each participant com-

pleted ~ 2; 560 trials). The quantitative results revealed once again that participants did not change

their encoding strategy depending on the goals of the task, with DbS being strongly favored for

both perceptual and value conditions (pDbSfavored ¼ 0:999 and pDbSfavored ¼ 0:91,

respectively; Figure 4a), and these results were confirmed at the individual level where DbS was

strongly favored in 6 out of 6 participants in both the perceptual and value conditions (Figure 4—

figure supplement 1). Once again, we found that inclusion of choice history biases in this experi-

ment did not significantly affect our results both at the population and individual levels. Population

probability that DbS was deemed best in the perceptual (pDbSfavored ¼ 0:999) and value

(pDbSfavored ¼ 0:90) conditions (Figure 4—figure supplement 1), and at the individual level DbS was

strongly favored in 6 out of 6 participants in the perceptual condition and 5 of 6 in the value condi-

tion (Figure 4—figure supplement 1). Thus, Experiments 1 and 2 strongly suggest that our results

are not driven by specific instructions or characteristics of the behavioral task.

As a further robustness check, for each participant we grouped the data in different ways across

experiments (Experiments 1 and 2) and experimental conditions (perceptual or value) and investi-

gated which sampling model was favored. We found that irrespective of how the data was grouped,

DbS was the model that was clearly deemed best at the population (Figure 4) and individual level

(Figure 4—figure supplement 3). Additionally, we investigated whether these quantitative results

specifically depended on our choice of using a latent-mixture model. Therefore, we also fitted each

model independently and compared the quality of the model fits based on out-of-sample cross-vali-

dation metrics (Materials and methods). Once again, we found that the DbS model was favored

independently of experiment and conditions (Figure 4).

One possible reason why the two experimental conditions did not lead to differences could be

that, after doing one condition for two days, the participants did not adapt as easily to the new

incentive rule. However, note that as the participants did not know of the second condition before

carrying it out, they could not adopt a compromise between the two behavioral objectives. Never-

theless, we fitted the latent-mixture model only to the first condition that was carried out by each

participant. We found once again that DbS was the best model explaining the data, irrespective of

condition and experimental paradigm (Figure 4—figure supplement 7). Therefore, the fact that

DbS is favored in the results is not an artifact of carrying out two different conditions in the same

participants.

We also investigated whether the DbS model makes more accurate predictions than the widely

used logarithmic model of numerosity discrimination tasks (Dehaene, 2003). We found that DbS still

made better out-of-sample predictions than the log-model (Figure 4b, Figure 5f,g). Moreover,

these results continued to hold after taking into account possible choice history biases (Figure 4—

figure supplement 4). In addition to these quantitative results, qualitatively we also found that
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Figure 4. Behavioral results. (a) Bars represent proportion of times an encoding rule (Accuracy [A, blue], Reward [R, red], DbS [D, green]) was selected

by the Bayesian latent-mixture model based on the posterior estimates across participants. Each panel shows the data grouped for each and across

experiments and experimental conditions (see titles on top of each panel). The results show that DbS was clearly the favored encoding rule. The latent

vector p posterior estimates are presented in Figure 4—figure supplement 4. (b) Difference in LOO and WAIC between the best model (DbS (D) in all

cases) and the competing models: Accuracy (A), Reward (R) and Logarithmic (L) models. Each panel shows the data grouped for each and across

experimental conditions and experiments (see titles on top of each panel). (c) Behavioral data (black, error bars represent SEM across participants) and

model predictions based on fits to the empirical data. Data and model predictions are presented for both the perceptual (left panels) or value (right

panels) conditions, and excluding (top panels) or including (bottom panels) choice history effects. Performance of data model predictions is presented

as function of the sum of the number of dots in both clouds (left), the absolute difference between the number of dots in both clouds (middle) and the

ratio of the number of dots in the most numerous cloud over the less numerous cloud (right). Results reveal a remarkable overlap of the behavioral data

and predictions by DbS, thus confirming the quantitative results presented in panels a and b.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Latent mixture model fits for each participant.

Figure supplement 2. Performance across time.

Figure 4 continued on next page
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behavior closely matched the predictions of the DbS model remarkably well (Figure 4c), based on

virtually only one free parameter, namely, the number of samples (resources) n. Together, these

results provide compelling evidence that DbS is the most likely resource-constrained sampling strat-

egy used by participants in numerosity discrimination tasks.

Recent studies have also investigated behavior in tasks where perceptual and preferential deci-

sions have been investigated in paradigms with identical visual stimuli (Dutilh and Rieskamp, 2016;

Polanı́a et al., 2014; Grueschow et al., 2015). In these tasks, investigators have reported differen-

ces in behavior, in particular in the reaction times of the responses, possibly reflecting differences in

behavioral strategies between perceptual and value-based decisions. Therefore, we investigated

whether this was the case also in our data. We found that reaction times did not differ between

experimental conditions for any of the different performance assessments considered here (Fig-

ure 4—figure supplement 5). This further supports the idea that participants were in fact using the

same sampling mechanism irrespective of behavioral goals.

Here it is important to emphasize that all sampling models and the logarithmic model of numer-

osity have the same degrees of freedom (performance is determined by n in the sampling models

and Weber’s fraction s in the log model, Materials and methods). Therefore, qualitative and quanti-

tative differences favoring the DbS model cannot be explained by differences in model complexity.

It could also be argued that normal approximation of the binomial distributions in the sampling deci-

sion models only holds for large enough n. However, we find evidence that the large-n optimal solu-

tions are also nearly optimal for low n values (Appendix 7). Estimates of n in our data are in general

n» 21 (Table 1) and we find that the large-n rule is nearly optimal already for n ¼ 15 (Appendix 7).

Therefore the asymptotic approximations should not greatly affect the conclusions of our work.

Dynamics of adaptation
Up to now, fits and comparison across models have been done under the assumption that the partic-

ipants learned the prior distribution f ðvÞ imposed in our task. If participants are employing DbS, it is

important to understand the dynamical nature of adaptation in our task. Note that the shape of the

prior distribution is determined by the parameter a (Figure 5b, Equation 10 in Materials

and methods). First, we made sure based on model recovery analyses that the DbS model could

jointly and accurately recover both the shape parameter a and the resource parameter n based on

synthetic data (Figure 3—figure supplement 2). Then we fitted this model to the empirical data

and found that the recovered value of the shape parameter a closely followed the value of the

empirical prior with a slight underestimation (Figure 5a). Next, we investigated the dynamics of prior

adaptation. To this end, we ran a new experiment (Experiment 3, n = 7 new participants) in which

we set the shape parameter of the prior to a lower value compared to Experiments 1–2

(Figure 5b, Materials and methods). We investigated the change of a over time by allowing this

parameter to change with trial experience (Equation 18, Materials and methods) and compared the

evolution of a for Experiments 1 and 2 (empirical a ¼ 2) with Experiment 3 (empirical a ¼ 1,

Figure 5b). If participants show prior adaptation in our numerosity discrimination task, we hypothe-

sized that the asymptotic value of a should be higher for Experiments 1–2 than for Experiment 3.

First, we found that for Experiments 1–2, the value of a quickly reached an asymptotic value close to

the target value (Figure 5c). On the other hand, for Experiment 3 the value of a continued to

decrease during the experimental session, but slowly approaching its target value. This seemingly

slower adaptation to the shape of the prior in Experiment 3 might be explained by the following

observation. The prior parametrized with a ¼ 1 in Experiment 3 is further away from an agent

hypothesized to have a natural numerosity discrimination based on a log scale (a ¼ 2:58, Materials

and methods), which is closer in value to the shape of the prior in Experiments 1 and 2 (a ¼ 2).

Figure 4 continued

Figure supplement 3. Individual level fit of the latent mixture model combining data across experiments and experimental conditions.

Figure supplement 4. Model comparison based on leave-one-out cross-validation metrics.

Figure supplement 5. Reaction times are similar in the perceptual and value conditions.

Figure supplement 6. Behavior and model predictions as a function of sum and difference in dots.

Figure supplement 7. Model fit for the first experimental condition of each participant.

Figure supplement 8. Latent vector p posterior estimates.
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Figure 5. Prior adaptation analyses. (a) Estimation of the shape parameter a for the DbS model by grouping the

data for each and across experimental conditions and experiments. Error bars represent the 95% highest density

interval of the posterior estimate of a at the population level. The dashed line shows the theoretical value of a. (b)

Theoretical prior distribution f ðvÞ in Experiments 1 and 2 (a ¼ 2, purple) and 3 (a ¼ 1, orange). The dashed line

represents the value of a of our prior parametrization that approximates the DbS and log discriminability models.

(c) Posterior estimation of at (Equation 18) as a function of the number of trials t in each daily session for

Experiments 1 and 2 (purple) and Experiment 3 (orange). The results reveal that, as expected, at reaches a lower

asymptotic value d. Error bars represent ± SD of 3000 simulated at values drawn from the posterior estimates of

the HBM (see Materials and methods). (d) Model fit to the first 150 and last 350 trials of each daily session. The a

parameter was allowed to vary between the first and last sets of daily trials and between Experiments 1–2 and

Experiment 3. In Experiment 3, a is lower in the last set of trials compared to the first set of trials (PMCMC ¼ 0:013).

In addition, a for the last trials is lower for Experiment 3 than for Experiments 1–2 (PMCMC ¼ 0:006). This confirms

that the results presented in panel c are not artifacts of the adaptation parametrization assumed for a. Error bars

represent ± SD of the posterior chains of the corresponding parameter. (*P<0.05, **P<0.01, and ***P<0.001). (e)

Behavioral data (black) and model fit predictions of the DbS (green) and Log (yellow) models. Performance of each

model as a function of the sum of the number of dots in both clouds (left), the absolute difference between the

number of dots in both clouds (middle) and the ratio of the number of dots in the most numerous cloud over the

less numerous cloud (right). Error bars represent SEM (f) Difference in LOO and WAIC between the best fitting

DbS (D) and logarithmic encoding (Log) model. (g) Population exceedance probabilities (xp, left) and protected

exceedance probabilities (pxp, right) for DbS (green) vs Log (yellow) of a Bayesian model selection analysis

(Stephan et al., 2009): xpDbS ¼ 0:99, pxpDbS ¼ 0:87. These results provide a clear indication that the adaptive DbS

explains the data better than the Log model.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Performance across trial experience.

Figure supplement 2. Quantitative and dynamical analysis of adaptation over time.

Figure supplement 3. Model fits for the beginning and end of each session without parametric assumptions.
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Irrespective of these considerations, the key result to confirm our adaptation hypothesis is that the

asymptotic value of a is lower for Experiment 3 compared to Experiments 1 and 2 (PMCMC ¼ 0:006).

In order to make sure that this result was not an artifact of the parametric form of adaptation

assumed here (Equation 18, Materials and methods), we fitted the DbS model to trials at the begin-

ning and end of each experimental session allowing a to be a free but fixed parameter in each set of

trials. The results of these new analyses are virtually identical to the results obtained with the

parametric form, in which a is smaller at the end of Experiment 3 sessions relative to beginning of

Experiments 1 and 2 (PMCMC ¼ 0:0003), beginning of Experiments 3 (PMCMC ¼ 0:013) and end of

Experiments 1 and 2 (PMCMC ¼ 0:006, Figure 5d). In this model, we did not allow n to freely change

for each condition, and therefore a concern might be that the results might be an artifact of changes

in n, which could for example change with the engagement of the participants across the session.

Given that we already demonstrated that both parameters n and a are identifiable, we fitted the

same model as in Figure 5d, however this time we allowed n to be free parameter alongside a. We

found that the results obtained in Figure 5d remained virtually unchanged (Figure 5—figure supple-

ment 3), in addition to the result that the resource parameter n remained virtually identical across

the session (Figure 5—figure supplement 3).

We further investigated evidence for adaptation using an alternative quantitative approach. First,

we performed out-of-sample model comparisons based on the following models: (i) the adaptive-a

model, (ii) free-a model with a free but non-adapting over time, and (iii) fixed-a model with a ¼ 2.

