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Abstract: The knowledge on the biological molecular mechanisms underlying cancer is important for the precise diagnosis and
treatment of cancer patients. Detecting dysregulated pathways in cancer can provide insights into the mechanism of cancer and
help to detect novel drug targets. Based on the wide existing mutual exclusivity among mutated genes and the interrelationship
between gene mutations and expression changes, this study presents a network-based method to detect the dysregulated
pathways from gene mutations and expression data of the glioblastoma cancer. First, the authors construct a gene network
based on mutual exclusivity between each pair of genes and the interaction between gene mutations and expression changes.
Then they detect all complete subgraphs using CFinder clustering algorithm in the constructed gene network. Next, the two
gene sets whose overlapping scores are above a specific threshold are merged. Finally, they obtain two dysregulated pathways
in which there are glioblastoma-related multiple genes which are closely related to the two subtypes of glioblastoma. The results
show that one dysregulated pathway revolving around epidermal growth factor receptor is likely to be associated with the
primary subtype of glioblastoma, and the other dysregulated pathway revolving around TP53 is likely to be associated with the
secondary subtype of glioblastoma.

1 Introduction
Cancer has become one of the most serious threats to human
health. It is driven by a variety of factors, including multiple gene
mutations and a variety of biological process disorders, which
make the process of cancer development much more complex [1].
Currently, the methods for detecting cancer biomarkers and
therapeutic targets mainly focus on analysing genetic,
transcriptomic, proteomic and epigenetic data [2]. One of the
greatest challenges in biomarker discovery is the heterogeneity of
the same type of cancer, while at the same time, gene mutations are
highly heterogeneous and vary from one sample to another.
Therefore, a pattern identified in one study is often found
unsuccessful in different data sets [3]. Clinically, this heterogeneity
is mainly due to the following reasons. First, clinical data come
from different platforms and protocols. Second, the existing cancer
data sets are usually cross-sectional biomolecules. This means that
the data sets coming from the same time point measurements for all
patients may not necessarily be the informative ones. Third, the
inaccurate clinical diagnosis may lead to incorrect assessment of
clinical samples [3].

Previous studies have detected differential expression genes
between normal samples and cancer samples, and found that they
are closely related to cancer [2, 4]. It has also been found that many
genes detected by the differential expression method in a data set
often do not work in another [4]. The cause of this phenomenon
may be related to prior hypothesis. Although differential
expression genes are associated with cancer, the development of
cancer is usually caused by a dysregulated pathway of a group of
genes [2–4].

Additionally, different patients with the same type of cancer
have different genetic abnormalities, but at least one subset of these
abnormalities is consistent in a group of patients [4]. This suggests
that several combinations of gene mutations and patterns of
expression may lead to similar changes in cancer cell apoptosis,
mutation and proliferation [5]. That is, different biomolecules may
lead to the growth and spread of cancer cells in a similar manner.

Currently, there are a large number of high-throughput data and
human genome sequencing data available, such as gene expression,
gene mutations and protein–protein interaction data, which provide
ample data support for detecting pathogenic genes and
dysregulated pathways in cancer [1, 2, 4, 6–9]. Based on these data
sets, the following two computational approaches have been widely
used to detect mutually exclusive pathogenic functional modules.
The first approach is to directly identify driver pathways de novo
from somatic mutation data utilising two combinatorial properties,
namely high coverage and high exclusivity, without integrating any
additional biological information and prior knowledge [5–7]. The
second is to detect cancer-related dysregulated pathways utilising
the mutual exclusivity of mutated genes and the gene co-expression
principle in gene expression data. Drawing upon these approaches,
researchers have detected cancer-related dysregulated modules by
integrating gene mutations and gene expression data [1, 10, 11].

Recently, researchers have analysed the genome spectrum to
study how mutated genes occur in one pathway, and proposed two
combinatorial properties, namely high exclusivity and high
coverage [6]. Most biologists now believe that mutually exclusive
mutated gene sets provide strong evidence for the association
between functional mutations and biological pathways [12, 13].
Accordingly, many computational approaches have been proposed
to detect driver pathways and dysregulated pathways in cancer
based on the two combinatorial properties.

