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Abstract
Background  Admission computed tomography (CT) scoring systems can be used to objectively quantify the severity of 
traumatic brain injury (TBI) and aid in outcome prediction. We aimed to externally validate the NeuroImaging Radiologi-
cal Interpretation System (NIRIS) and the Helsinki CT score. In addition, we compared the prognostic performance of the 
NIRIS and the Helsinki CT score to the Marshall CT classification and to a clinical model.
Methods  We conducted a retrospective multicenter observational study using the Finnish Intensive Care Consortium data-
base. We included adult TBI patients admitted in four university hospital ICUs during 2003–2013. We analyzed the CT 
scans using the NIRIS and the Helsinki CT score and compared the results to 6-month mortality as the primary outcome. 
In addition, we created a clinical model (age, Glasgow Coma Scale score, Simplified Acute Physiology Score II, presence 
of severe comorbidity) and combined clinical and CT models to see the added predictive impact of radiological data to con-
ventional clinical information. We measured model performance using area under curve (AUC), Nagelkerke’s R2 statistics, 
and the integrated discrimination improvement (IDI).
Results  A total of 3031 patients were included in the analysis. The 6-month mortality was 710 patients (23.4%). Of the CT 
models, the Helsinki CT displayed best discrimination (AUC 0.73 vs. 0.70 for NIRIS) and explanatory variation (Nagelkerke’s 
R2 0.20 vs. 0.15). The clinical model displayed an AUC of 0.86 (95% CI 0.84–0.87). All CT models increased the AUC of 
the clinical model by + 0.01 to 0.87 (95% CI 0.85–0.88) and the IDI by 0.01–0.03.
Conclusion  In patients with TBI treated in the ICU, the Helsinki CT score outperformed the NIRIS for 6-month mortality 
prediction. In isolation, CT models offered only moderate accuracy for outcome prediction and clinical variables outweigh-
ing the CT-based predictors in terms of predictive performance.

Keywords  Traumatic brain injury · Intensive care · Computed tomography · Trauma surgery

This article is part of the Topical Collection on Brain trauma

 *	 Juho Vehviläinen 
	 juho.vehvilainen@helsinki.fi

1	 Department of Neurosurgery, Helsinki University Hospital 
and University of Helsinki, Topeliuksenkatu 5, P.B. 266, 
00029 HUS Helsinki, Finland

2	 Department of Emergency Care and Services, University 
of Helsinki and Helsinki University Hospital, Helsinki, 
Finland

3	 Department of Anesthesiology and Intensive Care, Kuopio 
University Hospital & University of Eastern Finland, Kuopio, 
Finland

4	 Department of Perioperative Services, Intensive Care 
and Pain Management, Turku University Hospital & 
University of Turku, Turku, Finland

5	 Department of Intensive Care and Emergency Medicine 
Services, Department of Emergency, Anesthesia and Pain 
Medicine, Tampere University Hospital & University 
of Tampere, Tampere, Finland

6	 Research Group of Surgery, Anesthesiology and Intensive 
Care, Division of Intensive Care, Medical Research Center, 
Oulu University Hospital & University of Oulu, Oulu, 
Finland

/ Published online: 1 September 2022

Acta Neurochirurgica (2022) 164:2709–2717

http://orcid.org/0000-0001-7521-8512
http://crossmark.crossref.org/dialog/?doi=10.1007/s00701-022-05353-0&domain=pdf


1 3

Introduction

Traumatic brain injury (TBI) is one of the most common 
causes of mortality among young persons [3, 4]. In recent 
years, it has been identified as an increasing risk of mortality 
and morbidity among elderly as well [22]. Glasgow Coma 
Scale (GCS) has been traditionally used as a measure of TBI 
severity upon admission to hospital. GCS is easy and fast to 
assess; however, it does not give information on structural 
information on potential intracranial lesions.

As computed tomography (CT) has become widely avail-
able, several classifications and scoring systems have been 
developed for additional information on TBI prognosis. 
These include, e.g., Marshall CT classification [8], Rotter-
dam CT-based score [7], Helsinki CT score [17], and Stock-
holm CT score [12].