The results of the out-of-sample predictions revealed that the best model was the free-a model,

Table 1. Resource parameter n fits.

Fits of the resource parameter for the Accuracy, Reward and Decision by Sampling (DbS) models

including data across experiments and conditions (perceptual (P) or value (V)) either including or

ignoring choice history effects. The values represent the mean ± SD of the posterior distributions at

the population level for parameter n. Note that Reward and in particular the DbS encoding models

require a higher number of resources than the Accuracy model, which is coherent with the fact that

the Accuracy model allocates its resources to maximize efficiency, therefore reducing the number of

resources needed to reach a given accuracy. DbS has the highest values of n because it is the most

inefficient model.

Model

Experiment Condition History effects nAccuracy nReward nDbS

1 V not included 15.24 ± 3.09 17.54 ± 3.98 24.40 ± 5.16

2 V not included 22.48 ± 2.43 27.58 ± 3.81 35.40 ± 3.44

1 P not included 15.19 ± 3.99 17.84 ± 4.85 24.64 ± 6.59

2 P not included 20.99 ± 1.59 24.22 ± 1.93 33.54 ± 2.45

1 P/V not included 15.33 ± 3.41 17.25 ± 4.45 24.15 ± 5.75

2 P/V not included 21.30 ± 0.96 25.27 ± 1.99 33.90 ± 1.51

1/2 V not included 18.56 ± 2.04 22.05 ± 2.73 29.52 ± 3.25

1/2 P not included 17.91 ± 2.09 20.66 ± 2.59 28.62 ± 3.51

1/2 P/V not included 17.93 ± 1.87 21.03 ± 2.46 28.58 ± 3.04

1 V included 15.50 ± 3.13 17.50 ± 3.91 24.68 ± 5.08

2 V included 22.92 ± 2.37 28.07 ± 3.73 36.18 ± 2.91

1 P included 15.41 ± 3.81 17.96 ± 4.88 24.70 ± 6.62

2 P included 21.57 ± 1.71 24.88 ± 2.17 34.37 ± 2.93

1 P/V included 15.16 ± 3.55 17.43 ± 4.39 24.30 ± 5.94

2 P/V included 21.80 ± 0.92 25.81 ± 1.86 34.60 ± 1.40

1/2 V included 18.86 ± 2.07 22.48 ± 2.75 29.85 ± 3.17

1/2 P included 18.15 ± 2.17 21.11 ± 2.72 29.01 ± 3.47

1/2 P/V included 18.22 ± 1.93 21.34 ± 2.50 29.12 ± 3.12
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followed closely by the adaptive-a model (DLOO ¼ 1:8) and then by fixed-a model (DLOO ¼ 32:6).

However, we did not interpret the apparent small difference between the adaptive-a and the free-a

models as evidence for lack of adaptation, given that the more complex adaptive-a model will be

strongly penalized after adaptation is stable. That is, if adaptation is occurring, then the adaptive-a

only provides a better fit for the trials corresponding to the adaptation period. After adaptation, the

adaptive-a should provide a similar fit than the free-a model, however with a larger complexity that

will be penalized by model comparison metrics. Therefore, to investigate the presence of adapta-

tion, we took a closer quantitative look at the evolution of the fits across trial experience. We com-

puted the average trial-wise predicted Log-Likelihood (by sampling from the hierarchical Bayesian

model) and compared the differences of this metric between the competing models and the adap-

tive model. We hypothesized that if adaptation is taking place, the adaptive-a model would have an

advantage relative to the free-a model at the beginning of the session, with these differences vanish-

ing toward the end. On the other hand, the fixed-a should roughly match the adaptive-a model at

the beginning and then become worse over time, but these differences should stabilize after the

end of the adaptation period. The results of these analyses support our hypotheses (Figure 5—fig-

ure supplement 2), thus providing further evidence of adaptation, highlighting the fact that the DbS

model can parsimoniously capture adaptation to contextual changes in a continuous and dynamical

manner. Furthermore, we found that the DbS model again provides more accurate qualitative and

quantitative out-of-sample predictions than the log model (Figure 5e,f).

Discussion
The brain is a metabolically expensive inference machine (Hawkes et al., 1998; Navarrete et al.,

2011; Stone, 2018). Therefore, it has been suggested that evolutionary pressure has driven it to

make productive use of its limited resources by exploiting statistical regularities (Attneave, 1954;

Barlow, 1961; Laughlin, 1981). Here, we incorporate this important — often ignored — aspect in

models of behavior by introducing a general framework of decision-making under the constraints

that the system: (i) encodes information based on binary codes, (ii) has limited number of samples

available to encode information, and (iii) considers the costs of contextual adaptation.

Under the assumption that the organism has fully adapted to the statistics in a given context, we

show that the encoding rule that maximizes mutual information is the same rule that maximizes deci-

sion accuracy in two-alternative decision tasks. However, note that there is nothing privileged about

maximizing mutual information, as it does not mean that the goals of the organism are necessarily

achieved (Park and Pillow, 2017; Salinas, 2006). In fact, we show that if the goal of the organism is

instead to maximize the expected value of the chosen options, the system should not rely on maxi-

mizing information transmission and must give up a small fraction of precision in information coding.

Here, we derived analytical solution for each of these optimization objective criteria, emphasizing

that these analytical solutions were derived for the large-n limiting case. However, we have provided

evidence that these solutions continue to be more efficient relative to DbS for small values of n, and

more importantly, they remain nearly optimal even at relatively low values of n, in the range of values

that might be relevant to explain human experimental data (Appendix 7).

Another key implication of our results is that we provide an alternative explanation to the usual

conception of noise as the main cause of behavioral performance degradation, where noise is usually

artificially added to models of decision behavior to generate the desired variability (Ratcliff and

Rouder, 1998; Wang, 2002). On the contrary, our work makes it formally explicit why a system that

evolved to encode information based on binary codes must be necessarily noisy, also revealing how

the system could take advantage of its unavoidable noisy properties (Faisal et al., 2008) to optimize

decision behavior (Tsetsos et al., 2016). Here, it is important to highlight that this conclusion is

drawn from a purely homogeneous neural circuit, in other words, a circuit in which all neurons have

the same properties (in our case, the same activation thresholds). This is not what is typically

observed, as neural circuits are typically very heterogeneous. However, in the neural circuit that we

consider here, it could mean that the firing thresholds can vary across neurons (Orbán et al., 2016),

which could be used by the system to optimize the required variability of binary neural codes. Inter-

estingly, it has been shown in recent work that stochastic discrete events also serve to optimize

information transmission in neural population coding (Ashida and Kubo, 2010; Nikitin et al., 2009;

Schmerl and McDonnell, 2013). Crucially, in our work we provide a direct link of the necessity of
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noise for systems that aim at optimizing decision behavior under our encoding and limited-capacity

assumptions, which can be seen as algorithmic specifications of the more realistic population coding

specifications mentioned above (Nikitin et al., 2009). We argue that our results may provide a for-

mal intuition for the apparent necessity of noise for improving training and learning performance in

artificial neural networks (Dapello et al., 2020; Findling and Wyart, 2020), and we speculate that

an implementation of ’the right’ noise distribution for a given environmental statistic could be seen

as a potential mechanism to improve performance in capacity-limited agents generally speaking

(Garrett et al., 2011). We acknowledge that based on the results of our work, we cannot confirm

whether this is the case for higher order neural circuits, however, we leave it as an interesting theo-

retical formulation, which could be addressed in future work.

Interestingly, our results could provide an alternative explanation of the recent controversial find-

ing that dynamics of a large proportion of LIP neurons likely reflect binary (discrete) coding states to

guide decision behavior (Latimer et al., 2015; Zoltowski et al., 2019). Based on this potential link

between their work and ours, our theoretical framework generates testable predictions that could

be investigated in future neurophysiological work. For instance, noise distribution in neural circuits

should dynamically adapt according to the prior distribution of inputs and goals of the organism.

Consequently, the rate of ’step-like’ coding in single neurons should also be dynamically adjusted

(perhaps optimally) to statistical regularities and behavioral goals.

Our results are closely related to Decision by Sampling (DbS), which is an influential account of

decision behavior derived from principles of retrieval and memory comparison by taking into

account the regularities of the environment, and also encodes information based on binary codes

(Stewart et al., 2006). We show that DbS represents a special case of our more general efficient

sampling framework, that uses a rule that is similar to (though not exactly like) the optimal encoding

rule that assumes full (or costless) adaptation to the prior statistics of the environment. In particular,

we show that DbS might well be the most efficient sampling algorithm, given that a reduction in the

full representation of the prior distribution might not come at a great loss in performance. Interest-

ingly, our experimental results (discussed in more detail below) also provide support for the hypoth-

esis that numerosity perception is efficient in this particular way. Crucially, DbS automatically adjusts

the encoding in response to changes in the frequency distribution from which exemplars are drawn

in approximately the right way, while providing a simple answer to the question of how such adapta-

tion of the encoding rule to a changing frequency distribution occurs, at a relatively low cost.

On a related line of work, Bhui and Gershman, 2018 develop a similar, but different specification

of DbS, in which they also consider only a finite number of samples that can be drawn from the prior

distribution to generate a percept, and ask what kind of algorithm would be required to improve

coding efficiency. However, their implementation differs from ours in various important ways (see

Appendix 8 for a detailed discussion). One of the main distinctions is that they consider the case in

which only a finite number of samples can be drawn from the prior and show that a variant of DbS

with kernel-smoothing is superior to its standard version. However, a key difference to our imple-

mentation is that they allow the kernel-smoothed quantity (computed by comparing the input v with

a sample ~v from the prior distribution) to vary continuously between 0 and 1, rather than having to

be either 0 or 1 as in our implementation (Figure 1). Thus, they show that coding efficiency can be

improved by allowing a more flexible implementation of the coding scheme for the case when the

agent is allowed to draw few samples from the prior distribution (Appendix 8). On the other hand,

we restrict our framework to a coding scheme that is only allowed to encode information based on

zeros or ones, where we show that coding efficiency can be improved relative to DbS only under a

more complete knowledge of the prior distribution, where the optimal solutions can be formally

derived in the large-n limit. Nevertheless, we have shown that even under the operation of few sam-

pling units, the optimal rules will be still superior to the standard DbS (if the agent has fully adapted

to the statistics of the environment in a given context), even when a few number of processing units

are available to generate decision relevant percepts.

We tested these resource-limited coding frameworks in non-symbolic numerosity discrimination,

a fundamental cognitive function for behavior in humans and other animals, which may have

emerged during evolution to support fitness maximization (Nieder, 2020). Here, we find that the

way in which the precision of numerosity discrimination varies with the size of the numbers being

compared is consistent with the hypothesis that the internal representations on the basis of which

comparisons are made are sample-based. In particular, we find that the encoding rule varies
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depending on the frequency distribution of values encountered in a given environment, and that this

adaptation occurs fairly quickly once the frequency distribution changes.

This adaptive character of the encoding rule differs, for example, from the common hypothesis of

a logarithmic encoding rule (independent of context), which we show fits our data less well. None-

theless, we can reject the hypothesis of full optimality of the encoding rule for each distribution of

values used in our experiments, even after participants have had extensive experience with a given

distribution. Thus, a possible explanation of why DbS is the favored model in our numerosity task is

that accuracy and reward maximization requires optimal adaptation of the noise distribution based

on our imposed prior, requiring complex neuroplastic changes to be implemented, which are in turn

metabolically costly (Buchanan et al., 2013). Relying on samples from memory might be less meta-

bolically costly as these systems are plastic in short time scales, and therefore a relatively simpler

heuristic to implement allowing more efficient adaptation. Here, it is important to emphasize, as it

has been discussed in the past (Tajima et al., 2016; Polanı́a et al., 2015), that for decision-making

systems beyond the perceptual domain, the identity of the samples is unclear. We hypothesize, that

information samples derive from the interaction of memory on current sensory evidence depending

on the retrieval of relevant samples to make predictions about the outcome of each option for a

given behavioral goal (therefore also depending on the encoding rule that optimizes a given behav-

ioral goal).