For instance, Vandin et al. [7] proposed the de novo driver
exclusivity (Dendrix) algorithm to detect mutated driver pathways
from gene mutations data in cancer. In order to obtain high
exclusive gene sets, the study introduces the weight function
W M = Γ(M) − ω M = 2 Γ M − ∑g ∈ M Γ(g)  to penalise the
overlap between genes and reward the coverage. The study
presents a straightforward greedy algorithm and a Markov Chain
Monte-Carlo approach to find gene sets with high coverage and
exclusivity. The algorithm computes the weight fractions of each
gene set, and selects the set of genes with the highest weight as a
mutated driver pathway, then removes the nodes and repeats the
above iteration until finds all gene sets which meet high coverage
and exclusivity. Although this approach can identify the gene sets
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with the highest weight, this iterative method only produces a
locally optimal solution, and requires designating the number of
genes in a driver pathway in advance. Leiserson et al. [5] improved
the Dendrix algorithm and proposed a multi-Dendrix algorithm that
can simultaneously detect multiple driver pathways by treating the
maximum weight subarray as a linear programming problem,
defining the objective function and setting the constraint condition
to find the maximum weight subarray problem that satisfies the
condition.

Zhao et al. [10] proposed mutated driver pathway finder
(MDPFinder) algorithm to detect driver pathways by integrating
gene mutation and gene expression data. The study hypothesises
that the genes in the same pathway are inclined to perform the
same biological function, and they are usually regarded to have
higher correlation than those in different pathways. In the study,
they firstly filter out the genes with high mutual exclusivity but low
correlation according to the above principle, and then define a new
function FME = W M + λ × R(EM), where W M  is the scoring
function used to penalise the overlap between genes and to reward
the coverage, EM is the gene expression matrix, which has the
same gene set as the mutation matrix M. To determine the optimal
boundary ranges of scoring functions, they proposed a genetic
algorithm model to solve the so-called maximum weight submatrix
problem.

Kim et al. [12] proposed MEMCover algorithm to detect
dysregulated modules utilising somatic mutation data in cancer. In
the algorithm, the relationship between genes is determined based
on mutual exclusivity between a pair of mutated genes. This
algorithm classifies mutual exclusivity into three categories:
mutual exclusivity within a cancer type, mutual exclusivity
between cancer types and mutual exclusivity across multiple
cancer types. By combining tissue specificity and commonness, the
algorithm detects dysregulated modules containing rare mutation
genes which exist in the process of cancer development and
progression.

Different sets of mutated genes may cause different subtypes of
cancer, so detecting the mutated gene sets in cancer is useful for
studying cancer pathogenesis and drug targets. Gene mutations
may be caused by other gene expression changes, and gene
expression changes may also be caused by other gene mutations.
Therefore, integrating gene mutations and expression data to detect
cancer-related dysregulation pathways helps us to identify cancer
mechanisms and drug targets [3]. This study proposes a network-
based method to identify dysregulated pathways utilising mutual
exclusivity between mutated genes and the interrelationship
between gene mutations and gene expression changes by
integrating gene mutations and expression data in cancer.

2 Methods

2.1 Integrated method between gene mutations and
expression data

The method to construct the relationship between gene mutations
and expression changes is presented below. We introduce m × n

binary mutation matrix A and expression matrix E, where m
represents the number of patient samples and n represents the
number of mutated genes in the data set. In mutation matrix A,
ai j = 1 indicates that gene gj mutates in the sample si, otherwise
ai j = 0. Element ei j in the gene expression matrix refers to the
expression level of gene gj in the sample si. Also, the connectivity
between expression gene gk and mutation gene gh is defined as the
product between the expression level of gene gk and the mutation
status of gene gh. Hence, we build the connectivity matrix
CAE = A

T
E to represent gene mutations effect on expression

changes of other genes. We construct the second connectivity
matrix CEA = E

T
A to represent the effect of gene expression

changes on other gene mutations. The value of entries CAEhk and
CEAkh of the connection matrix can be interpreted as follows: if
the values of CAEhk or CEAkh are closer to zero, most samples
exhibit small absolute values of the expression level for the gene gk

or most samples have no mutation in gene gh; conversely, if the
values of CAEhk and CEAkh are far from zero, there is a strong
correlation between the connectivity of gene gh and gene gk  across
the data set [3]. It is thus clear that a connectivity is obtained when
CAEhk /num(aih) ≥ ∑i = 1

m
eik /m  or

CEAkh /num(aih) ≥ ∑i = 1

m
eik /m for i = 1, 2, …, m and ∀ pair (gh,

gk) of mutation and expression genes, where num aih  represents
the number of gene gh mutation in all samples. Note that gene pair
(gh, gk) has a strong connectivity score when gene gh mutates and
gene gk is most under/over expressed in the same samples.