The practical use of CT scores is to give clinicians more 
quantitative and comparable tools to assess the severity of 
TBI and estimate need for operative treatment and progno-
sis. For research purposes, CT scores are used for injury 
severity standardization and comparison. Recently, a new 
CT score, NeuroImaging Radiological Interpretation System 
(NIRIS), was introduced [25]. The NIRIS consists of five 
categories ranging from 0 to 5, with an increasing intrac-
ranial injury load with an increasing number. NIRIS was 
developed to consolidate imaging findings into different cat-
egories of ordinal severity to inform specific patient man-
agement actions [25]. The NIRIS has been earlier validated 
against Marshall CT classification and Rotterdam CT score 
[2, 25, 27]. To our knowledge, NIRIS has not been validated 
nor compared to more granular Helsinki CT score.

In this study, we aimed to perform an external validation 
study of the NIRIS and to compare it with the Helsinki CT 
score and a clinical model for predicting 6-month mortality. 
We hypothesized that both CT scores would add predictive 
performance when compared just with clinical data and that 
the Helsinki CT score would outperform the NIRIS, as it is 
more granular. We also report performance statistics of the 
widely used Marshall CT classification system.

Methods and materials

The ethics committee of Helsinki University Hospi-
tal (194/13/03/14 §97), the Finnish National Institute 
for Health and Welfare (THL/713/5.05.01/2014 and 
THL/1298/5.05.00/2019), Statistics Finland (TK-53–1047-
14), the Office of the Data Protection Ombudsman (Dnro 
2713/402/2016 28.10.16), and all the participating univer-
sity hospitals’ research committees approved this study. The 
study adhered to the Strengthening the Reporting of Obser-
vational Studies in Epidemiology (STROBE) guidelines.

Study design and population

We performed a multicenter retrospective observational 
study using data that were prospectively collected from the 
Finnish Intensive Care Consortium (FICC) database. The 
FICC database is a nationwide prospectively data-collecting 
database including all ICU-treated patients from the major-
ity of all ICUs in Finland [19]. In Finland, all specialized 
tertiary intensive care of TBI patients is centralized to five 
tertiary ICUs. Four of these ICUs participate in the FICC 
covering approximately two-thirds of the population in Fin-
land. From these four tertiary ICUs, we included all adult 
TBI patients (age ≥ 18 years) admitted from January 1, 2003, 
to December 31, 2013 (readmissions excluded). Patients 
were excluded if no primary CT scan was available, and if 
Glasgow Coma Scale (GCS) or pre-admission functional 
status was missing.

Six-month case fatality was used as endpoint for analysis 
(available for all Finnish citizens through the Finnish popu-
lation registry).

CT assessment

All patients in the study had non-contrast CT scan taken at 
the admission to hospital. Patients with only post-operative 
CT scans, CT angiography, or MRI scans were excluded. 
All available CT images were classified according to the 
Marshall CT classification system, the Helsinki CT score, 
and the updated version of NIRIS [27] by two authors (JV, 
RR). The CT classification systems are described in Table 1.

Statistical analysis

The Marshall CT classification [8] and the NIRIS [25, 27] 
were treated as categorical variables, NIRIS being ordinal. 
The Helsinki CT score was originally constructed as an ordi-
nal scale, but due to its many levels and numeric distribu-
tion, it can be treated as a numeric variable [17].

We performed first-level customization of the CT scores 
by fitting a new logit function to the respective CT score 
[10]. The Helsinki CT-based score (hereafter referred to as 
Helsinki CT score), Marshall CT-based classification (here-
after referred to as Marshall CT class), and NIRIS-based 
(hereafter referred to as NIRIS).

We created a clinical “base model” that included age, GCS 
score (worst measured GCS score during the first ICU-day or 
as the last reliable GCS for intubated and/or sedated patients), 
a modified Simplified Acute Physiology Score II (SAPS II, 
without the age, GCS score, and chronic comorbidity compo-
nent), and the presence of a chronic comorbidity (according 
to the SAPS II and Acute Physiology and Chronic Evaluation 
[APACHE] II definitions). The SAPS II and APACHE scores 
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were assessed during the first 24 h of ICU treatment. We sepa-
rately added age, GCS score, and chronic comorbidities to 
give them more weight in our base model [18]. To the base 
model, the three different CT scores (NIRIS, Marshall CT 
classification, and Helsinki CT score) were separately added.

We assessed the individual CT scores and the combined 
base + CT scores by calculating the Nagelkerke’s R2 and the 
area under the receiver operating characteristics curve [11]. 
Nagelkerke’s R2 gives a value between 0 and 1 resembling 
explained variance, where the value 1 indicates a model that 
fully explains the outcome. The AUC values range from 0.5 
to 1 with 0.5 indicating at the level of chance and 1 indicat-
ing a perfect model. We assessed the calibration by using the 
Hosmer–Lemeshow test for all models apart from NIRIS and 
Marshall, as these consist of less than 10 groups.

