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Length Distribution of Ancestral 
Tracks under a General Admixture 
Model and Its Applications in 
Population History Inference
Xumin Ni1,*, Xiong Yang2,*, Wei Guo3, Kai Yuan2, Ying Zhou2, Zhiming Ma3 & Shuhua Xu2,4,5

The length of ancestral tracks decays with the passing of generations which can be used to infer 
population admixture histories. Previous studies have shown the power in recovering the histories 
of admixed populations via the length distributions of ancestral tracks even under simple models. 
We believe that the deduction of length distributions under a general model will greatly elevate the 
power. Here we first deduced the length distributions under a general model and proposed general 
principles in parameter estimation and model selection with the deduced length distributions. Next, 
we focused on studying the length distributions and its applications under three typical special cases. 
Extensive simulations showed that the length distributions of ancestral tracks were well predicted 
by our theoretical framework. We further developed a new method, AdmixInfer, based on the length 
distributions and good performance was observed when it was applied to infer population histories 
under the three typical models. Notably, our method was insensitive to demographic history, sample 
size and threshold to discard short tracks. Finally, good performance was also observed when applied 
to some real datasets of African Americans, Mexicans and South Asian populations from the HapMap 
project and the Human Genome Diversity Project.

Population admixture is a common phenomenon in human populations when previously isolated populations 
start to contact and interact with each other, accompanied by population migration, rising and falling of empires, 
trading of goods and services, and so on1. The history of population admixture does not fade with time, but 
leaves a great deal of information in the genomes of individuals from admixed populations. Population history in 
admixed populations thus can be recovered by utilizing the information in the genome, such as break points of 
recombination2, admixture linkage disequilibrium (ALD)3–5 and the length of ancestral tracks1,6–10.

The information of ancestral tracks was first used by Pool and Nielsen (which they called migration tracts) to 
infer population history, and they proposed a model in which a target population received migrants from a source 
population at a constant rate. The limitation of this model was that gene flow was assumed to be weak enough that 
any recombination was unlikely between migrant chromosomes10. A subsequent study of Pugach et al. performed 
wavelet transform on the ancestral tracks in admixed populations to obtain the dominant frequency of ancestral 
tracks and compared it to those obtained from extensive simulations, to estimate the admixture time, but under 
the simple hybrid isolation (HI, or one pulse admixture) model6. Then, the study of Jin et al. explored admixture 
dynamics by comparing the empirical and simulated distribution of ancestral tracks under three typical two-way 
admixture models; i.e. HI model, gradual admixture (GA) model, and continuous gene flow (CGF) model8. Jin 
et al. later deduced the theoretical distributions of ancestral tracks under HI and GA models7. Gravel extended 
these studies to multiple ancestral populations and discrete migrations. A numerical estimation of tract length 
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distribution was provided. However, he failed to explicitly deduce the theoretical distribution of ancestral tracks 
under a general situation9.

Here we proposed a general model that can cover all the scenarios of an admixed population with an arbitrary 
number of ancestral populations and (or) arbitrary number of admixture events. In this study, we first described 
the general admixture model and deduced a general formula for the theoretical distribution of ancestral tracks 
with some reasonable approximations. With this distribution, we can use maximum likelihood estimation (MLE) 
to estimate model parameters, and the Akaike information criterion (AIC)11 or the likelihood ratio test (LRT)12 to 
select an optimal model from candidates for the given data. We next demonstrated that the three aforementioned 
admixture models, namely HI, GA and CGF models in previous studies8 are all special cases under our general 
model. Then, under these three models, we developed a method called AdmixInfer to estimate the admixture pro-
portion and admixture time, and simultaneously selected the optimal model according to the principles of AIC. 
We further conducted extensive simulation studies to demonstrate the accuracy of the theoretical distribution 
of ancestral tracks under the general model, and the effectiveness of our method to estimate the parameters and 
select an optimal model. Finally, we applied our method to African Americans and Mexicans from the HapMap 
phase III dataset13, and several South Asian populations from the Human Genome Diversity Project (HGDP)14 
dataset.