2.2 Exclusivity and weight

Mutual exclusivity in mutated genes widely exists in cancer
genomes. The genes in one exclusive gene set usually have at most
one gene mutation in one patient, and perform the same or similar
functions. Therefore, identifying these mutually exclusive sets of
genes is a crucial step in studying the pathogenesis of cancer.

For gene g in the mutation matrix A, the coverage function
Γ g = {i |ai j = 1} represents the set of patients in which gene gj

mutates (Fig. 1). For gi, gj ∈ A, gi ≠ gj, 1 ≤ i, j ≤ n,
Γ(gi) ∩ Γ(gj) = ∅ shows genes gi and gj are mutually exclusive.
The degree of exclusivity, coverage and weight of the two genes gi

and gj are defined as follows. 
For a pair of genes gi and gj in the mutation matrix A, the

exclusive degree function ED(gi, gj) is defined as

ED(gi, gj) =
|Γ(gi) ∪ Γ(gj)|

|Γ(gi) | + Γ(gj)
(1)

According to the above analysis, ED(gi, gj) = 1, when the pair of
genes gi and gj are mutually exclusive.

For a pair of genes gi  and gj in the mutation matrix A, the
coverage degree function CD(gi, gj) is defined as

CD(gi, gj) =
|Γ(gi) ∪ Γ(gj)|

m
(2)

Considering both the coverage overlap and gene coverages Γ(gi)

and Γ(gj), the weight degree function WD gi, gj  is defined as

WD gi, gj = 1 −
Γ(gi) ∩ Γ(gj)

min Γ(gi) , Γ(gj)
(3)

For mutated genes gi and gj, if the coverage of one gene is low and
the coverage of the other gene is very high, then the exclusive

Fig. 1  Mutation matrix in multiple patients
 

40 IET Syst. Biol., 2018, Vol. 12 Iss. 1, pp. 39-44
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



degree ED(gi, gj) of the two genes is high but it does not mean that
the weight degree WD(gi, gj) of the two genes is high (i.e. Figs. 2c
and d). Therefore, many pairs of genes may be filtered by the
weight degree function WD(gi, gj). 

2.3 Constructing a gene network based on connectivity and
exclusivity

Based on the integrated model of the gene mutations and
expression data discussed above, a gene network is constructed
using mutual exclusivity between genes and the interaction
between gene mutations and expression changes. A set of genes
that are mutually exclusive or that interact with each other in their
mutations and expression changes may have a major impact on
cancer [14, 15]. Hence, formula (1) is used to calculate the
exclusive degree between any pair of genes, and formula (3) is
used to calculate weight degree between the pair of genes. If
ED(gh, gk) ≥ λ and WD gh, gk ≥ γ or
CAEhk /num(aih) ≥ ∑i = 1

m
eik /m or

CEAkh /num(aih) ≥ ∑i = 1

m
eik /m, then an edge is created to link the

nodes gh and gk. and then we construct a gene network in which
each node represents a gene and each edge represents the two
connected genes that maintain a mutually exclusive relationship or
interrelationship between a gene mutation and a gene expression
change. If one gene is not connected to any other genes, the gene
does not appear in the network. The process of constructing a gene
network is described as follows:

Step 1: The gene network G is initialised to a zero matrix.
Step 2: Calculate the effect of gene mutations on gene expression
changes CAE = A

T
E.

Step 3: For the mutated gene gh and the expression gene gk, if
CAEhk /num(aih) ≥ ∑i = 1

m
eik /m, then G[h][k] = 1.

Step 4: Calculate the effect of gene expression changes on gene
mutations CEA = E

T
A.

Step 5: For the expression gene gh and the mutated gene gk, if
CEAkh /num(aih) ≥ ∑i = 1

m
eik /m Then G[h][k] = 1.

Step 6: For the mutated genes gh and gk, if ED(gh, gk) ≥ λ and
WD gh, gk ≥ γ then G[h][k] = 1.
Step 7: Gene network G is constructed, and the process ends.

2.4 Dysregulated pathways detection algorithm in a
constructed gene network

CFinder is a clustering algorithm for detecting overlapping dense
subgraphs based on the clique percolation method in the network
[16]. This algorithm has been widely used in social networks,
biological networks and microarray data to explore the module
evolution process from a quantitative perspective. CFinder
clustering algorithm provides an efficient clustering algorithm for
large-scale and relatively sparse network data, and has been widely
applied to detect communities in social networks, and to detect the
functional modules in biological networks [16].