Interestingly, it was recently shown that in a reward learning task, a model that estimates values

based on memory samples from recent past experiences can explain the data better than canonical

incremental learning models (Bornstein et al., 2017). Based on their and our findings, we conclude

that sampling from memory is an efficient mechanism for guiding choice behavior, as it allows quick

learning and generalization of environmental contexts based on recent experience without signifi-

cantly sacrificing behavioral performance. However, it should be noted that relying on such mecha-

nisms alone might be suboptimal from a performance- and goal-based point of view, where neural

calibration of optimal strategies may require extensive experience, possibly via direct interactions

between sensory, memory and reward systems (Gluth et al., 2015; Saleem et al., 2018).

Taken together, our findings emphasize the need of studying optimal models, which serve as

anchors to understand the brain’s computational goals without ignoring the fact that biological sys-

tems are limited in their capacity to process information. We addressed this by proposing a compu-

tational problem, elaborating an algorithmic solution, and proposing a minimalistic

implementational architecture that solves the resource-constrained problem. This is essential, as it

helps to establish frameworks that allow comparing behavior not only across different tasks and

goals, but also across different levels of description, for instance, from single cell operation to

observed behavior (Marr, 1982). We argue that this approach is fundamental to provide bench-

marks for human performance that can lead to the discovery of alternative heuristics (Qamar et al.,

2013; Gardner, 2019) that could appear to be in principle suboptimal, but that might be in turn the

optimal strategy to implement if one considers cognitive limitations and costs of optimal adaptation.

We conclude that the understanding of brain function and behavior under a principled research

agenda, which takes into account decision mechanisms that are biologically feasible, will be essential

to accelerate the elucidation of the mechanisms underlying human cognition.

Materials and methods

Participants
The study tested young healthy volunteers with normal or corrected-to-normal vision (total n = 20,

age 19–36 years, nine females: n = 7 in Experiment 1, two females; n = 6 new participants in Experi-

ment 2, three females; n = 7 new participants in Experiment 3, four females). Participants were ran-

domly assigned to each experiment and no participant was excluded from the analyses. Participants

were instructed about all aspects of the experiment and gave written informed consent. None of the

participants suffered from any neurological or psychological disorder or took medication that inter-

fered with participation in our study. Participants received monetary compensation for their partici-

pation in the experiment partially related to behavioral performance (see below). The experiments

conformed to the Declaration of Helsinki and the experimental protocol was approved by the Ethics

Committee of the Canton of Zurich (BASEC: 2018–00659).
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Experiment 1
Participants (n = 7) carried out a numerosity discrimination task for four consecutive days for approx-

imately one hour per day. Each daily session consisted of a training run followed by 8 runs of 75 trials

each. Thus, each participant completed ~2400 trials across the four days of experiment.

After a fixation period (1–1.5 s jittered), two clouds of dots (left and right) were presented on the

screen for 200 ms. Participants were asked to indicate the side of the screen where they perceived

more dots. Their response was kept on the screen for 1 s followed by feedback consisting of the

symbolic number of dots in each cloud as well as the monetary gains and opportunity losses of the

trial depending on the experimental condition. In the value condition, participants were explicitly

informed that each dot in a cloud of dots corresponded to 1 Swiss Franc (CHF). Participants were

informed that they would receive the amount in CHF corresponding to the total number of dots on

the chosen side. At the end of the experiment a random trial was selected and they received the

corresponding amount. In the accuracy condition, participants were explicitly informed that they

could receive a fixed reward (15 Swiss Francs (CHF)) for each correct trial. This fixed amount was

selected such that it approximately matched the expected reward received in the value condition (as

tested in pilot experiments). At the end of the experiment, a random trial was selected and they

would receive this fixed amount if they chose the cloud with more dots (i.e., the correct side). Each

condition lasted for two consecutive days with the starting condition randomized across participants.

Only after completing all four experiment days, participants were compensated for their time with

20 CHF per hour, in addition to the money obtained based on their decisions on each experimental

day.

Experiment 2
Participants (n = 6) carried out a numerosity discrimination task in which each of four daily sessions

consisted of 16 runs of 40 trials each, thus each participant completed ~2560 trials. A key difference

with respect to Experiment 1 is that participants had to accumulate points based on their decisions

and had to reach a predetermined threshold on each run. The rules of point accumulation depended

on the experimental condition. In the perceptual condition, a fixed amount of points was awarded if

the participants chose the cloud with more dots. In this condition, participants were instructed to

accumulate a number of points and reach a threshold given a limited number of trials. Based on the

results obtained in Experiment 1, the threshold corresponded to 85% of correct trials in a given run,

however the participants were unaware of this. If the participants reached this threshold, they were

eligible for a fixed reward (20 CHF) as described in Experiment 1. In the value condition, the number

of points received was equal to the number of dots in the cloud, however, contrary to Experiment 1,

points were only awarded if the participant chose the cloud with the most dots. Participants had to

reach a threshold that was matched in the expected collection of points of the perceptual condition.

As in Experiment 1, each condition lasted for two consecutive days with the starting condition ran-

domized across participants. Only after completing all the four days of the experiment, participants

were compensated for their time with 20 CHF per hour, in addition to the money obtained based on

their decisions on each experimental day.

Experiment 3
The design of Experiment 3 was similar to the value condition of Experiment 2 (n = 7 participants)

and was carried out over three consecutive days. The key difference between Experiment 3 and

Experiments 1–2 was the shape of the prior distribution f ðvÞ that was used to draw the number of

dots for each cloud in each trial (see below).

Stimuli statistics and trial selection
For all experiments, we used the following parametric form of the prior distribution

f ðvÞ ¼ cð1� vÞa; (10)

initially defined in the interval [0,1] for mathematical tractability in the analytical solution of the

encoding rules �ðvÞ (see below), with a>0 determining the shape of the distribution, and c is a nor-

malizing constant. For Experiments 1 and 2 the shape parameter was set to a¼ 2, and for Experi-

ment 3 was set to a¼ 1. i.i.d. samples drawn from this distribution were then multiplied by 50,
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added an offset of 5, and finally were rounded to the closest integer (i.e., the numerosity values in

our experiment ranged from vmin ¼ 5 to vmax ¼ 55). The pairs of dots on each trial were determined

by sampling from a uniform density window in the CDF space (Equation 10 is its corresponding

PDF). The pairs of dots in each trial were selected with the conditions that, first, their distance in the

CDF space was less than a constant (0.25, 0.28 and 0.23 for Experiments 1, 2 and 3 respectively),

and second, the number of dots in both clouds was different. Figure 3c illustrates the probability

that a pair of choice alternatives was selected for a given trial in Experiments 1 and 2.

Power analyses and model recovery
Given that adaptation dynamics in sensory systems often require long-term experience with novel

prior distributions, we opted for maximizing the number of trials for a relatively small number of par-

ticipants per experiment, as it is commonly done for this type of psychophysical experiments

(Brunton et al., 2013; Stocker and Simoncelli, 2006; Zylberberg et al., 2018). Note that based on

the power analyses described below, we collected in total ~45,000 trials across the three Experi-

ments, which is above the average number of trials typically collected in human studies.

In order to maximize statistical power in the differentiation of the competing encoding rules, we

generated 10,000 sets of experimental trials for each encoding rule and selected the sets of trials

with the highest discrimination power (i.e., largest differences in Log-Likelihood) between the encod-

ing models. In these power analyses, we also investigated what was the minimum number of trials

that would allow accurate generative model selection at the individual level. We found that ~1000

trials per participant in each experimental condition would be sufficient to predict accurately

(P>0.95) the true generative model. Based on these analyses, we decided to collect at least 1200 tri-

als per participant and condition (perceptual and value) in each of the three experiments. Model

recovery analyses presented in Figure 3d illustrate the result of our power analyses (see also Fig-

ure 3—figure supplement 1).

Apparatus
Eyetracking (EyeLink 1000 Plus) was used to check the participants’ fixation during stimulus presen-

tation. When participants blinked or moved their gaze (more than 2˚ of visual angle) away from the

fixation cross during the stimulus presentation, the trial was canceled (only 212 out of 45,600 trials

were canceled, that is, <0.5% of the trials). Participants were informed when a trial was canceled and

were encouraged not to do so as they would not receive any reward for this trial. A chinrest was

used to keep the distance between the participants and the screen constant (55 cm). The task was

run using Psychtoolbox Version 3.0.14 on Matlab 2018a. The diameter of the dots varied between

0.42˚ and 1.45˚ of visual angle. The center of each cloud was positioned 12.6˚ of visual angle horizon-

tally from the fixation cross and had a maximum diameter of 19.6˚ of visual angle. Following previous

numerosity experiments (van den Berg et al., 2017; Izard and Dehaene, 2008), either the average

dot size or the total area covered by the dots was maintained constant in both clouds for each trial.

The color of each dot (white or black) was randomly selected for each dot. Stimuli sets were different

for each participant but identical between the two conditions.

Encoding rules and model fits
The parametrization of the prior f ðvÞ (Equation 10) allows tractable analytical solutions of the encod-

ing rules �AðvÞ, �RðvÞ and �DðvÞ, that correspond to Accuracy maximization, Reward maximization,

and DbS, respectively:

�AðvÞ ¼ sin
p

2
ð1�ð1� vÞaþ1Þ

h i2

(11)

�RðvÞ ¼ sin
p

2
ð1þðv� 1Þðð1� vÞaÞ2=3Þ

h i2

(12)

�DðvÞ ¼ 1�ð1� vÞaþ1 (13)

Graphical representation of the respective encoding rules is shown in Figure 3e for Experiments

1 and 2. Given an encoding rule �ðvÞ, we now define the decision rule. The goal of the decision
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maker in our task is always to decide which of two input values v1 and v2 is larger. Therefore, the

agent choses v1 if and only if the internal readings k1>k2. Following the definitions of expected value

and variance of binomial variables, and approximating for large n (see Appendix 2), the probability

of choosing v1 is given by

Pchoosev1 »F
�1 � �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 1��1ð Þþ�2 1��2ð Þ

n

q

0

B
@

1

C
A (14)

where FðÞ is the standard CDF, and �1 and �2 are the encoding rules for the input values v1 and v2,

respectively. Thus, the choice structure is the same for all models, only differing in their encoding

rule. The three models generate different qualitative performance predictions for a given number of

samples n (Figure 3f).

Crucially, this probability decision rule (Equation 14) can be parsimoniously extended to include

potential side biases independent of the encoding process as follows

Pchoosev1 »F
�1 � �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 1��1ð Þþ�2 1��2ð Þ

n

q þb0

0

B
@

1

C
A (15)

where b0 is the bias term. This is the base model used in our work. We were also interested in study-

ing whether choice history effects (Abrahamyan et al., 2016; Talluri et al., 2018) may have influence

in our task, thus possibly affecting the conclusions that can be drawn from the base model. There-

fore, we extended this model to incorporate the effect of decision learning and choices from the

previous trial

Pchoosev1 »F
�1� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 1��1ð Þþ�2 1��2ð Þ

n

q þb0þbLat�1rt�1þbChat�1

0

B
@

1

C
A; (16)

where at�1 is the choice made on the previous trial (+1 for left choice and �1 for right choice) and

rt�1 is the ’outcome learning’ on the previous trial (+1 for correct choice and �1 for incorrect choice).

bL and bCh capture the effect of decision learning and choice in the previous trial, respectively.

Given that the choice structure is the same for all three sampling models considered here, we can

naturally address the question of what decision rule the participants favor via a latent-mixture model.