Methods
Length distribution of ancestral tracks under a general model. In our general model, population 
admixture is accomplished by receiving gene flow(s) from ancestral populations either continuously or discontin-
uously. We model this process generation by generation, in which, if the admixed population does not receive 
further gene flow(s) in a particular generation, we set the strength of gene flow(s) to 0. Specifically, given an 
admixed population started T generations ago, with K ancestral populations, let ( )m ti  denote the ancestry propor-
tion from the ith ancestral population that entered at t generation. Here the time of the admixture in generations 
are denoted to increase over time, with T being the present time (see Fig. 1), then the general model is only deter-
mined by a K ×  T matrix = ( ) ≤ ≤ , ≤ ≤M m t{ }i i K t T1 1

, which satisfies three properties: (a) ( ) ≥m t 0i ; (b) 
∑ ( ) == m 1 1i

K
i1  and (c) ∑ ( ) ≤ , ≤ ≤= m t if t T1 2i

K
i1 .

Let ( )I t  be the ancestry proportion of the admixed population at generation t inherited from the previous 
generation, and then we get ( )I t  as

∑( ) = − ( ), ≤ ≤ .
( )=

I t m t t T1 1
1j

K

j
1

Denote ( )H ti  as the total ancestry proportion of the ith ancestral population in the admixed population at t 
generation, then

( ) =





( ), =
( − ) ( ) + ( ), ≤ ≤ .

H t
m t

H t I t m t t T
1 1

1 2i
i

i i
Recursively, we can get

Figure 1. The general admixture model. Here we illustrated an admixed population with K ancestral 
populations, which started to admix T generations ago. The gene flows from each ancestral population could be 
zero at a specific generation. POP k represents the ancestral population k.
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Define ( )s ti  as the survival proportion of the ancestral tracks at generation T from the ith ancestral population 
that entered at generation t, then
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Generally, we assume that the ancestral populations are homogeneous, and recombination among segments 
from the same ancestry does change the length of the tracks, but it is not “observable” to us, thus the length of 
tracks seems unchanged, and only these recombination events among different ancestries produce “observable” 
changes (see Supplementary Fig. S1 online). Here we explicitly take these “unobservable” changes into consider-
ation and adjust the recombination rate accordingly as following. Defining the recombination among tracks from 
different ancestral populations as effective recombination, let ( )u ti  be the effective recombination rate for tracks 
from the ith ancestral population that entered at generation t, then

∑( ) = ( − ( )).
( )=

u t H k1
4i

k t

T

i

If the end is ignored, a chromosome from the ith ancestral population that entered at generation t is expected 
to be split into ( )u ti  pieces per unit length (unit in Morgan). Then the number of ancestral tracks from ith ances-
tral population that entered at generation t to the admixed population is proportional to ( ) ( )u t s ti i . Let Xi be the 
length of ancestral tracks of the ith ancestral population at generation T, and ( )f x M;i  be the distribution of Xi, 
then

∑( ) =
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Due to the limited accuracy in local ancestry inference, only those relatively long tracks are reliable9,10. 
Therefore, we are also interested in the conditional length distribution of ancestral tracks longer than a specific 
threshold C,

∑
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With the length distribution of ancestral tracks (Eq. (5)), we can easily deduce the expectation and variance of 
Xi as
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Parameter estimation and model selection. As the parameters of admixture events are fully deter-
mined by the matrix M, once M is accurately estimated, we can fully recover the history of the admixed popula-
tion. MLE can be used to obtain the estimation of M. By utilizing the ancestral tracks inferred from the data, a 
likelihood function can be computed with the length distributions of ancestral tracks. The log-likelihood function 
of ancestral tracks from the ith ancestral population ( )L Mi  has the form of

∑( ) = ( ),
=

L M f x Mlog ;i
j

n

i ij
1

i

where 
≤ ≤

x{ }ij j n1 i
 are the observed lengths of tracks from the ith ancestral population in the admixed population. 

Then the log-likelihood function of ancestral tracks of the admixed population ( )L M  is

∑( ) = ( ).
=

L M L M
i

K

i
1

Then the estimator of M is
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= ( ).M̂ L Marg max
M

where M satisfies the properties in the above subsection.
However, with the increase in the number of parameters, it is complex and time-consuming to find the opti-

mal solution and too many parameters can lead to over-fitting. In a real situation, we can propose several candi-
date models with prior knowledge in which the number of parameters is dramatically reduced, thus the problem 
is simplified to estimating parameters for each candidate model and selecting the most suitable one. If we have 
obtained the parameters of the candidate models, we can compare the models in a pair-wise fashion by using 
either AIC or LRT. Here, the two models are regarded to be ‘nested’ if one of the models constitutes a special case 
of the other15. When the two competing models are nested, we use LRT to select the model; otherwise we use AIC.