Our detection algorithm works in the following two steps. In the
first step, we utilise CFinder algorithm to obtain all the cliques in
which mutations of all genes are mutually exclusive or they have
interrelationships between gene mutations and gene expression
changes in the gene network constructed in the previous step. In
the second step, we calculate the overlap score between any two
cliques using formula (4), identify the two gene sets with the
highest overlap score, and then merge the two gene sets if their
overlap score is higher than 0.25, which means that the intersection
is at least half of the clique size if the two cliques are equal in size.
The process repeats until there are no two gene sets whose overlap
score is >0.25

OS A, B =
A ∩ B

2

A B
(4)

where A and B stand for two gene sets in two cliques.

2.5 Parameter settings

In this algorithm, thresholds λ and γ are commonly applied to
decide whether there is an edge between each pair of genes. λ is
applied to describe the exclusive degree of a pair of genes and γ is
applied to describe the ratio between non-overlap and coverage of
a pair of genes. If λ = 1 and γ = 1, it is an ideal case for a pair of
genes to be mutually exclusive, whereas there often exist noises
which may disrupt the exclusivity in a real mutation data [3, 6], so
λ and γ are usually smaller than 1. In the process of constructing a
gene network, λ = 0.95 is chosen in line with previously reported
in [6].

Formula (3) is introduced to avoid the case where two genes
have a high exclusive degree but a low weight degree. We analyse
different weight degrees of two genes with the same coverage,
coverage overlap and exclusive degree in Fig. 2. The numbers in
the figure represent coverage in different cases. According to the
above formulas, we calculate coverage, coverage overlap and
exclusive degree of the two genes in the four cases, which are 95, 5
and 0.95, respectively. However, the weight degrees are different in
the four cases: (a) WD(gj, gk) = 0.9, (b) WD(gj, gk) = 0.8, (c)
WD(gj, gk) = 0.67, (d) WD(gj, gk) = 0. Although the coverage,
coverage overlap and exclusive degree of the two genes in the four
cases are the same, the two genes in Figs. 2a and b are usually
regarded as exclusive, while the two genes in Figs. 2c and d are not
regarded as exclusive [10]. Here we choose γ = 0.8 in the
algorithm, as the experiment shows this produce an ideal result.

3 Results
To verify the validity of this method, we apply it to real gene
mutations and gene expression data of glioblastoma, and detect two
important dysregulated pathways of glioblastoma. Also, many
genes in the two dysregulated pathways are found to have a strong
correlation with glioblastoma.

3.1 Gene mutations and expression data of glioblastoma

The experimental data are derived from the gene mutations and
expression data of glioblastoma in TCGA [17]. Gene mutations
include single-nucleotide variation and DNA copy number
variation. The mutation data sets consist of 362 samples and 1,
8009 genes in which five genes, TTN, MUC16, PETN, TP53 and

Fig. 2  Weight degree analysis of two genes with the same coverage,
coverage overlap and exclusive degree
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epidermal growth factor receptor (EGFR), in 126, 109, 107, 102
and 94 samples, respectively, mutate in more than 90 samples. A
total of 334 patient samples and 9777 genes are selected from the
data consisting of both gene mutations and expression. The genes
which mutate in a small number of patients usually have no effect
on cancer, and they are regarded as passenger mutations [7].
Therefore, we choose the genes whose mutation rates are higher
than 3%, and get a total of 912 genes. Table 1 presents the details
of the mutation data, including the number of samples, the number
of genes, the average number of mutated gene per sample, and the
average number of mutated sample per gene for the following two
cases. 

3.2 Analysis of experimental results

Glioblastoma is the most aggressive cancer that begins within the
brain, and it is a common and highly invasive primary central
nervous system tumour generated from the neuroepithelial cells,
accounting for about half of all intracranial primary tumours. The
molecular alteration of primary glioblastoma is mainly due to the
amplification and overexpression of EGFR, while the molecular
alteration of secondary glioblastoma is predominantly due to the
mutation of TP53 [18–20].

Based on the gene interaction network constructed by
integrating gene mutations and expression data of glioblastoma, we
firstly utilise CFinder algorithm to find all the cliques, and then
merge two gene sets if their overlap score is >0.25. Finally, we
obtain two dysregulated pathways, in which the first group is
composed of 45 genes revolving around the EGFR shown in Fig. 3.
There are 23 genes which directly interact with EGFR in the
dysregulated pathway. The P-values of the dysregulated pathway
are 7.9 × 10−6 in melanoma, 2.3 × 10−4 in cancer pathway,
9.3 × 10−4 in the cell cycle pathway, and 2.2 × 10−4 in MAPK
signalling pathway, according to DAVID functional annotation tool
(http://david.abcc.ncifcrf.gov/summary.jsp). The P-values shows
that the dysregulated pathway is enriched in the above signalling
pathways and is likely to be closely related to primary glioblastoma
[18]. 