We implemented this model based on a hierarchical Bayesian modelling (HBM) approach. The base-

rate probabilities for the three different encoding rules at the population level are represented by

the vector p, so that pm is the probability of selecting encoding rule model m. We initialize the

model with an uninformative prior given by

p~Dirichlet 1m¼1;1m¼2;1m¼3ð Þ:

This base-rate is updated based on the empirical data, where we allow each participant s to draw

from each model categorically based on the updated base-rate

ms ~Categorical pð Þ;

where the encoding rule � for model m is given by

�m;s ¼
�A; m¼ 1

�R; m¼ 2

�D; m¼ 3

8

<

:

The selected rule was then fed into Equations 15 and 16 to determine the probability of select-

ing a cloud of dots. The number of samples n was also estimated within the same HBM with popula-

tion mean �� and standard deviation s initialized based on uninformative priors with plausible

ranges
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�n ~Uniformð1;1000Þ
sn ~Uniformð0:01;1000Þ

allowing each participant s to draw from this population prior assuming that n is normally distrib-

uted at the population level

ns ~Normalð�n;snÞ

Similarly, the latent variables b in equations Equations 15 and 16 were estimated by setting pop-

ulation mean �b and standard deviation sb initialized based on uninformative priors

�b ~Uniformð�10;10Þ
sb ~Uniformð0:01;100Þ

allowing each participant s to draw from this population prior assuming that b is normally distributed

at the population level

bs ~Normalð�b;sbÞ

In all the results reported in Figure 3 and Figure 4, the value of the shape parameter of the prior

was set to its true value a¼ 2. The estimation of a in Figure 5a was investigated with a similar hierar-

chical approach, allowing each participant to sample from the normal population distribution with

uninformative priors over the population mean and standard deviation

�a ~Uniformð0:01;20Þ
sa ~Uniformð0:0001;100Þ

The choice rule of the standard logarithmic model of numerosity discrimination is given by

Pchoosev1 ¼F
log v1ð Þ� log v2ð Þ

s
ffiffiffi

2
p

� �

; (17)

where s is the internal noise in the logarithmic space. This model was extended to incorporate bias

and choice history effects in the same way as implemented in the sampling models. Here, we

emphasize that all sampling and log models have the same degrees of freedom, where performance

is mainly determined by n in the sampling models and Weber’s fraction s in the log model, and

biases are determined by parameters b. For all above-mentioned models, the trial-by-trial likelihood

of the observed choice (i.e., the data) given probability of a decision was based on a Bernoulli

process

yt;s ~BernoulliðPchoose v1Þ

where yt;s 2 f0;1g is the decision of each participant s in each trial t. In order to allow for prior adap-

tation, the model fits presented in Figure 3 and Figure 4 were fit starting after a fourth of the daily

trials (corresponding to 150 trials for Experiment 1 and 160 trials for Experiment 2) to allow for prior

adaptation and fixing the shape parameter to its true generative value a¼ 2.

The dynamics of adaptation (Figure 5) were studied by allowing the shape parameter a to evolve

through trial experience using all trials collected on each experiment day. This was studied using the

following function

at ¼ dþhe�t=t ; (18)

where d represents a possible target adaptation value of a, t is the trial number, and h, t determine

the shape of the adaptation. Therefore, the encoding rule of the DbS model also changed trial-to-

trial

�tDðvÞ ¼ 1�ð1� vÞatþ1: (19)

Adaptation was tested based on the hypothesis that participants initially use a logarithmic dis-

crimination rule (Equation 17) (this strategy also allowed improving identification of the adaptation

dynamics). Therefore, Equation 18 was parametrized such that the initial value of the shape
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parameter (at¼0) guaranteed that discriminability between the DbS and the logarithmic rule was as

close as possible. This was achieved by finding the value of a in the DbS encoding rule (�D) that mini-

mizes the following expression

XT

t¼1

�D v1;t
� �

� �D v2;t
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �
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� �� �
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� �� �

q
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B
@

1
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A� log v1;t

� �
� log v2;t

� �� �

2

6
4

3

7
5

2

; (20)

where v1;t and v2;t are the numerosity inputs for each trial t. This expression was minimized based on

all trials generated in Experiments 1–3 (note that minimizing this expression does not require knowl-

edge of the sensitivity levels s and n for the log and DbS models, respectively). We found that the

shape parameter value that minimizes Equation 20 is a¼ 2:58. Based on our prior f ðvÞ parametriza-

tion (Equation 10), this suggests that the initial prior is more skewed than the priors used in Experi-

ments 1–3 (Figure 5b). This is an expected result given that log-normal priors, typically assumed in

numerosity tasks, are also highly skewed. We fitted the d parameter independently for Experiments

1–2 and Experiment 3 but kept the t parameter shared across all experiments. If adaptation is tak-

ing place, we hypothesized that the asymptotic value d of the shape parameter a should be larger

for Experiments 1–2 compared to Experiment 3.

Posterior inference of the parameters in all the hierarchical models described above was per-

formed via the Gibbs sampler using the Markov Chain Monte Carlo (MCMC) technique implemented

in JAGS. For each model, a total of 50,000 samples were drawn from an initial burn-in step and sub-

sequently a total of new 50,000 samples were drawn for each of three chains (samples for each chain

were generated based on a different random number generator engine, and each with a different

seed). We applied a thinning of 50 to this final sample, thus resulting in a final set of 1000 samples

for each chain (for a total of 3000 pooling all three chains). We conducted Gelman–Rubin tests for

each parameter to confirm convergence of the chains. All latent variables in our Bayesian models

had R̂<1:05, which suggests that all three chains converged to a target posterior distribution. We

checked via visual inspection that the posterior population level distributions of the final MCMC

chains converged to our assumed parametrizations. When evaluating different models, we are inter-

ested in the model’s predictive accuracy for unobserved data, thus it is important to choose a metric

for model comparison that considers this predictive aspect. Therefore, in order to perform model

comparison, we used a method for approximating leave-one-out cross-validation (LOO) that uses

samples from the full posterior (Vehtari et al., 2017). These analyses were repeated using an alter-

native Bayesian metric: the WAIC (Vehtari et al., 2017).
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Appendix 1

Infomax coding rule
We assume that the subjective perception of an environmental variable with value v is determined

by n independent samples of a binary random variable, that is, outcomes are either ’high’ (ones) or

’low’ (zeros) readings. Here, the probability � of a ’high’ reading is the same on each draw, but can

depend on the input stimulus value, via the function �ðvÞ. Additionally, we assume that the input

value v on a given trial is an independent draw from some prior distribution f ðvÞ in a given environ-

ment or context (with FðvÞ being the corresponding cumulative distribution function). As we men-

tioned before, the choice of � (i.e., encoding of the input value) depends on v. Now suppose that

the mapping �ðvÞ (the encoding rule) is chosen so as to maximize the mutual information between

the random variable v and the subjective value representation k. The mutual information is computed

under the assumption that v is drawn from a particular prior distribution f ðvÞ, and �ðvÞ is assumed to

be optimized for this prior. The mutual information between v and k is defined as

Iðv;kÞ ¼HðkÞ�HðkjvÞ; (21)

where the marginal entropy HðkÞ quantifies the uncertainty of the marginal response distribution

PðkÞ, and HðkjvÞ is the average conditional entropy of k given v. The output distribution is given by

PðkÞ ¼
Z

v2V
PðkjvÞf ðvÞdv; (22)

where f ðvÞ is defined as the input density function. For the encoding framework that we consider

here, which is given by the binomial channel, the conditional probability mass function of the output

given the input is

PðkjvÞ ¼ nk�ðvÞkð1� �ðvÞÞn�k; k 2 ½0;1; . . . ;n�: (23)

Thus, we have all the ingredients to write the expression of the mutual information

Iðv;kÞ ¼HðkÞ�HðkjvÞ

¼�
Xn

k¼0

PðkÞlogPðkÞ

� �
Z

v2V
f ðvÞ

Xn

k¼0

PðkjvÞlogPðkjvÞ dv
 !

(24)

We then seek to determine the encoding rule �ðvÞ that solves the optimization problem

find C¼max
f�ðvÞg

Iðv;kÞ: (25)

It can be shown that for large n, the mutual information between � and k (hence the mutual infor-

mation between v and k) is maximized if the prior distribution over � is the Jeffreys prior (Clarke and

Barron, 1994)

Betað�;0:5;0:5Þ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p ; (26)

also known as the arcsine distribution. Hence, the mapping �ðvÞ induces a prior distribution over �

given by the arcsine distribution. This means that for each v, the encoding function �ðvÞ must be

such that

FðvÞ ¼
Z �ðvÞ

0

1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~�ð1� ~�Þ
q d~�

¼ 2

p
arcsinð

ffiffiffiffiffiffiffiffiffi

�ðvÞ
p

Þ:

(27)

Solving for � we finally obtain the optimal encoding rule
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�ðvÞ ¼ sin
p

2
FðvÞ

� �h i2

: (28)
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Appendix 2

Accuracy maximization for a known prior distribution
Here we derive the optimal encoding rule when the criterion to be maximized is the probability of a

correct response in a binary comparison task, rather than mutual information as in Appendix 1. As in

Appendix 1, we assume that the prior distribution f from which stimuli are drawn is known, and that

the encoding rule is optimized for this particular distribution. (The case in which we wish the encod-

ing rule to be robust to variations in the distribution from which stimuli are drawn is instead consid-

ered in Appendix 6.) Note that the objective assumed here corresponds to maximization of

expected reward in the case of a perceptual experiment in which a subject must indicate which of

two presented magnitudes is greater, and is rewarded for the number of correct responses. (In

Appendix 5, we instead consider the encoding rule that would maximize expected reward if the sub-

ject’s reward is proportional to the magnitude selected by their response).

As above, we assume encoding by a binomial channel. The encoded value (number of ‘high’ read-

ings) is given by k, which is consequently an integer between 0 and n. This is a random variable with

a binomial distribution with expected value and variance given by

E
k

n
j�

� �

¼ � Var
k

n
j�

� �

¼ �ð1� �Þ
n

(29)

Suppose that the task of the decision maker is to decide which of two input values v1 and v2 is

larger. Assuming that v1 and v2 are encoded independently, then the decision maker choses v1 if and

only if the internal readings k1>k2 (here we may suppose that the probability of choosing stimulus 1

is 0.5 in the event that k1 ¼ k2). Thus, the probability of choosing stimulus 1 is:

P
k1

n
>
k2

n
jv1;v2

� �

þ 1

2
P

k1

n
¼ k2

n
jv1;v2

� �

: (30)

In the case of large n, we can use a normal approximation to the binomial distribution to obtain

k1

n
� k2

n

� �

~N �1� �2;
�1ð1� �1Þþ �2ð1� �2Þ

n

� �

(31)

and hence the probability of choosing v1 is given by

Pchoose v1 »F
�1 � �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ð1��1Þþ�2ð1��2Þ

n

q

0

B
@

1

C
A; (32)

where Fð�Þ is the standard CDF. Thus the probability of an incorrect choice (i.e., choosing the item

with the lower value) is approximately

Perror »F � j�1 � �2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ð1��1Þþ�2ð1��2Þ

n

q

0

B
@

1

C
A (33)

Now, suppose that the encoding rule, together with the prior distribution for v (the same for both

inputs that are independent draws from the prior distribution) results in an ex-ante distribution for �

(same for both goods) with density function f̂ ð�Þ. Then the probability of error is given by

Perror »

Z Z

F � j�1 � �2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1ð1� �1Þþ �2ð1� �2Þ
n

r

0

B
B
@

1

C
C
A
f̂ ð�1Þf̂ ð�2Þ d�1d�2 (34)

Our goal is to evaluate Equation 34 for any choice of the density f̂ ð�Þ. First, we fix the value of �1
and integrate over �2:
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Z
1

0

F � j�1� �2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1ð1� �1Þþ �2ð1� �2Þ
p

ffiffiffi
n

p
 !

f̂ ð�2Þd�2

¼
Z �1

0

F � �2 � �1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1ð1� �1Þþ �2ð1� �2Þ
p

ffiffiffi
n

p
 !

f̂ ð�2Þd�2

þ
Z

1

�1

F � �1 � �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1ð1� �1Þþ �2ð1� �2Þ
p

ffiffiffi
n

p
 !

f̂ ð�2Þd�2

(35)

with �2 ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n�1ð1� �1Þ
p

z, the expression above then becomes

»