The distribution of ancestral tracks under HI, GA, and CGF Models. In this subsection, we demon-
strate that, with the length distribution of the general model, we can easily deduce the length distributions of 
ancestral tracks under three typical models aforementioned in previous studies8. By restricting the number of 
ancestral populations to be two in the general model, if only one pulse of gene flow is allowed, the model turns 
into HI model; if extra equal gene flows from both ancestral populations are allowed, the model turns into GA 
model; if extra equal gene flows from only one of the ancestral populations are allowed, the model turns into CGF 
model (see Supplementary Fig. S2 online). Thus these three models are all special cases of our general model. 
There are only two parameters in each of the three models: the admixture proportion m and the admixture time 
T. Easily we can obtain the distribution of the ancestral tracks of these three models from Equation (5). Detailed 
calculation is in Supplementary Text S1 online.

For simplicity, we define the ancestral population with the minor ancestry contribution as population 1, and 
the corresponding proportion is m. For HI model (see Supplementary Fig. S2 online), the ancestry proportions 
from population 1 and population 2 at generation t are
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Then the length distribution of ancestral tracks from population 1 is
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We can also get the expectation and variance of the length of ancestral tracks from Equation (7) and Equation 
(8),
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Substituting m with 1−m in Equations (9), (10) and (11), we can obtain the length distribution, expectation, 
and variance of ancestral tracks from population 2, respectively. These two distributions are identical to the ones 
in previous studies7,9.

For GA model (see Supplementary Fig. S2 online), the ancestry proportions from population 1 and population 
2 at generation t are
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Then the length distribution of ancestral tracks from population 1 is
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where ( )= −
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. The expectation and variance of the length of ancestral tracks are
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Substituting m with 1−m in Equations (12), (13), and (14), we can get the length distribution, expectation and 
variance of ancestral tracks from population 2, respectively.

For CGF model (see Supplementary Fig. S2 online), the ancestral population that contributes only one pulse 
of gene flow is treated as a gene flow recipient and the one that contributes continuously as gene flow donor. Here, 
we divide the CGF model into two sub-models. If population 1 is a gene flow recipient, we denote it as CGFR 
model; otherwise we denote it as CGFD model.

In the case of CGFR model, the ancestry proportions from population 1 and population 2 at t generation are

α
α( ) =
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The expectations and variances of the length of ancestral tracks are
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In the case of CGFD model, we just replace m with 1−m in Equation (15) and (16), and obtain the length 
distribution of ancestral tracks from population 2 and population 1, respectively.

Parameter estimation and model selection under HI, GA, and CGF models. As discussed above, 
there are only two parameters m and T in HI, GA and CGF models. As for m, with the inferred ancestral tracks in 
an admixed population, we divide the total length of tracks from population 1 by the total length of tracks, and 
obtain an estimator m̂ of the admixture proportion. Interestingly, from the expectation of the ancestral tracks 
from two ancestral populations in HI, GA and CGF models, we find that the expectation ratio between popula-
tion 1 and population 2 relies only on m,

( )
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−

,
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E X
E X

m
m1 17

1

2

thus we provide an alternative way to obtain the estimator m̂,

=
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( ) + ( )
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E X E X 18

1

2 1

Generally, if there are only two ancestral populations, Equation (17) always holds whatever the admixture 
model is. The proof is in Supplementary Text S1 online.

As for admixture time T, the estimation relies on the model assumed. Different models give different estima-
tions of T so that we first need to assume a model. Here we regard HI, GA, CGFR and CGFD models as the can-
didate models, and use MLE to estimate the admixture time T and AIC to select the optimal model as following: 
First, by utilizing the inferred ancestral tracks, we calculate the admixture proportion and determine population 
1; secondly, with the estimator m̂, maximizing the likelihood under model assumption HI, GA, CGFR, and 
CGFD, we obtain the maximum likelihoods Lmax (HI), Lmax (GA), Lmax (CGFR) and Lmax (CGFD) and corre-
sponding optimal times T̂ . Because each pair of these models is not nested, thus here we use AIC to select the 
optimal model. The value of AIC can be calculated by the equation
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= − ( ),AIC k L2 2 ln max

where k is the number of parameters and Lmax is the maximized value of the likelihood function. The number of 
parameter of these models are the same, thus at the end of the comparison, we find that the problem is equivalent 
to finding the model with the highest likelihood. Thus, the model with the highest likelihood is chosen as the 
optimal model, and the corresponding parameters as the final results. These routines are implemented in our 
AdmixInfer. We also apply the bootstrapping technique in AdmixInfer and give a bootstrapped supporting rate of 
the chosen model and the estimation and confidence interval (CI) of the admixture time (Details in 
Supplementary Text S1 online).