Among the 45 genes in this predicted dysregulated pathway,
there are 23 genes reported to be related to glioblastoma. Table 2

lists the 23 genes and PubMed IDs of the papers that report the
relationship between the genes and glioblastoma. Especially, EGFR
and PTEN in the dysregulated pathway identified in our study are
reported to be associated with glioblastoma in more than 100
previous studies. 

The second group is composed of 50 genes revolving around
TP53 mutation shown in Fig. 4, and there are 15 genes directly
interacting with TP53. The P-values of the dysregulated pathway
are 1.1 × 10−6 in the cell cycle pathway, 8.8 × 10−6 in glioblastoma,
1.6 × 10−5 in melanoma, 2.5 × 10−4 in the p53 signalling pathway,
7.5 × 10−4 in the feedback loop pathway and 3.4 × 10−3 in the
cancer pathway according to the DAVID functional annotation
tool. This dysregulated pathway is enriched in these pathways and
is likely to be closely related to secondary glioblastoma [19]. 

Among the 50 genes in this predicted dysregulated pathway,
there are 19 genes reported to be related to glioblastoma. Table 3
lists the 19 genes and PubMed IDs of the papers that report the
relationship between the genes and the glioblastoma. Especially,
MDM2 in our identified dysregulated pathway is reported to be
associated with glioblastoma in more than 100 previous studies. 

4 Comparison with other methods
In order to validate our algorithm, we analyse the genes in the
dysregulated pathways identified by this algorithm with the
literature corresponding PUBMED IDs in which the genes are
reported to be related to glioblastoma. It is necessary to point out
although a number of methods have been proposed to identify
dysregulated pathways or driver pathways in cancer, including a
method based on a pathway interaction network [2], integrative
enrichment analysis method [4], multi-Dendrix [5], network-based
method (NBM) [6], Dendrix [7], gene interaction enrichment and
network analysis method [8], MDPFinder [10], CONTOUR[11],
MEMCover [12] and a method based on statistical models
(MBSM) [3], none of the above utilised the mutually exclusive
relationship between genes and the interrelationship between gene
mutations and gene expression changes to identify dysregulated
pathways in cancer. Here we compare our method against MBSM
[3] to analyse the differences between the two data integration
methods, and compare our method against NBM [6] to analyse the
differences between results of the two methods in glioblastoma
data.

MBSM [3] proposed a linear modelling approach to combine
gene mutations with expression data for studying genetic
mechanisms of mutation-induced expression changes, prediction of
blood counts, and prognostic power of mutations, expression and
clinical data. The method analysed the relationships between
mutations in 12 genes which frequently mutate in the
myelodysplastic syndromes for 124 patients. The study found that
the number of differentially expressed genes vary extensively
among driver alterations, and both genotype and expression data
have a similar contribution to blood counts.

NBM [6] proposed a network-based method to detect
overlapping driver pathways automatically only utilising somatic
mutation data in cancer. The method presented the exclusive
degree function ED(gi, gj) of the two genes rather than the weight
degree function WD(gi, gj). According to their method, the four
cases in Fig. 2 were regarded as mutual exclusive gene pair,
whereas the cases of Figs. 2c and d are usually not regarded as a
mutual exclusive gene pair (as can be seen from Fig. 2). In our
algorithm, the weight degree function defined can eliminate the
cases of Figs. 2c and d, which thus can identify the real exclusive
gene pairs.

To validate the improvement of the proposed algorithm, we
compare the results of proposed algorithm and NBM by applying

Table 1 Glioblastoma multiforme data used in this study
Gene selection #patient #gene AMG AMS
all genes 334 9777 96.29 3.29
mutation rates ≥3 percent 334 912 46.45 16.99
#patient: the number of patients. #gene: the number of genes. AMG: average number of mutated genes per sample. AMS: average number of mutated samples per gene.
 