Z
0

��1
ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�1ð1� �1Þ
p

FðzÞf̂ ð�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�1ð1� �1Þ
p

ffiffiffi
n

p
" #

dz

þ
Z

ð1� �1Þ
ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�1ð1� �1Þ
p

0

Fð�zÞf̂ ð�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�1ð1� �1Þ
p

ffiffiffi
n

p
" #

dz

» 2

Z
0

�¥
FðzÞdz

� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

>0

f̂ ð�1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�1ð1� �1Þ
p

ffiffiffi
n

p

(36)

Then we can integrate over �1 to obtain:

Perror »
2
ffiffiffiffiffiffi
np

p
Z

f̂ ð�1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�1ð1� �1ÞÞ
p

d�1: (37)

This problem can be solved using the method of Lagrange multipliers:
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p

f̂ ð�Þ2d�þlð
Z

f̂ ð�Þ� 1Þ

¼
Z

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p

f̂ ð�Þ2 þlf̂ ð�ÞÞd��l

¼
Z

Lð�; f̂ ;lÞd��l

We now calculate the gradient

qL
qf̂

¼ 2f̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�ð1� �ÞÞ
p

þl (39)

and then find the optimum for f̂ by setting

2f̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�ð1� �ÞÞ
p

þl¼ 0 (40)

then solving for f̂ to obtain

f̂ ¼ �l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p : (41)

Taken into consideration our optimization constraint, it can be shown that

Z
1

0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p ¼ 1

p

and therefore this implies:

1

p
¼�l

2

thus requiring:
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�l¼ 2

p
:

Replacing l in Equation 41 we finally obtain

f̂ ð�Þ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p (26 revisited)

Thus the optimal encoding rule is the same (at least in the large-n limit) in this case as when we

assume an objective of maximum mutual information (the case considered in Appendix 1), though

here we assume that the objective is accurate performance of a specific discrimination task.

Heng et al. eLife 2020;9:e54962. DOI: https://doi.org/10.7554/eLife.54962 33 of 49

Research article Neuroscience

https://doi.org/10.7554/eLife.54962


Appendix 3

Optimal noise for a known prior distribution
Interestingly, we found that the fundamental principles of the theory independently developed in

our work are directly linked to the concept of suprathreshold stochastic resonance (SSR) discovered

about two decades ago. Briefly, SSR occurs in an array of n identical threshold non-linearities, each

of which is subject to independently sampled random additive noise (Figure 1 in main text). SSR

should not be confused with the standard stochastic resonance (SR) phenomenon. In SR, the ampli-

tude of the input signal is restricted to values smaller than the threshold for SR to occur. On the

other hand, in SSR, random draws from the distribution of input values can exist above threshold lev-

els. Using the simplified implementational scheme proposed in our work, it can be shown that

mutual information Iðv; kÞ can be also optimized by finding the optimal noise distribution. This is

important as it provides a normative justification as for why sampling must be noisy in capacity-lim-

ited systems. Actually, SSR was initially motivated as a model of neural arrays such as those synaps-

ing with hair cells in the inner ear, with the direct application of establishing the mechanisms by

which information transmission can be optimized in the design of cochlear implants (Stocks et al.,

2002). Our goal in this subsection is to make evident the link between the novel theoretical implica-

tions of our work and the SSR phenomenon developed in previous work (Stocks et al., 2002;

McDonnell et al., 2007), which should further justify our argument of efficient noisy sampling as a

general framework for decision behavior, crucially, with a parsimonious implementational nature.

Following our notation, each threshold device (we will call it from now on a neuron) can be seen

as the number of n resources available to encode an input stimulus v. Here, we assume that each

neuron produces a ’high’ reading if and only if vþ h>t , where h is i.i.d. random additive noise (inde-

pendent of v) following a distribution function fh, and t is the minimum threshold required to pro-

duce a ’high’ reading. If we define the noise CDF as Fh, then the probability � of the neuron giving a

’high’ reading in response to the input signal v is given by

�ðvÞ ¼ 1�Fhðt � vÞ: (42)

It can be shown that the mutual information between the input v and the number of ’high’ read-

ings k for large n is given by McDonnell et al., 2007,

Iðv;kÞ» 1

2
log2

np

2e

� �

�DKL½f ðvÞjjfJðvÞ�; (43)

where fJ is the Jeffreys prior (Equation 26). Therefore, Jeffreys’ prior can also be derived making it a

function of the noise distribution fh

fJðvÞ ¼
fhðt � vÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fhðt � vÞ½1�Fhðt � vÞ�

p : (44)

Given that the first term in Equation 43 is always non-negative, a sufficient condition for achiev-

ing channel capacity is given by

f ðvÞ ¼ fJðvÞ 8v: (45)

Typically, the nervous system of any organism has little influence on the distribution of physical

signals in the environment. However, it has the ability to shape its internal signals to optimize infor-

mation transfer. Therefore, a parsimonious solution that the nervous system may adopt to adapt to

statistical regularities of environmental signals in a given context is to find the optimal noise distribu-

tion f �h to achieve channel capacity. Note that this is different from classical problems in communica-

tion theory where the goal is usually to find the signal distribution that maximizes mutual

information for a channel. Solving Equation 44 to find fhðvÞ one can find such optimal noise

distribution

f �h ðvÞ ¼
p

2
sin½pð1�Fðt � vÞÞ�f ðt � vÞ: (46)
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A further interesting consequence of this set of results is that the ratio between the signal PDF

f ðvÞ and the noise PDF fh is

f ðvÞ
fhðt � vÞ ¼

2

psin½pð1�FðvÞÞ� : (47)

Using the definition given in Equation 42 to make this expression a function of �, one finds the

optimal PDF of the encoder

f �ð�Þ ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p ; (48)

which is once again the arcsine distribution (See Equations 2 and 5 in main text).
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Appendix 4

Efficient coding and the relation between environmental priors and
discrimination

Appendix 4—figure 1. Recently, it was shown that using an efficiency principle for encoding sensory

variables, based on population of noisy neurons, it was possible to obtain an explicit relationship

between the statistical properties of the environment (the prior) and perceptual discriminability

(Ganguli and Simoncelli, 2016). The theoretical relation states that discriminability should be

inversely proportional to the density of the prior distribution. Interestingly, this relationship holds

across several sensory modalities such as (a) acoustic frequency, (b) local orientation, (c) speed

(figure adapted with permission from the authors Ganguli and Simoncelli, 2016). Here, we

investigate whether this particular relation also emerges in our efficient sampling framework.

We first show that we obtain a prediction of exactly the same kind from our model of encoding

using a binary channel, in the case that (i) we assume that the encoding rule is optimized for a single

environmental distribution, as in the theory of Ganguli and Simoncelli, 2014; Ganguli and Simon-

celli, 2016, and (ii) the objective that is maximized is either mutual information (as in the theory of

Ganguli and Simoncelli) or the probability of an accurate binary comparison (as considered in

Appendix 2).

Note that the expected value and variance of a binomial random variable are given by

E rj�½ � ¼ � Var rj�½ � ¼ �ð1� �Þ
n

; (49)

where we let here r� k=n. In Appendix 2, we show that if the objective is accuracy maximization, an

efficient binomial channel requires that
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�ðvÞ ¼ sin
p

2
FðvÞ

� �h i2

:

Thus, replacing �ðvÞ in Equation 49 implies the following relations

E rj�½ � ¼ sin2ð!Þ; Var rj�½ � ¼ sin2ð!Þcos2ð!Þ
n

; (50)

where we let here !� p
2
FðvÞ. Discrimination thresholds d in sensory perception are defined as the

ratio between the precision of the representation and the rate of change in the perceived stimulus

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var rj�½ �
p

E rj�½ �0
: (51)

Substituting the expressions for expected value and variance in Equation 50 results in

d ¼ 1

2
ffiffiffi
n

p
!0

¼ 1
ffiffiffi
n

p
pf ðvÞ :

(52)

Thus under our theory, this implies

d/ 1

f ðvÞ : (53)

This is exactly the relationship derived and tested by Ganguli and Simoncelli, 2016.

Our model instead predicts a somewhat different relationship if the encoding rule is required to

be robust to alternative possible environmental frequency distributions (the case further discussed in

Appendix 6). In this case, the robustly optimal encoding rule is DbS, which corresponds to �ðvÞ ¼
FðvÞ; rather than the relation (53). Substituting this into Equations 49 and 51 yields the prediction

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FðvÞð1�FðvÞÞ
p

ffiffiffi
n

p � 1

f ðvÞ : (54)

instead of Equation 52.

One interpretation of the experimental support for relation (53) reviewed by Ganguli and Simon-

celli, 2016 could be that in the case of early sensory processing of the kind with which they are con-

cerned, perceptual processing is optimized for a particular environmental frequency distribution

(representing the long-run experience of an organism or even of the species), so that the assump-

tions used in Appendix 2 are the empirically relevant ones. Even so, it is arguable that robustness to

changing contextual frequency distributions should be important in the case of higher forms of cog-

nition, so that one might expect prediction of Equation 54 to be more relevant for these cases; and

indeed, our experimental results for the case of numerosity discrimination are more consistent with

Equation 54 than with Equation 52.

One should also note that even in a case where Equation 54 holds, if one measures discrimina-

tion thresholds over a subset of the stimulus space, over which there is non-trivial variation in f ðvÞ;
but FðvÞ does not change very much (because the prior distribution for which the encoding rule is

optimized assigns a great deal of probability to magnitudes both higher and lower than those in the

experimental data set), then relation (54) restricted to this subset of the possible values for v will

imply that relation (53) should approximately hold. This provides another possible interpretation of

the fact that the relation (53) holds fairly well in the data considered by Ganguli and Simoncelli,

2016.
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Appendix 5

Maximizing expected size of the selected item (fitness maximization)
We now consider the optimal encoding rule under a different assumed objective, namely, maximiz-

ing the expected magnitude of the item selected by the subject’s response (that is, the stimulus

judged to be larger by the subject), rather than maximizing the probability of a correct response as

in Appendix 2. While in many perceptual experiments, maximizing the probability of a correct

response would correspond to maximization of the subject’s expected reward (or at least maximiza-

tion of a psychological reward to the subject, who is given feedback about the correctness of

responses but not about true magnitudes), in many of the ecologically relevant cases in which accu-

rate discrimination of numerosity is useful to an organism (Butterworth et al., 2018; Nieder, 2020),

the decision maker’s reward depends on how much larger one number is than another, and not sim-

ply their ordinal ranking. This would also be true of typical cases in which internal representations of

numerical magnitudes must be used in economic decision making: the reward from choosing an

investment with a larger monetary payoff is proportional to the size of the payoff afforded by the

option that is chosen. Hence it is of interest to consider the optimal encoding rule if we suppose

that encoding is optimized to maximize performance in a decision task with this kind of reward

structure.

As in Appendix 1 and Appendix 2, we again consider the problem of optimizing the encoding

rule for a specific prior distribution f ðvÞ for the magnitudes that may be encountered, and we assume

that it is only possible to encode information via ‘high’ or ‘low’ readings. The optimization problem

that we need to solve is to find the optimal encoding function �ðvÞ that guarantees a maximal

expected value of the chosen outcome, for any given prior distribution f ðvÞ. Thus the quantity that

we seek to maximize is given by

E½vðchosenÞ� ¼
Z Z

f ðv1;v2Þ ½P1ð�ðv1Þ; �ðv2ÞÞv1 þ P2ð�ðv1Þ; �ðv2ÞÞv2�dv1dv2 (55)

where Pið�1; �2Þ is the probability of choosing option i when the encoded values of the two options

are �1 and �2 respectively.