We compared AUCs between models using a DeLong 
test. We considered p-values under 0.05 statistically 
significant.

In addition to the AUC analysis, we calculated the inte-
grated discrimination improvement (IDI) as the AUC might 
be more insensitive in model comparisons in which the base-
line model has performed well [14]. The IDI is a category 
free measure of the discrimination ability between two logis-
tic regression prediction models. The IDI can be defined as 
the difference in discrimination slopes between two models 
one with, and the other without, the added variable. It can be 
estimated with the following equation: ÎDI =

(

p̂new,events − p̂old,events

)

−

(

p̂new,nonevents − p̂old,nonevents

) , where p̂new,events is the mean of the 
new model-based predicted probabilities of an event for those 

Table 1   Description of Marshall CT classification, Helsinki CT score, and NIRIS methods

Abbreviations: EML, evacuated mass lesion; NEML, non-evacuated mass lesion; EDH, epidural haematoma; NIRIS, NeuroImaging Radiologi-
cal Interpretation System; SDH, subdural haematoma; ICH, intracerebral haematoma (parenchymal); IVH, intraventricular hemorrhage; *The 
revised NIRIS definitions9

CT classification/scoring system Classification or component Description

Marshall CT classification Diffuse injury I No visible intracranial pathology
Diffuse injury II Basal cisterns are present with midline shift 0–5 mm and no 

high- or mixed-density lesions > 25 cm3

Diffuse injury III Basal cisterns compressed or absent, midline shift 0–5 mm, no 
high- or mixed-density lesion > 25 cm3

Diffuse injury IV Midline shift > 5 mm, no high- or mixed-density lesion > 25 cm3

EML V/NEMLVI High- or mixed-density lesions > 25 cm3

Helsinki CT score Mass lesion type SDH: 2
ICH or contusion: 2
EDH: -3

Mass lesion size Haematoma volume > 25 cm3: 2
IVH Absent: 0, present: 3
Suprasellar cisterns Normal: 0, compressed: 1, obliterated: 5
Sum score Range: − 3 to 14

NIRIS Category 0 No abnormal finding
Category 1 Fracture

Pneumocephalus*
EDH, SDH, ICH, or parenchymal contusion < 0.5 cm3

Subarachnoid hemorrhage
Category 2 EDH, SDH, ICH, or parenchymal contusion > 0.5 cm3

Diffuse axonal injury
IVH
Mild or moderate hydrocephalus*
Midline shift 0–5 mm

Category 3 EDH, ICH, or parenchymal contusion > 15 cm3

SDH > 50 cm3
Midline shift > 5 mm
Focal herniation

Category 4 EDH, ICH, or parenchymal contusion > 20 cm3

SDH > 200 cm3*
Severe hydrocephalus
Midline shift > 10 mm
Diffuse herniation
Duret hemorrhage
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who develop events, p̂old,events is the corresponding quantity 
based on the old model, p̂new,nonevents is the mean of the new 
model-based predicted probabilities of an event for those who 
do not develop events, and p̂old,nonevents is the corresponding 
quantity based on the old model [13]. Another representation 
of the IDI can be formulated with the following equation: 
IDI =

(

ISnew − ISold

)

−(IPnew − IPold)
 , where IS = ∫ sensitivity and 

IP = ∫ 1 − specificity and the subscripts “new” and “old” 
correspond to the new model and the old model, respectively 
[13]. The IDI reflects the mean magnitude of the change in 
outcome probability with the addition of the new variable in 
the prediction model. It is the area between the curves (the 
old model and the new model) in a plot where on the y-axis 
are both sensitivity and 1-specificity, and on the x-axis is the 
calculated risk. The model performance is improved when 
the new model moves the reference curve of sensitivity 
toward the top-right corner and the reference curve of 1-spec-
ificity toward lower-left corner. Conversely, model perfor-
mance is reduced when the new model moves the reference 
curve of sensitivity toward lower-left corner and the reference 
curve of 1-specificity toward top-right corner [16, 24]. The 
IDI ranges theoretically from − 2 to 2 representing the overall 
risk discrimination improvement [13, 15, 16, 21].

We used SPSS IBM Corp. Released 2020. IBM SPSS 
Statistics for Windows, Version 27.0. Armonk, NY: IBM 
Corp and STATA StataCorp. 2019. Stata Statistical Soft-
ware: Release 16. College Station, TX: StataCorp LLC for 
the statistical analysis.