General settings of simulation studies. Simulation studies were performed to evaluate the correctness 
of the length distribution of ancestral tracks under the general model, and the performance of AdmixInfer under 
three typical models. The following settings remained the same under all situations simulated if with no further 
modification: The population size of the admixed population was simply set to 5,000 and remained constant in 
our simulations and the length of simulated chromosome was 3.0 Morgan, which approximated the length of 
chromosome 1 of the human genome. We simulated one chromosome each time and a pair of chromosomes rep-
resented an “individual.” At the end of simulation, 400 “individuals” (genome length of an “individual” approx-
imated 1/10 of the length of a human individual) were sampled and the ancestral tracks were directly recorded. 
Simulations were carried out by a forward-time simulator. AdmixSim simulates admixture processes with more 
than two parental populations, a given number of admixture events, and fluctuated population sizes across gen-
erations under Wright Fisher model.

Evaluate the theoretical distribution under the general model. To test the accuracy of the length 
distribution of ancestral tracks under the general model, we simulated several general representative cases with 
three or four ancestral populations and one or more waves of admixture. Simulation 1A was to simulate one pulse 
admixture with three ancestral populations: admixture started 50 generations ago with proportions 10%, 30% and 
60%, respectively. Simulation 1B was to simulate discrete multiple-waves admixture with three ancestral popula-
tions: the admixture started 50 generations ago with initial proportions 10%, 40% and 50%, respectively, and pop-
ulation 1 contributed extra 10% ancestries each 10 generations later. Simulation 1C was to simulate continuous 
multiple-waves admixture with three ancestral populations: the admixture started 50 generations ago with initial 
proportions 10%, 30% and 60%, respectively; population 1 contributed an extra 0.2% ancestries for each gener-
ation afterwards. And simulation 1D was to simulate multiple-waves admixture with four ancestral populations 
that arrived at different times: populations 1 and 2 firstly admixed 50 generations ago with proportions 40% and 
60%, population 3 entered 40 generations ago with proportion 20%, and population 4 entered 30 generations ago 
with proportion 10%. The simulations were repeated 5 times, and the ancestral tracks in the admixed population 
were recorded and the length distribution was compared to the theoretical distribution. Detailed parameters for 
the simulations were provided in Supplementary Data S1 online.

Evaluate the performance of AdmixInfer. We focused on evaluating the performance of AdmixInfer 
under three typical models; i.e. HI, GA and CGF. Admixture proportions varied from 10% to 50% in steps of 10% 
for the admixture models (HI, GA, CGFR and CGFD). We set the admixture time as 5, 10, 20, 30, …, 200 gener-
ations. The ancestral tracks in admixed populations were also recorded as previous simulations. Each simulation 
here was repeated 10 times and, in total, 4,200 simulations were carried out under HI, GA and CGF models. 
AdmixInfer was applied to the simulated data with the default settings; the results were recorded and summarized.

In real situations, we could only accurately infer the ancestral tracks longer than a specific threshold due to 
methods’ limitations in local ancestry inferences. To make our method more feasible to real cases, we also evalu-
ated the robustness of our method under different thresholds ranging from 0 centi-Morgan (cM) to 2 cM in step 
of 0.1 cM, with the dataset simulated in previous evaluations.

We also evaluated the performance of AdmixInfer with different sample sizes. We simulated populations 
starting with the admixture of 50 and 100 generations ago under HI, GA, and CGF models, with admixture 
proportions 30%:70%. At the end of the simulation, 10, 20, 50, 100, 200, and 500 “individuals” were sampled, 
corresponding to 1, 2, 5, 10, 20, and 50 human samples. AdmixInfer was applied to the simulated dataset without 
discarding short tracks.