We begin by noting that for any pair of input values v1; v2; the integrand in Equation 55 can be

written as

P1 ð�ðv1Þ; �ðv2ÞÞv1 þ P2ð�ðv1Þ; �ðv2ÞÞv2
¼maxðv1;v2Þ � P1ð�ðv1Þ; �ðv2ÞÞmaxðv2 � v1; 0Þ � P2ð�ðv1Þ; �ðv2ÞÞmaxðv1 � v2; 0Þ
¼maxðv1;v2Þ � ½P1ð�ðv1Þ; �ðv2ÞÞIðv2>v1Þ þ P2ð�ðv1Þ; �ðv2ÞÞIðv1>v2Þ� jv1 � v2j
¼maxðv1;v2Þ � ½Pðerror j�ðv1Þ; �ðv2ÞÞIðv2>v1Þ þ Pðerror j�ðv1Þ; �ðv2ÞÞIðv1>v2Þ� jv1 � v2j
¼maxðv1;v2Þ � Pðerror j�ðv1Þ; �ðv2ÞÞ jv1 � v2j;

(56)

where IðAÞ is the indicator function (taking the value 1 if statement A is true, and the value 0 other-

wise), and Pðerror j�1; �2Þ is the probability of choosing the lower-valued of the two options.

Substituting this last expression for the integrand in Equation 55, we see that we can equivalently

write

E½vðchosenÞ� ¼ E½maxðv1;v2Þ� �
Z Z

f ðv1;v2ÞPðerror j�ðv1Þ; �ðv2ÞÞ jv1 � v2jdv1dv2; (57)

where

E½maxðv1;v2Þ� �
Z Z

f ðv1;v2Þmaxðv1;v2Þdv1dv2 (58)

is a quantity which is independent of the encoding function �ðvÞ: Hence choosing �ðvÞ to maximize

Equation 55 is equivalent to choosing it to minimize

E½loss� ¼
Z Z

f ðv1;v2ÞPðerror j�ðv1Þ; �ðv2ÞÞ jv1� v2jdv1dv2: (59)
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As previously specified, the probability of error given two internal noisy readings k1 and k2 is

given by

PðerrorÞ ¼ k1

n
� k2

n
>0jv1;v2

� �

(60)

»F
�1 � �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1ð1��1Þþ�2ð1��2Þ

n

q

0

B
@

1

C
A; (61)

where in this case we assume that v1 is the lower-valued option and v2 is the higher-valued option on

any given trial. This implies that PðerrorÞ is very close to zero, except when j�1� �2j ¼Oð1= ffiffiffi
n

p Þ. In
this case we have

PðerrorÞ»F
ffiffiffi
n

2

r
�1� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ð1� �Þ
p

 !

where �� �1 þ �2
2

: (62)

As in the case of accuracy maximization, here we assume that ðv1;v2Þ are independent draws from

the same distribution of possible values f ðvÞ. Thus f ðv1;v2Þ ¼ f ðv1Þf ðv2Þ. Then fixing v1 and integrating

over all possible values of v2 in Equation 59, the expected loss is approximately

E½lossjv1� ¼
Z

f ðv2ÞPðerrorjv2;v1Þjv2 � v1jdv2 (63)

»

Z

f ðv2ÞF �
ffiffiffi
n

2

r
j�1 � �2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1ð1� �1Þ
p

 !

jv2 � v1jdv2 (64)

» f ðv1Þ
Z

F �
ffiffiffi
n

2

r
�0ðv1Þjv2 � v1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1ð1� �1Þ
p

 !

jv2� v1jdv2 (65)

» f ðv1Þ
Z

¥

�¥
Fð�jzjÞ

ffiffiffi

2

n

r

�1ð1� �1Þ
�0ðv1Þ

jzj
" # ffiffiffi

2

n

r

�1ð1� �1Þ
�0ðv1Þ

" #

dz (66)

»
4

n

f ðv1Þ
�0ðv1Þ2

½�1ð1� �1Þ�
Z

¥

0

Fð�zÞzdz
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

1=4

(67)

»
1

n

f ðv1Þ
�0ðv1Þ2

½�1ð1� �1Þ� (68)

where in Equation 66 we have applied the change of variable

z� n

2

�0ðv1Þ
�1ð1� �1Þ

ðv2 � v1Þ (69)

and in the integral of Equation 67 we have used

Z
¥

0

Fð�zÞzdz¼ 1

2
ðz2 � 1ÞFð�zÞ� zfð�zÞ
� �

¥

0
(70)

¼ 1

2
0�ð�1

2
Þ

� �

(71)

¼ 1

4
(72)

where fðÞ is the standard normal PDF. Then integrating over v1, we have:

E½loss� ¼ 1

n

Z
f ðv1Þ2

�0ðv1Þ2
½�1ð1� �1Þ� dv1: (73)

Thus we want to find the encoding rule �ðvÞ to minimize this integral given the prior f ðvÞ. We now

apply the change of variable �ðvÞ � sin2ðgðvÞÞ, where gðvÞ is an increasing function with a range

0<gðvÞ< p
2
for all v. Then we have
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�0ðvÞ ¼ 2 sinðgðvÞÞcosðgðvÞÞg0ðvÞ (74)

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðvÞð1� �ðvÞÞ
p

g0ðvÞ (75)

and therefore we have

�ðvÞð1� �ðvÞÞ
�0ðvÞ ¼ 1

4

1

g0ðvÞ : (76)

This allows us to rewrite Equation 73 as follows

E½loss� ¼ 1

n

Z
f ðvÞ2

g0ðvÞ2
: (77)

Now the problem is to choose the function gðvÞ to minimize E½loss� subject to 0<gðvÞ< p
2
. Equiva-

lently, we can choose the function g0ðvÞ>0 to minimize E½loss� subject to
R
g0ðvÞdv< p

2
. Defining

’ðvÞ � g0ðvÞ, the optimization problem to solve is to choose the function ’ðvÞ to

min

Z
f ðvÞ2

’ðvÞ2
dv s:t:

Z

’ðvÞ dv< p

2
(78)

Due to FOC, it can be shown that

f ðvÞ2

’ðvÞ3
¼ same for all v ) ’ðvÞ~ f ðvÞ2=3: (79)

Note also that the constraint
R
’ðvÞ< p

2
must hold with equality, thus arriving at

gðvÞ ¼p

2

Z v

�¥
f ð~vÞ2=3 d~v

Z
¥

�¥
f ð~vÞ2=3 d~v

: (80)

Therefore, we finally obtain the efficient encoding rule that maximizes the expected magnitude of

the selected item

�ðvÞ ¼ sin
p

2

Z v

�¥
f ð~vÞ2=3 d~v

Z
¥

�¥
f ð~vÞ2=3 d~v

2

6
6
4

3

7
7
5

2

(81)
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Appendix 6

Robust optimality of DbS among encoding rules with m ¼ 1

Here we consider the nature of the optimal encoding function when the cost of increasing the size

of the sample of values from prior experience that are used to adjust the encoding rule to the con-

textual distribution of stimulus values is great enough to make it optimal to base the encoding of a

new stimulus magnitude v on a single sampled value ~v from the contextual distribution. (The condi-

tions required for this to be the case are discussed further in Appendix 7).

We assume that for each of the n independent processing units, the probability of a ’high’ read-

ing is given by �ðv;~vjÞ, where ~vj is the draw from the contextual distribution by processor j, and

�ðv;~vÞ is the same function for each of the processing units. The f~vjg for j ¼ 1; 2; . . . ; n are indepen-

dent draws from the contextual distribution f ðvÞ: We further assume that the function �ðv;~vÞ satisfies
certain regularity conditions. First, we assume that � is a piecewise continuous function. That is, we

assume that the v� ~v plane can be divided into a countable number of connected regions, with the

boundaries between regions defined by continuous curves; and that the function �ðv;~vÞ is continuous
in the interior of any of these regions, though it may be discontinuous at the boundaries between

regions. And second, we assume that �ðv;~vÞ is necessarily weakly increasing in v and weakly decreas-

ing in ~v: The function is otherwise unrestricted.

For any prior distribution f ðvÞ and any encoding function �ðv;~vÞ; we can compute the probability

of an erroneous comparison when two stimulus magnitudes v1; v2 are independently drawn from the

distribution f ðvÞ, and each of these stimuli is encoded using n additional independent draws f~vjg
from the same distribution. Let this error probability be denoted Pnð�; f Þ: We wish to find an encod-

ing rule (for given n) that will make this error probability as small as possible; however, the answer to

this question will depend on the prior distribution f ðvÞ: Hence we wish to find an encoding rule that

is robustly optimal, in the sense that it achieves the minimum possible value for the upper bound

�Perrorð�Þ � sup
f2F

Pnð�; f Þ

for the probability of an erroneous comparison. Here, the class of possible priors F to consider is

the set of all possible probability distributions (over values of v) that can be characterized by an inte-

grable probability density function f ðvÞ. (We exclude from consideration priors in which there is an

atom of probability mass at some single magnitude v, since in that case there would be a positive

probability of a situation in which it is not clear which response should be considered ‘correct’, so

that Perror is not well-defined.) Note that the criterion �Perrorð�Þ for ranking encoding rules is not with-

out content, since there exist encoding rules (including DbS) for which the upper bound is less than

1/2 (the error probability in the case of a completely uninformative internal representation).

Let us consider first the case in which there is some part of the diagonal line along which ~v ¼ v

which is not a boundary at which the function �ðv;~vÞ is discontinuous. Then we can choose an open

interval ðvmin; vmaxÞ such that all values v;~v with the property that both v and ~v lie within the interval

ðvmin; vmaxÞ are part of a single region on which �ðv;~vÞ is a continuous function. Then let �min be the

greatest lower bound with the property that �ðv;~vÞ � �min for all v;~v lying within the specified interval,

and similarly let �max be the lowest upper bound such that �ðv;~vÞ � �max for all values within the speci-

fied interval. Because of the continuity of �ðv;~vÞ on this region, as the values vmin; vmax are chosen to

be close enough to each other, the bounds �min; �max can be made arbitrarily close to one another.

Now for any probabilities 0 � � � �0 � 1; let Pminð�; �0Þ be the quantity defined in Equation 30,

when �1 ¼ � and �2 ¼ �0; that is, for any v1; v2 that are not equal to one another, Pminð�; �0Þ is the

probability of an erroneous comparison if the units representing the smaller magnitude each give a

’high’ reading with probability � and those representing the larger magnitude each give a ’high’

reading with probability �0: Then the probability of erroneous choice Perror when f ðvÞ is a distribution

with support entirely within the interval ðvmin; vmaxÞ is necessarily greater than or equal to the lower

bound Pminð�min; �maxÞ. The reason is that for any v1; v2 in the support of f ðvÞ; the probabilities

�i ¼
Z

�ðvi;~vÞf ð~vÞd~v

will necessarily lie within the bounds �min � �i � �max for both i¼ 1;2: Given these bounds, the most
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favorable case for accurate discrimination between the two magnitudes will be to assign the largest

possible probability �max to units being on in the representation of the larger magnitude, and the

smallest possible probability �min to units being on in the representation of the smaller magnitude.

Since the lower bound Pminð�min; �maxÞ applies in the case of any individual values v1;v2 drawn from

the support of f ðvÞ, this same quantity is also a lower bound for the average error rate integrating

over the prior distributions for v1 and v2.

One can also show that as the two bounds �min; �max approach one another, the lower bound

Pminð�min; �maxÞ approaches 1/2, regardless of the common value that �min and �max both approach.

Hence it is possible to make Pminð�min; �maxÞ arbitrarily close to 1/2, by choosing values for vmin; vmax
that are close enough to one another. It follows that for any bound Pmin less than 1/2 (including val-

ues arbitrarily close to 1/2), we can choose a prior distribution f ðvÞ for which Perror is necessarily equal

to Pmin or larger. It follows that in the case of a function �ðv;~vÞ of this kind, the upper bound �Perrorð�Þ
is equal to 1/2.