Results

Altogether, 3031 patients met the inclusion criteria (Fig. 1). 
Patient characteristics are listed in Table 2. The median patient 
age was 55 years, 78% were male, 90% were functionally inde-
pendent prior to admission, and 8.3% suffered from significant 
comorbidity. Almost half (47%) had a GCS between 3 and 8 
in the first 24 h or before intubation. Approximately one-third 
(33%) of the patients required operative treatment, 24% were 
ICP monitored, and majority of the patients (66%) were intu-
bated and mechanically ventilated. Seven percent of patients 
died during ICU treatment, 13% died in hospital, and 23% in 
6 months after the TBI.

 The distribution of NIRIS categories, Marshall CT classes, 
and median Helsinki CT scores is shown in Table 3. NIRIS 
category 2 (43%) was the most frequent, followed by NIRIS cat-
egory 4 (22%) and 3 (17%). The most frequent Marshall classes 
were EML/NEML (44%) and II (43%). The median Helsinki CT 
score was 2.0 (IQR 2.0–4.0). NIRIS categories 0–1 correlated 
well with Marshall classes I and II. Most patients with a NIRIS 
category of II had a Marshall class of II. The majority of patients 

with a NIRIS category of 3 and 4 had a Marshall class indicating 
mass lesion (EML/NEML).

Non-survivors and patients with a low GCS score 3–8 in 
the first 24 h, or before intubation, more often belonged to a 
higher NIRIS category than survivors (Table 4). The median 
age, frequency of mechanical ventilation, operative treatment, 
and ICP monitoring increased with a rising NIRIS category 
(Table 4). When divided further into groups of NIRIS categories 
and respective GCS groups (3–8; 9–12; 13–15), the correlation 
between ICP monitoring and increasing NIRIS category was 
not as clear (Supplemental Table 1). The 6-month mortality in 
patients with NIRIS categories 0, 1, 2, 3, and 4 was 8.4%, 5.3%, 
17.0%, 27.0%, and 46.6%, respectively.

Performance of the models

Of the CT models, Helsinki CT displayed best discrimination 
(AUC 0.73 vs. 0.70 for NIRIS vs. 0.68 for Marshall, Fig. 2) and 
explained variance (Nagelkerke’s R2 0.20 vs. 0.15 for NIRIS vs. 
0.14 for Marshall) (Table 5).

The base model displayed an AUC of 0.86 (95% CI 
0.84–0.87) with an explained variance of 0.43. The addition of 
all CT models increased the AUC by + 0.01 to 0.87 (p < 0.001, 
Table 5, Fig. 2). The explained variance increased to 0.44 when 
adding the NIRIS to the base model and to 0.46 when adding 
the Helsinki CT score to the base model. The IDI values were 

Adult patients with TBI entered into the 

FICC database during 2003-2013

           N = 3,281
Excluded if

No CT data N = 35

Only MRI data N = 3

Only postop images N = 144

Too bad quality CT data N = 35

Number of patients for CT image analysis 

           N = 3,072

Excluded if

No GCS available N = 41

Number of patients for final analysis

           N = 3,031

Fig. 1   Study’s patient flow chart. Abbreviations: CT = computed tomog-
raphy; MRI = magnetic resonance imaging; GCS = Glasgow Coma Scale; 
FICC = Finnish Intensive Care Consortium; TBI = traumatic brain injury. 
Note that some CT images had more than one exclusion criteria
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Table 2   Patient characteristics

Abbreviations: IQR, interquartile range; LOS, length of stay; NIRIS, NeuroImaging Radiological Interpre-
tation System. 1A modified World Health Organization/Eastern Cooperative Oncology Group classification 
system implemented by the Finnish Intensive Care Consortium. 2Any chronic comorbidity according to 
Acute Physiology and Chronic Health Evaluation II or Simplified Acute Physiology Score II. Missing val-
ues (N (%)): *74 (2.4%); † 2 (0.1%); ‡ 6 (0.2%); § 2 (0.1%)

Variables All patients N = 3031

Age (yr.), median (IQR) 55 (41, 67)
  18–40, N (%) 753 (24.8%)
  1–64, N (%) 1419 (46.8%)
   ≥ 65, N (%) 859 (28.3%)

Glasgow Coma Scale score, median (IQR) 9.0 (5.0, 14.0)
  3–8, N (%) 1410 (46.5%)
  9–12, N (%) 585 (19.3%)
  13–15, N (%) 1036 (34.2%)