Finally, we tested the performance of our method with data simulated by real populations and inferred ances-
tral tracks. Simulations were carried out with real populations YRI and CEU as parental populations under dif-
ferent models (30% YRI ancestry and 70% CEU ancestry) with admixture time 10, 20, 50 and 100 generations. 
Here we simulated with the data of chromosome 1 and sampled 25 “individuals” at the end of the simulation 
and each simulation was repeated 10 times. Then the local ancestry of the simulated populations was inferred 
by HAPMIX16. With the derived ancestral tracks, AdmixInfer was used to select the optimal model and estimate 
generations accordingly with the tracks longer than 1 cM.

Apply to real datasets. We applied our method to some real datasets. First, the histories of African 
Americans and Mexicans are relatively clear, thus they can be used to test the performance of our method. The 
data of African Americans, Mexicans and reference populations CEU and YRI were obtained from HapMap 
project phase III13, and the reference populations that represented American Indian ancestry (Maya and Pima) 
were obtained from HGDP dataset. Although previous studies showed multi-ancestry of African Americans and 
Mexicans7,17, here we mainly focused on the two dominant ancestries. Then we also applied our method to several 
HGDP populations from South Asia14, which showed evidence of population admixture from previous studies1,3. 
Haplotype phasing was performed by SHAPEIT 218. Local ancestry was inferred by HAPMIX16. According to the 
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prior knowledge, the generations set in HAPMIX inference were 10, 20 and 50 for African Americans, Mexicans 
and South Asian populations, respectively1. AdmixInfer was used to select the optimal model and admixture time 
accordingly with the tracks longer than 1 cM. We also performed bootstrapping 100 times to obtain confidence of 
model selection, and calculated the 95% confidence intervals of the generations inferred.

Data availability:. The source codes and tutorials of AdmixInfer and AdmixSim are available at: http://
www.picb.ac.cn/PGG/resource.php.

Results
Theoretical and simulated distributions of ancestral tracks match well. With the length distri-
butions of ancestral tracks under the general model, we could easily sketch the curves of theoretical length dis-
tributions of ancestral tracks under a given model (see Fig. 2). By putting the theoretical and simulated length 
distributions of ancestral tracks together, we clearly observed that the theoretical and simulated distributions of 
ancestral tracks matched well, for all the situations simulated and all the replicates (see Fig. 2). It showed that the 
theoretical length distribution of ancestral tracks for the general model, which we deduced, was reasonable and 
accurate.

AdmixInfer performs well in parameters estimation and model selection. With the extensively 
simulated data, we could systematically evaluate the performance of our method in parameters estimation and 
model selection. For the simulated admixed populations under HI model or CGFD model, our method could 
always distinguish the right model in all our simulations; for the CGFR model, our method could distinguish the 
right model with accuracy of 97.0%; and for GA model, our method could distinguish the right model with accu-
racy of 93.0% (see Table 1). Moreover, the specificity of our method was over 97% for all the situations simulated. 
The sensitivity of GA and CGFR models and the specificity of HI and CGFD models under different admixture 
proportions and different admixture times were shown in Supplementary Fig. S3 online. We found that the sim-
ulations in which our method could not distinguish the right ones were mostly observed in these simulations 
with very recent admixture times and small admixture proportions (see Supplementary Fig. S3 and Data S2–S6 
online). We also found that almost all CGFR models were only wrongly distinguished as HI models, and GA 

Figure 2. Theoretical and simulated distributions of ancestral tracks under some representative admixture 
scenarios. (a) three reference populations admixed once at 50 generations ago; (b) three reference populations 
admixed at 50 generations ago and the first population contributed an extra 10% ancestry each 10 generations 
later; (c) three reference populations admixed at 50 generations ago and the first population contributed an 
extra 0.2% ancestry every generation later; (d) two reference populations admixed 50 generations ago, the 
third reference population contributed 20% ancestry 40 generations ago, and the fourth reference population 
contributed 10% ancestry 30 generations ago.
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models as CGFD models (see Supplementary Data S6 online). This is also reasonable, because CGFR model is 
close to HI model, so that CGFR model is more likely to be distinguished as HI model. The same reason applies 
to GA model being wrongly distinguished as CGFD model.