In order to achieve an upper bound lower than 1/2, then, we must choose a function �ðv;~vÞ that is
discontinuous along the entire line v ¼ ~v. For any such function, let us consider a value v� with the

property that all points ðv;~vÞ near ðv�; v�Þ with v>~v belong to one region on which � is continuous,

and all points near ðv�; v�Þ with v<~v belong to another region. Then under the assumption of piece-

wise continuity, �ðv;~vÞ must approach some value ��ðv�Þ as the values ðv;~vÞ converge to ðv�; v�Þ from

within the region where v>~v; and similarly �ðv;~vÞ must approach some value �ðv�Þ as the values ðv;~vÞ
converge to ðv�; v�Þ from within the region where v<~v:

It must also be possible to choose values vmin<v
�<vmax such that all points ðv; vÞ with vmin<v<vmax

are points on the boundary between the two regions on which � is continuous. Given such values,

we can then define bounds �min; and
��max; such that

�min � �ðv;~vÞ � �max

for all vmin<v<~v<vmax; and

��min � �ðv;~vÞ � ��max

for all vmin<~v<v<vmax. Moreover, piecewise continuity of the function �ðv;~vÞ implies that by choos-

ing both vmin and vmax close enough to v� we can make the bounds �min; �max arbitrarily close to �ðv�Þ;
and make the bounds ��min; ��max arbitrarily close to ��ðv�Þ:

Next, for any set of four probabilities 0 � � � �0 � 1 and 0 � �� � ��0 � 1; let us define

P̂minð�;�0; ��; ��0Þ � E½Pminð�ðz1Þ; �0ðz2ÞÞ jz1<z2�; (82)

where

�ðzÞ � z�� þ ð1� zÞ�; �0ðzÞ � z��0 þ ð1� zÞ�0; (83)

and z1; z2 are two independent random variables, each distributed uniformly on [0, 1]. Then if �ðv;~vÞ
lies between the lower bound � and upper bound �0 whenever v<~v, and between the lower bound ��

and upper bound ��0 whenever v>~v, then the probability � of a processing unit representing the mag-

nitude v giving a ’high’ reading will lie between the bounds �ðzÞ � �� �0ðzÞ; where z¼ FðvÞ is the

quantile of v within the prior distribution. It follows that in the case of any two magnitudes v1;v2 with

v1<v2; the probability of an erroneous comparison will be bounded below by Pminð�ðz1Þ; �0ðz2ÞÞ; where
zi ¼ FðviÞ for i¼ 1;2; since the probability of a correct discrimination will be maximized by making the

units representing v1 give as few high readings as possible and the units representing v2 give as

many high readings as possible. Integrating over all possible draws of v1;v2, one finds that the quan-

tity P̂minð�;�0; ��; ��0Þ defined in Equation 82 is a lower bound for the overall probability of an erroneous

comparison, given that regardless of the prior f ðvÞ; the quantiles z1; z2 will be two independent draws

from the uniform distribution on ½0;1�:
Now consider again an encoding function �ðv;~vÞ of the kind discussed two paragraphs above,

and an interval of stimulus values ðvmin; vmaxÞ of the kind discussed there. For any prior distribution

f ðvÞ with support entirely contained within the interval ðvmin; vmaxÞ, the probability of an erroneous

comparison is bounded below by
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Pnð�; f Þ � P̂minð�min; �max; ��min; ��maxÞ;

where the function P̂min is defined in Equation 82. Moreover, by choosing the values vmin;vmax close

enough to v�, we can make this lower bound arbitrarily close to Peð�ðv�Þ; ��ðv�ÞÞ; where for any proba-

bilities �; �� we define

Peð�; ��Þ � P̂minð�;�; ��; ��Þ: (84)

Hence in the case of the encoding function considered, the upper bound �Perrorð�Þ must be at least

as large as Peð�ðv�Þ; ��ðv�ÞÞ: We further observe that the quantity Peð�; ��Þ defined in Equation 84 is

just the probability of an erroneous comparison in the case of an encoding rule according to which

�ðv;~vÞ ¼ � if v<~v;

�ðv;~vÞ ¼ �� if v>~v:

Note that in the case of such an encoding rule, the probability of an erroneous comparison is the

same for all prior distributions, since under this rule all that matters is the distribution of the quantile

ranks of v and ~v. It is moreover clear that Peð�; ��Þ is an increasing function of � and a decreasing func-

tion of ��: It thus achieves its minimum possible value if and only if �¼ 0 and ��¼ 1, in which case it

takes the value PDbS
error; the probability of erroneous comparison in the case of decision by sampling

(again, independent of the prior distribution).

Thus in the case that there exists any magnitude v� for which �ðv�Þ>0; �ðv�Þ<1 or both, there exist

priors f ðvÞ for which Pnð�; f Þ must exceed PDbS
error ¼ Peð0; 1Þ: Hence in order to minimize the upper

bound �Perrorð�Þ; it must be the case that �ðvÞ ¼ 0 and ��ðvÞ ¼ 1 for all v. But then our assumption that

the encoding rule �ðv;~vÞ is at least weakly increasing in v and at least weakly decreasing in ~v requires

that

�ðv;~vÞ ¼ 0 for all v<~v;

�ðv;~vÞ ¼ 1 for all v>~v:

Thus the encoding rule must be the DbS rule, the unique rule for which �Perrorð�Þ is no greater than

PDbS
error:
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Appendix 7

Sufficient conditions for the optimality of DbS
Here we consider the general problem of choosing a value of m (the number of samples from the

contextual distribution f ðvÞ to use in encoding any individual stimulus) and an encoding rule

�ðv; ~v1; . . . ;~vmÞ to be used by each of the n processing units that encode the magnitude of that single

stimulus, so as to minimize the compound objective

�Perrorð�Þ þ KðmÞ;

where �Perror is the upper bound on the probability of an erroneous comparison under the encoding

rule �, and KðmÞ is the cost of using a sample of size m when encoding each stimulus magnitude. The

value of n is taken as fixed at some finite value. (This too can be optimized subject to some cost of

additional processing units, but we omit formal analysis of this problem.) We assume that KðmÞ is an
increasing function of m, and can without loss of generality assume the normalization Kð0Þ ¼ 0: In this

optimization problem, we assume that the only encoding functions � to be considered are ones that

are piecewise continuous, at least weakly increasing in v, and weakly decreasing in each of the ~vj.

For any value of m, let P�ðmÞ be the minimum achievable value for �Perrorð�Þ: (Appendix 6 illustrates

how this kind of problem can be solved, for the case m ¼ 1.) Then the optimal value of m will be the

one that minimizes P�ðmÞ þ KðmÞ:
We can establish a lower bound for P�ðmÞ that holds for any m:

P�ðmÞ � inf
�ðv;~v1;...;~vmÞ

sup
f2F

Pnð�; f Þ

� sup
f2F

inf
�ðv;~v1;...;~vmÞ

Pnð�; f Þ

¼ sup
f2F

inf
�ðvÞ

Pnð�; f Þ � Pn:

(85)

In the second line, we allow the function �ðv;~v1; . . . ;~vmÞ to be chosen after a particular prior f ðvÞ
has already been selected, which cannot increase the worst-case error probability. In the third line,

we note that the only thing that matters about the encoding function chosen in the second line is

the mean value of �ðv;~v1; . . . ;~vmÞ for each possible magnitude v, integrating over the possible samples

of size m that may be drawn from the specified prior; hence we can more simply write the problem

on the second line as one involving a direct choice of a function �ðvÞ; which may be different

depending on the prior f ðvÞ that has been chosen. The problem on the third line defines a bound Pn

that does not depend on m.

A set of sufficient conditions for m ¼ 1 to be optimal is then given by the assumptions that

a. P�ð0Þ>P�ð1Þ þ Kð1Þ, and
b. P�ð1Þ � P<Kð2Þ � Kð1Þ.

Condition (a) implies that m ¼ 0 will be inferior to m ¼ 1: the cost of a single sample is not so large

as to outweigh the reduction in �Perrorð�Þ that can be achieved using even one sample. Condition (b)

implies that m ¼ 1 will be superior to any m0>1: The lower bound (Equation 85), together with our

monotonicity assumption regarding KðmÞ, implies that for any m0>1,

P�ð1Þ�P�ðm0Þ � P�ð1Þ�P<Kð2Þ�Kð1Þ � Kðm0Þ�Kð1Þ;

and hence that

P�ð1ÞþKð1Þ< P�ðm0ÞþKðm0Þ:

While condition (b) is stronger than is needed for this conclusion, the sufficient conditions stated

in the previous paragraph have the advantage that we need only consider optimal encoding rules

for the cases m¼ 0 and m¼ 1, and the efficient coding problem stated in definition (Equation 85), in

order to verify that the conditions are both satisfied. The efficient coding problem for the case m¼ 1

is treated in Appendix 6, where we show that P�ð1Þ ¼ PDbS
error<1=2: Using the calculations explained in

Appendix 2, we can provide an analytical approximation to this quantity in the limiting case of large

n.
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Equation 37 states that for any encoding rule �ðvÞ and any prior distribution f ðvÞ, the value of

Perror for any large enough value of n will approximately equal

Pnð�; f Þ »
2
ffiffiffiffiffiffi
np

p
Z

f̂ ð~�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~�ð1� ~�Þ
q

d~�; (37 revisited)

where f̂ ð�Þ is the probability density function of the distribution of values for �ðvÞ implied by the func-

tion �ðvÞ and the distribution f ðvÞ of values for v. In the case of DbS, the probability distribution over

alternative internal representations ki (and hence the probability of error) is the same as in the case

of an encoding rule �ðvÞ ¼ FðvÞ; so that Equation 37 can be applied. Furthermore, for any prior dis-

tribution f ðvÞ; the probability distribution of values for the quantile z¼ FðvÞ will be a uniform distribu-

tion over the interval ½0;1�, so that f̂ ð�Þ ¼ 1 for all �. It follows that

PDbS;lim
error »

2
ffiffiffiffiffiffi
np

p
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~�ð1� ~�Þ
q

d~� ¼ 1

4

ffiffiffiffi
p

n

r

: (86)

In the case that m¼ 0; instead, the same function �ðvÞ must be used regardless of the contextual

distribution f ðvÞ: Under the assumption that �ðvÞ is piecewise continuous, there must exist a magni-

tude v� such that �ðvÞ is continuous over some interval ðvmin;vmaxÞ containing v� in its interior. Let

�min; �max be the greatest lower bound and least upper bound respectively, such that

�min � �ðvÞ � �max

for all vmin<v<vmax: The continuity of �ðvÞ on this interval means that by choosing both vmin and

vmax close enough to v�; we can make both �min and �max arbitrarily close to �ðv�Þ:
By the same argument as in Appendix 6, for any prior distribution f ðvÞ with support entirely con-

tained in the interval ðvmin; vmaxÞ, the pair of stimulus magnitudes v1; v2 will have to imply �min �
�ðv1Þ; �ðv2Þ � �max with probability 1, and as a consequence the error probability Pnð�; f Þ will neces-

sarily be greater than or equal to the lower bound Pminð�min; �maxÞ: By choosing both vmin and vmax

close enough to v�; we can make this lower bound arbitrarily close to Pminð�ðv�Þ; �ðv�ÞÞ ¼ 1=2: Hence

for any encoding rule �ðvÞ with m ¼ 0; the upper bound �Perrorð�Þ cannot be lower than 1/2. It follows

that P�ð0Þ ¼ 1=2:

Given this, condition (a) can alternatively be expressed as

PDbS
error þ Kð1Þ< 1=2:

Note that if Kð1Þ remains less than 1/2 no matter how large n is, this condition will necessarily be

satisfied for all large enough values of n, since Equation 86 implies that PDbS
error eventually becomes

arbitrarily small, in the case of large enough n. (On the other hand, the condition can easily be satis-

fied for some range of smaller values of n, even if Kð1Þ>1=2 once n becomes very large.)