Fig. 3  Dysregulated pathway revolving around EGFR
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them on the mutation dataset (see Table 4). As can be seen, NBM
detects six driver pathways (S1, S2, S3, S4, S5 and S6) based on
the default parameters (λ = 0.95 and δ = 0.3) [6]. In our method,
threshold λ of the exclusive degree is set to be 0.95 and threshold γ
of the weight degree is set to be 0.8 based on the performance of
training samples. Running on the same mutation data, our method
detects two dysregulated pathways (Set1 and Set2). The first
dysregulated pathway (Set1) detected by our algorithm contains the
genes in three driver pathways (S1, S2 and S3) detected by NBM
completely, and the second dysregulated pathway (Set2)
encompasses the genes in three driver pathways (S4, S5 and S6)
detected by NBM. This indicates that the three gene sets (S1, S2
and S3) are the driver pathways of the primary subtype of
glioblastoma, and the three gene sets (S4, S5 and S6) are driver
pathways of the secondary subtype of glioblastoma. Also, different
combinations of mutations in the three gene sets (S1, S2 and S3)

perturb the Set1 dysregulated pathway, and then lead to the primary
subtype of glioblastoma, and different combinations of mutations
in the three gene sets (S4, S5 and S6) perturb the Set2 dysregulated
pathway, and then lead to the secondary subtype of glioblastoma. 

5 Conclusions
In this study, we construct a gene network by using the
interrelationship between gene mutations and expression changes,
and using the mutually exclusive relationship in genome spectrum,
and then using CFinder clustering algorithm to identify cliques in
the constructed gene network. We apply the algorithm to gene
mutations and gene expression data of glioblastoma, and identify
two dysregulated pathways, which are closely related to the two
subtypes of glioblastoma. The results show that one dysregulated
pathway revolving around EGFR is likely to be associated with the
primary subtype of glioblastoma, and the other dysregulated
pathway revolving around TP53 is likely to be associated with the
secondary subtype of glioblastoma. Most genes in the two
identified dysregulated pathways have been previously reported to
be directly related to glioblastoma. Especially, 23 of the 45 genes
in the first dysregulated pathway are directly related to
glioblastoma, and 19 of the 50 genes in the second dysregulated
pathway are directly related to glioblastoma. This algorithm
provides a useful complement to the correlation between gene
mutations and gene expression in cancer, and enriches our
understanding of the molecular pathogenesis of cancer. The
algorithm also provides a supplement to the analyses of cancer data
and a useful basis for dysregulated pathways detection.
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Table 3 Genes that are reported to be related to glioblastoma in the predicted dysregulated pathway in literature with
corresponding PUBMED IDs [21]
Genes PMID
TP53 27478330; 26553592; 26482041; 26469958; 26258493; 25994230 (top 6 among over 50)
NOTCH1 26916895;26662803;26165719;24898819;23349727;22249262 (top 6 among over 10)
MDM2 27177180;27050782;26761214; 26482041; 26428461; 26328271 (top 6 among over 10)
MDM4 26328271; 24445145
CDKN2A 26839018; 23311918; 22046342; 21987724; 19086579; 12175345 (top 6 among over 10)
CDK4 27370397; 26649278; 26328271; 26149830; 23761023; 23707559 (top 6 among over 20)
RB1 27344175; 22157621; 21397855; 14519639; 11204276; 8286200
CDKN2B 26839018; 19578366; 10541865
PIK3R1 23166678; 22064833; 19305146; 14655756; 15605984
CPT1B 24618825
SSTR4 9440032
E2F4 10766737
MUC4 24582898
STAG2 24356817; 24088605
RIMS2 14997935
ABCA2 17415208
EIF3A 22234522
GPC1 24019070
NLRP3 25628952

 

Table 4 Comparison between the results of NBM and our method in Glioblastoma Multiforme data
Results of NBM Results of our method
S1 EGFR, PIK3CA PTEN,

NOTCH1
Set1 EGFR, PIK3R1, NF1, PIK3CA, PTEN, RB1, CDKN2B, CYP27B1, PDGFRA, ATRX, NOTCH1, SSTR4,

RICTOR, ATG2B, BSN, ISLR2, GPC1, FHL3, STAG2, EIF3A, JAG1, LAMA1, STAB1
S2 PTEN, PIK3R1, PIK3CA,

STAG2
S3 EGFR, PK3R1, NF1,

CYP27B1, STAB1
S4 TP53, CDKN2B, CDKN2A,

RB1, CDK4
Set2 TP53, NOTCH1, MDM2, MDM4, CDKN2A, CDK4, RB1, CDKN2B, PIK3R1, CPT1B, SSTR4, E2F4,

MUC4, STAG2, RIMS2, ABCA2, EIF3A, GPC1, NLRP3
S5 TP53, MDM2, MDM4, QK1
S6 TP53, PIK3R1, MDM2, CPT1B
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