Note that there were only two parameters m and T for the three typical models. Our method also performed 
well in estimating parameters m and T for the three typical models. Regarding the admixture proportion m, 
estimations were very close to the pre-settings in simulations, and the small deviation was due to random drift in 
simulation with finite population sizes and only a subset of individuals being sampled at the end of the simulation. 
Time estimations for wrongly distinguished models were meaningless, and thus should be discarded. Results 
showed that our method can estimate admixture times with high accuracy (see Fig. 3, Supplementary Fig. S4–S7, 
and Data S2–S5). For HI and CGFD models, results showed high consistency with the time simulated, while a 
slight underestimation occurred for GA and CGFR models. For all these models that were simulated, the time 
estimated for a small proportion was less accurate than that for a larger proportion. We defined the relative errors 
between true admixture times and inferred admixture times as

( ) =
−

,
ˆ

E T T T
T

where T is the true admixture time and T̂  is the estimation of the admixture time. Under the situation of a certain 
admixture proportion and a certain model, we defined the average relative error E on different values of admix-
ture time as

Model TP FN TN FP Sensitivity (%) Specificity (%)

HI 1050 0 3120 30 100.0 99.0

GA 977 73 3150 0 93.0 100.0

CGFR 1019 31 3150 0 97.0 100.0

CGFD 1050 0 3076 74 100.0 97.7

Table 1.  The accuracy of our methods in model selection under three typical models. HI: Hybrid isolation 
model; GA: Gradual admixture model; CGFR: Continuous gene flow model (population 1 as recipient); CGFD: 
Continuous gene flow model (population 1 as donor). TP: True positive; FP: False positive; TN: True negative; 
FN: False negative. Sensitivity =  TP/(TP +  FN); Specificity =  TN/(TN +  FP).

Figure 3. Mean generations estimated from simulation. Each dot denotes the mean generation of ten 
simulation replicates. (a) mean generations estimated under HI model; (b) mean generations estimated under 
GA model; (c) mean generations estimated under CGF model (population 1 as gene flow recipient); and  
(d) mean generations estimated under CGF model (population 1 as gene flow donor). Different colors represent 
different simulated proportions of population one.



www.nature.com/scientificreports/

9Scientific RepoRts | 6:20048 | DOI: 10.1038/srep20048

∑= ( ).
=

E
n

E T1

i

n

i
1

We found that when the admixture proportion was 0.1, the relative errors of CGFR and CGFD were 6.43% and 
5.89%, respectively. For other cases, the relative errors were all less than 4% (see Table 2). In conclusion, no matter 
for the model selection or parameters estimation, our method performed well.

Robustness for different thresholds for length of ancestral track. To test the robustness of our 
method for different thresholds for length of ancestral track, we tested our method under different thresholds var-
ying from 0 cM to 2 cM in steps of 0.1 cM. The results showed that our method was robust to thresholds, except 
GA model with a larger time (see Fig. 4). When a larger threshold is taken, less information is kept for ancient 
admixture events. Although it is better to keep all the information to estimate admixture times, we must balance 
the trade-off between information and accuracy, because the accuracy of local ancestry inference is not so good 
for short ancestral tracks due to method limitations. Take HI for an example, the probability p of ancestral tracks 
larger than a specific threshold C is

∫= − ( − ) = .−( − ) −( − )p m Te dx e1 1
C m Tx m TC

0
1 1

m HI GA CGFR CGFD

0.1 0.02304 0.02245 0.06433 0.05893

0.2 0.01327 0.03171 0.03917 0.02396

0.3 0.01149 0.02939 0.02439 0.01629

0.4 0.01260 0.02969 0.01704 0.01386

0.5 0.01158 0.02547 0.01474 0.01475

Table 2.  The average relative error E for different models and different values of admixture proportions. m: 
Admixture proportion; E: Average relative error on different values of admixture times. Here we discard the 
cases of 5 and 10 generations admixture time because wrongly distinguished models mainly focused on these 
two admixture times.

Figure 4. Generation estimated with different thresholds from simulation. Models simulated are (a) HI, 
(b) GA, (c) CGFR and (d) CGFD. The simulated admixture proportion was 30%. Different colors represent 
different simulated generations.
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Therefore, with an increase in threshold C, less information is kept. Here, we provided a reference table of the 
probability p under different admixture times and proportions (see Supplementary Data S7 online). For example, 
when T =  200, m =  0.1, if we set the threshold C as 2 cM, the probability that the tracks exceed C is only 2.7%.