In order to consider the conditions under which condition (b) will also be satisfied, it is necessary

to further analyze the efficient coding problem stated in Equation 85. We first observe that for any

prior f ðvÞ 2 F and encoding rule �ðvÞ; the encoding rule can always be expressed in the form �ðvÞ ¼
’ðFðvÞÞ; where ’ðzÞ is a piecewise-continuous, weakly increasing function giving the probability of a

’high’ reading as a function of the quantile z of the stimulus magnitude in the prior distribution. We

then note that when this representation is used for the encoding function in Equation 85, the error

probability Pnð�; f Þ depends only on the function ’ðzÞ; in a way that is independent of the prior f ðvÞ:
Hence the inner minimization problem in Equation 85 can equivalently be written as

inf
’ðzÞ

Pnð’Þ: (87)

This problem has a solution for the optimal ’ðzÞ for any number of processing units n, and an

associated value that is independent of the prior f ðvÞ: Hence we can write the bound defined in

Equation 85 more simply as

Pn ¼ inf
’ðzÞ

Pnð’Þ: (88)

Condition (b) will be satisfied as long as the bound defined in Equation 88 is not too much lower
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than PDbS
error: In fact, this bound can be a relatively large fraction of PDbS

error: We consider the problem of

the optimal choice of an encoding function �ðvÞ for a known prior f ðvÞ in Appendix 2. In the limiting

case of a sufficiently large n, substitution of Equation 2 into 37 yields the approximate solution

Plim
n »

2
ffiffiffiffiffiffi
np

p 1

p2

d~�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~�ð1� ~�Þ
q ¼ 2

ffiffiffiffiffiffiffiffi

np3
p : (89)

Thus as n is made large, the ratio Plim
n =PDbS;lim

error converges to the value

Plim=PDbS;lim
error ¼ 8=p2 ¼ 0:81: (90)

This means that increases in the sample size m above one cannot reduce P�ðmÞ by even 20 per-

cent relative to P�ð1Þ, no matter how large the sample may be, whereas P�ð1Þ may be only a small

fraction of P�ð0Þ (as is necessarily the case when n is large). This makes it quite possible for Kð2Þ�
Kð1Þ to be larger than PDbS

error�P while at the same time P�ð0Þ�PDbS
error is larger than Kð1Þ. In this case,

the optimal sample size will be m¼ 1; and the optimal encoding rule will be DbS.

While these analytical results for the asymptotic (large-n) case are useful, we can also numerically

estimate the size of the terms P�ð0Þ;P; and PDbS
error in the case of any finite value for n. We have derived

an exact analytical value for P�ð0Þ ¼ 1=2 above. The quantity PDbS
error can be computed through Monte

Carlo simulation for any value of n. (Note that this calculation depends only on n, and is independent

of the contextual distribution f ðvÞ; we need only to calculate Pnð’Þ for the function ’ðzÞ ¼ z.) The cal-

culation of Pn for a given finite value of n is instead more complex, since it requires us to optimize

Pnð’Þ over the entire class of possible functions ’ðzÞ:
Our approach is to estimate the minimum achievable value of Pnð’Þ by finding the minimum

achievable value over a flexible parametric family of possible functions ’ðzÞ: We specify the function

’ in terms of the implied F̂ð�Þ; the CDF for values of �ðvÞ. We let F̂ð�Þ be implicitly defined by

½sinððp=2ÞF̂ð�ÞÞ�2 ¼ gð�Þ; (91)

where gð�Þ is a function of � with the properties that gð0Þ ¼ 0; as required for F̂ð�Þ to be the CDF of a

probability distribution. More specifically, we assume that gð�Þ is a finite-order polynomial function

consistent with these properties, which require that it can be written in the form

gð�Þ ¼ � 1þð�� 1Þ g0 þ g1�þ . . .þ gp�
p

� �� �
; (92)

where fg0; . . . ;gpg are a set of parameters over which we optimize. Note that for a large enough

value of p, any smooth function can be well approximated by a member of this family. At the same

time, our choice of a parametric family of functions has the virtue that the CDF that corresponds to

the optimal coding rule in the large-n limit belongs to this family (regardless of the value of p), since

this coding rule (Equation 3) corresponds to the case g0 ¼ . . .¼ gp ¼ 0 of Equation 92.

We computed via numerical simulations the best encoder function assuming gð�Þ to be of order 5

(Equation 92) for various finite values of n ¼ ½5; 10; 15; 20; 25; 30; 35; 40�, and we define the expected

error of this optimal encoder for a given n to be Pg
n (i.e., a lower bound for Pn within the family of

functions defined by g). Our goal is to compare this quantity to the asymptotic approximation Plim
n ,

in order to evaluate how accurate the asymptotic approximation is.

Additionally, we also compute the value PDbS
error for each finite value of n through Monte Carlo simu-

lation (please note that PDbS
error is different from the quantity PDbS;lim

error defined in Equation 86, that is

only an asymptotic approximation for large n). Then, we can compare PDbS
error to the value predicted by

the asymptotic approximations PDbS;lim
error and Plim

n .

Another quantity that is important to compute, in order to determine whether DbS can be opti-

mal when n is not too large, is the size of P�ð0Þ relative to the quantities computed above. Since

P�ð0Þ does not shrink as n increases, it is obvious that P�ð0Þ is much larger than the other quantities

in the large-n limit. But how much bigger is it when n is small? To investigate this, we compute the

value of the ratio P�ð0Þ=Plim
n when n is small. This quantity is given by

Heng et al. eLife 2020;9:e54962. DOI: https://doi.org/10.7554/eLife.54962 46 of 49

Research article Neuroscience

https://doi.org/10.7554/eLife.54962


P�ð0Þ
Plim
n

¼
ffiffiffiffiffiffiffiffi

np3
p

4
(93)

In Appendix 7—figure 1, all error quantities discussed above are normalized relative to Plim
n . The

black dashed lines in both panels represent ðPlim
n =Plim

n Þ ¼ 1. The ratio of the asymptotic approxima-

tion for PDbS;lim
error relative to Plim

n is plotted with the red dashed lines, where ðPDbS;lim
error =Plim

n Þ»1:23. Note

that the sufficient conditions for DbS to be optimal can be stated as

a. Kð1Þ < P�ð0Þ � PDbS
error, and

b. Kð2Þ � Kð1Þ > PDbS
error � Pn.

Therefore, Appendix 7—figure 1 shows the numerical magnitudes of the expressions on the

right-hand side of both inequalities (normalized by the value of Plim
n ). The most important result from

the analyses presented in this figure is that even for small values of , the right-hand side of the first

inequality (see right panel) will be a much larger quantity than the right-hand side of the second

inequality (see left panel). Thus it can easily be the case that Kð1Þ and Kð2Þ are such that both

inequalities are satisfied: it is worth increasing m from 0 to 1, but not worth increasing m to any value

higher than 1. In this case, the optimal sample size will be m ¼ 1; and the optimal encoding rule will

be DbS.

Appendix 7—figure 1. Performance of efficient coding rules.

Additionally, we found that the computations of PDbS
error for each finite value of n are slightly higher

than Plim
n even for small n values (blue line in the left panel), but quickly reach the asymptotic value

PDbS;lim
error =Plim

n as n increases. Thus, even for small values of n, the asymptotic approximation of optimal

performance for the case of complete prior knowledge is superior than DbS. We also found that the

computations of Pg
n for each finite value of n cannot reduce Plim

n by even five percent for small n val-

ues (orange line in the left panel). Moreover, Pg
n quickly reached the asymptotic value Plim

n , thus sug-

gesting that the asymptotic solution is virtually indistinguishable from the optimal solution (at least

based on the flexible family of g functions) also for finite values of n, which crucially are in the range

of the values found to explain the data in the numerosity discrimination experiment of our study.

Thus, these results confirm that the asymptotic approximations used in our study are not likely to

influence the conclusions of the experimental data in our work.
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Appendix 8

Relation to Bhui and Gershman, 2018
Bhui and Gershman, 2018 also argue that an efficient coding scheme can be implemented by a ver-

sion of DbS. However, both the efficient coding problem that they consider, and the version of DbS

that they consider, are different than in our analysis, so that our results are not implied by theirs.

Like us, Bhui and Gershman consider encoding schemes in which the internal representation r

must take one of a finite number of values. However, their efficient coding problem considers the

class of all encoding rules that assign one or another of N possible values of r to a given stimulus v.

In their discussion of the ideal efficient coding benchmark, they do not require r to be the ensemble

of output states of a set of n neurons, each of which must use the same rule as the other units, and

therefore consider a more flexible family of possible encoding rules, as we explain in more detail

below.

The encoding rule that solves our efficient coding problem is stochastic; even under the assump-

tion that the prior f ðvÞ is known with perfect precision (the case of unbounded m in the more general

specification of our framework, so that sampling error in estimation of this distribution from prior

experience is not an issue), we show that it is optimal for the probabilities pðkjvÞ not to all equal

either zero or one. The optimal rule within the more flexible class considered by Bhui and Gershman

is instead deterministic: each stimulus magnitude v is assigned to exactly one category k with cer-

tainty. The boundaries between the set of nþ 1 categories furthermore correspond to the quantiles

ð1=ðnþ 1Þ; 2=ðnþ 1Þ; . . . ; n=ðnþ 1ÞÞ of the prior distribution, so that each category is used with equal

frequency. Thus the optimal encoding rule is given by a deterministic function yðvÞ; a non-decreasing

step function that takes nþ 1 discrete values.

Bhui and Gershman show that when there is no bound on m, the number of samples from prior

experience that can be used to estimate the contextual distribution — their optimal encoding rule

for a given number of categories N — can be implemented by a form of DbS. However, the DbS

algorithm that they describe is different than in our discussion. Bhui and Gershman propose to

implement the deterministic classification yðvÞ by computing the fraction of the sampled values ~v

that are less than v. In the limiting case of an infinite sample from the prior distribution, this fraction

is equal to FðvÞ with probability one, and yðvÞ is then determined by which of the intervals

½0; 1=N�; ½1=N; 2=N�; . . . ; ½ðN � 1Þ=N; 1� the quantile FðvÞ falls within. Thus whereas in our discussion,

DbS is an algorithm that allows each of our units to compute its state using only a single sampled

value ~vj; the DbS algorithm proposed by Bhui and Gershman to implement efficient coding is one in

which a large number of sampled values are used to jointly compute the output states of all of the

units in a coordinated way.

Bhui and Gershman also consider the case in which only a finite number of samples ð~v1; . . . ;~vmÞ
can be used to compute the representation ki of a given stimulus magnitude vi, and ask what kind of

rule is efficient in that case. They show that in this case a variant of DbS with kernel-smoothing is

superior to the version based on the empirical quantile of vi (which now involves sampling error). In

this more general case, the variant DbS algorithms considered by Bhui and Gershman make the

representation ki of a given stimulus probabilistic; but the class of probabilistic algorithms that they

consider remains different from the one that we discuss. In particular, they continue to consider

algorithms in which the category ki can be an arbitrary function of vi and a single set of m sampled

values that is used to compute the complete representation; they do not impose the restriction that

ki be the number of units giving a ’high’ reading when the output state of each of n individual proc-

essing units is computed independently using the same rule (but an independent sample of values

from prior experience in the case of each unit).

The kernel-smoothing algorithms that they consider are based on a finite set of m pairwise com-

parisons between the stimulus magnitude vi and particular sampled values ~vj, the outcomes of which

are then aggregated to obtain the internal representation ki. However, they allow the quantity

Kðvi � ~vjÞ computed by comparing vi to an individual sampled value to vary continuously between 0

and 1, rather than having to equal either 0 or 1, as in our case (where the state of an individual unit

must be either ’high’ or ’low’). The quantities Kðvi � ~vjÞ are able to be summed with perfect preci-

sion, before the resulting sum is then discretized to produce a final representation that takes one of

only N possible values. Thus an assumption that only finite-precision calculations are possible is

Heng et al. eLife 2020;9:e54962. DOI: https://doi.org/10.7554/eLife.54962 48 of 49

Research article Neuroscience

https://doi.org/10.7554/eLife.54962


made only at the stage where the final output of the joint computation of the processors must be

‘read out’; the results of the individual binary comparisons are assumed to be integrated with infinite

precision. In this respect, the algorithms considered by Bhui and Gershman are not required to econ-

omize on processing resources in the same sense as the class that we consider; the efficient coding

problem for which they present results is correspondingly different from the problem that we discuss

for the case in which m is finite.
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