Small sample sizes also give good estimations. To test the performance of AdmixInfer with different 
sample sizes, we evaluated the models with 10, 20, 50, 100, 200, and 500 “individuals” (corresponding to 1, 2, 5, 
10, 20, and 50 human samples). Results showed that AdmixInfer was insensitive to sample sizes. Even with only 
one human sample, it could distinguish the right model and estimate the admixture time with high accuracy (see 
Fig. 5). However, considering the accuracy of local ancestry, short tracks were usually discarded. The information 
kept for extremely small sample sizes might not be sufficient to give a clear picture of the history of a population. 
Therefore, relatively larger sample sizes were recommended.

Error analysis. When we use our method to infer the history of a real admixed population, there are two 
kinds of errors that may influence the accuracy of inference. The first kind of error is caused by the assumptions 
in deducing the length distribution of ancestral tracks. In the derivation, for simplicity, we ignored the end of 
the chromosome and the drift. For this kind of error, we have used the simulation data to demonstrate that the 
accuracy of the inference was neglectable (see Fig. 3 and Table 1). The second kind of error is caused by the local 
ancestry inference. In our study, local ancestral tracks are inferred by HAPMIX software. Here we used the simu-
lation data with ancestry populations YRI and CEU to analyze the influence of this kind of error. For all the cases 
we simulated, only HI model with an admixture time 100 generations was wrongly distinguished as GA model 
(see Supplementary Table S1 online). We also found that in the case of large admixture times, the error of local 
ancestry inference will cause underestimation of admixture time. When the admixture time is large, the ancestral 
tracks will be short. However, the method of inferring ancestral tracks cannot effectively determine short tracks. 
Thus, it will influence the accuracy of our method in inferring admixture times and model selections.

Real data analysis. Our method for parameters estimation and model selection under three typical models 
implemented in AdmixInfer was applied to a real dataset. First, African American was inferred as GA model and 
the admixture time was 12 generations ago (see Table 3). When 29 years per generation was assumed according 
to previous investigation19, it was about 350 years ago, which was consistent with the recorded history that most 
African ancestors arrived in America (via slave trading) after the seventeenth century. The slave trade continued 
until the nineteenth century and after that, many African people settled down in America. Gene flows from 
Africa and Europe would have continuously contributed to the African American gene pool and thus GA model 
matched the recorded history well. Similarly, the model for Mexicans was also inferred as GA model and the 
admixture time was 18 generations ago (522 years before present), which was also consistent with the time of the 
exploration of the new world and the arrival of Europeans. GA model indicates continuous contact and admix-
ture of Europeans and American Indians. Moreover, all these inferences are close to previous findings17.

Figure 5. Admixture time in generations estimated with different sample sizes. Models simulated are (a) 
HI, (b) GA, (c) CGFR and (d) CGFD. Different colors represent different simulated generations. The simulated 
admixture proportion was 30%.
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Finally, we studied the admixture histories of several HGDP populations from South Asia. Previous studies 
have shown that the populations from South Asia have admixed ancestries mainly from Europe and East Asia1,14. 
Regarding the admixture proportions, our estimations based on AdmixInfer (see Table 3) were consistent with 
previous estimations from the f-statistics3. Regarding the admixture model and time, the populations Balochi, 
Brahui, Burusho, Kalash, Pathan and Sindhi from Pakistan in South Asia were all inferred to as CGF (Sardinian 
as donor), which indicated extra gene flows from European ancestry after initial admixture. The initial admixture 
times estimated ranged from 107 to 96 generations ago. When 29 years per generation was assumed according to 
previous investigations19, these estimations (1103BC-784BC) coincided with the migration of Indo-Aryan speak-
ing people into the Indian subcontinent. Extra gene flows from European ancestry might be contributed to by the 
rising of empires during the following centuries. In the case of the populations of Hazara and Uygur, they not only 
showed very similar admixture proportions, but also showed the same admixture model and very close admix-
ture times; i.e., 67 and 70 generations ago, respectively. The Hazara population mainly settled in Afghanistan and 
Pakistan, while the Uygur population mainly settled in West China, and both populations are connected along 
the Silk Road. It was feasible to receive continuous gene flows from both European and East Asian ancestries. 
These similarities also indicated a possible close relationship or shared histories between these two populations.

In summary, our method showed good performance in inferring the admixture history of African Americans 
and Mexicans. The admixture scenarios in South Asian populations were more complex than expected. However, 
with our method, the analysis could shed light on the mysterious histories of these populations.

Discussion
In this work, we proposed a general model to describe the admixture history with multiple ancestral source 
populations and multiple-wave admixtures. We showed the length distribution of ancestral tracks and some of 
its useful properties under this general model. We thus provided a theoretical framework to study population 
admixture history. With the general framework, we focused on studying three special cases of admixture models 
(HI, GA, and CGF) and developed a method to estimate admixture proportion, admixture time and determine 
optimal model simultaneously. Our simulations showed that the theoretical distribution of ancestral tracks was 
consistent with our theoretical prediction, and our method was precise and efficient in inferring population his-
tory under the three typical models.

Comparing with the method of Gravel9, we deduced the length distribution of ancestral tracks without drift 
and assumed infinite chromosome length, and found that the length distribution was a mixed exponential dis-
tributions. Simulations demonstrated that these approximations were reasonable and accurate when admixture 
time T was not too small. In the case of T was too small, the length distribution did not follow an exponential dis-
tribution, as pointed out by Liang and Nielsen20, which could also explain the poor performance of our methods 
for small T (e.g. 5 generations).

In the efforts of model selection, we found that the simulations in which our method was not able to deter-
mine the correct model, were mostly those cases with recent admixture times and minor admixture proportions. 
The possible reason for incorrect determination was that we ignored the chromosome ends in deducing the 
theoretical length distribution. When the admixture proportion and times were small, the chromosomes without 
“observable” recombination were over-represented in the ancestral tracks (see Supplementary Fig. S8 online). 
Our further simulations showed that when the chromosome length increased, the accuracy of our method was 
enhanced. Furthermore, we note that the length distributions of ancestral tracks have no relationship with the 
population size. Thus, the change of population size does not affect the time estimation, which is also supported 
by simulations under different demographic models (see Supplementary Fig. S9 online).

The efficiency of our method could also be influenced by the validity of the local ancestry inference. To 
improve the reliability of the inference, we suggest using the ancestral tracks longer than a certain threshold 
C. However, when the threshold became large, some ancient admixture information disappeared rapidly. In 

POP1 POP2 Admixed pop m Model T 95% CI

CEU YRI ASW 0.247 GA (99%) 12 [12,12]

CEU AMI MEX 0.478 GA (100%) 18.02 [17.99, 18.05]

JAP SAR Uygur 0.570 GA (100%) 70.43 [70.2, 70.66]

JAP SAR Hazara 0.559 GA (100%) 67.16 [67.01, 67.31]

JAP SAR Balochi 0.198 CGF* (100%) 104.7 [104.5, 104.8]

JAP SAR Brahui 0.190 CGF* (100%) 105.2 [105, 105.3]

JAP SAR Burusho 0.339 CGF* (100%) 96.52 [96.34, 96.7]

JAP SAR Kalash 0.174 CGF* (100%) 100.5 [99.27, 101.6]

JAP SAR Pathan 0.258 CGF* (100%) 98.49 [98.28, 98.7]

JAP SAR Sindhi 0.272 CGF* (100%) 107.5 [107.4, 107.7]

Table 3.  Admixture time and model inferred for real datasets. POP1: Reference population one; POP2: 
Reference population two; Admixed pop: Admixed population; m: Admixture proportion of reference 
population one; Model: Inferred admixture model, percentage in the parenthesis is the support rate in 100 times 
bootstrapping; T: estimated admixture time in generation; 95%CI: 95% confidence interval of the estimated 
admixture time; AMI: Combined dataset of populations Maya and Pima which represent American Indian 
ancestry; JAP: Japanese; SAR: Sardinian; * Sardinian as donor population.
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principle, if short ancestral tracks could be precisely detected, our method is promising in recovering even more 
ancient admixture history, such as the admixture between modern human and Neanderthals21,22.

Though we proposed a general framework and relevant principles to infer the population history under the 
general model, finding optimal estimation for parameters is challenging work with high dimensionality. Currently, 
our method implemented in AdmixInfer is focusing on the three typical models. For the real admixed populations, 
the admixture history is always complex, such as discrete multiple-waves admixture. Under such circumstances, 
the length distribution of ancestral tracks under the general model is still broadly useful and applicable. Therefore, 
based on this framework, to infer more complicated admixture history is a problem to be solved in the future.
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