Females, N (%) 676 (22.3%)
Preadmission performance status1, N (%)*
Fit for work or equal 1827 (60.3%)
Unfit for work, but independent in self-care 908 (30.0%)
Partially dependent in self-care 174 (5.7%)
Totally dependent in self-care 48 (1.6%)
Significant chronic comorbidity2, N (%) 252 (8.3%)
Operative admission, N (%)† 994 (32.8%)
Mechanical ventilation, N (%) 1990 (65.7%)
Intracranial pressure monitoring, N (%) 711 (23.5%)
LOS university neurosurgical ICU (d), median (IQR) 1.63 (0.79, 3.84)
LOS university hospital (d), median (IOR) 6.00 (3.00, 11.0)
Acute Physiological and Chronic Health Evaluation II score (APACHE), median 

(IQR)
18.00 (12.00, 24.00)

Simplified Acute Physiology Score II, median (SAPS II) (IQR) 34.00 (23.00, 50.00)
Sequential Organ Failure Assessment score (SOFA), median (IQR) ‡ 6.00 (3.00, 8.00)
Outcome
Death at ICU, N (%) 220 (7.3%)
Death during hospitalization, N (%) § 389 (12.8%)
Dead at 6 months from TBI, N (%) 710 (23.4%)

Table 3   Number of patients 
in NIRIS categories and 
corresponding Marshall CT 
classifications and medians of 
Helsinki CT score

* % within NIRIS category

NIRIS category

0 1 2 3 4

N (%) 320 (10.6% 225 (7.4%) 1297 (42.8%) 526 (17.4%) 663 (21.9%)
Corresponding values for Marshall CT classification and Helsinki CT score
Marshall CT classification N (%)*
  I 319 (99.7%) 14 (6.2%) 6 (0.4%) 0 0
  II 1 (0.3%) 208 (92.5%) 739 (57.0%) 72 (13.7%) 7 (1.1%)
  III 0 3 (1.3%) 232 (17.9%) 54 (10.3%) 4 (0.6%)
  IV 0 0 2 (0.2%) 28 (5.3%) 18 (2.7%)

EML V/NEML VI 0 0 318 (24.5%) 372 (70.7%) 634 (95.6%)
Helsinki CT score, 

median (IQR)
0.0 (0.0, 0.0) 2.0 (0.0, 2.0) 2.0 (2.0, 4.0) 4.0 (2.0, 4.0) 5.0 (4.0, 9.0)
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positive (ranging from 0.011 to 0.028) for all CT models when 
they were added to the base model.

Discussion

Key findings

In this large multicenter observational study, including 
3031 patients from four academic centers in Finland, we 

compared three different CT scores to their ability to pre-
dict 6-month mortality in patients with TBI treated in the 
ICU. Of the three CT models in isolation, the Helsinki CT 
score displayed the best performance for 6-month mortal-
ity prediction. However, after adding the individual CT 
models to a clinical base model, only a moderate improve-
ment in predictive performance predicting the 6-month 
mortality could be seen: AUC by + 0.01 to 0.87 (95% CI 
0.85–0.88) and the IDI by 0.01–0.03, which is small, but 
statistically significant, and makes the AUC analysis more 

Table 4   Association between NIRIS category, age, GCS, treatment-related factors, and mortality

* % within NIRIS category. According Chi-Square test, all variables were statistically significantly (p < 0.01) dependent. Abbreviations: IQR, 
interquartile range; NIRIS, NeuroImaging Radiological Interpretation System

NIRIS category

0 1 2 3 4 Total

N (%) 320 (10.6%) 225 (7.4%) 1297 (42.8%) 526 (17.4%) 663 (21.9%) 3031 (100%)
Age, median (IQR) 38 (26, 54) 43 (25, 57) 54 (41, 67) 59 (47, 69) 60 (51, 70) 55 (41, 67)
Glasgow Coma Scale score, median (IQR)
3–8, N (%*) 104 (32.5%) 77 (34.2%) 512 (39.5%) 240 (45.6%) 477 (71.9%) 1410 (46.5%)
9–12, N (%*) 52 (16.3%) 37 (16.4%) 268 (20.7%) 138 (26.2%) 90 (13.6%) 585 (19.3%)
13–15, N (%*) 164 (51.2%) 111 (49.3%) 517 (39.9%) 148 (28.1%) 96 (14.5%) 10,136 (34.2%)
Mechanical ventilation, N (%*) 177 (55.3%) 119 (52.9%) 747 (57.6%) 370 (70.3%) 577 (87.0%) 1990 (65.7%)
Operative treatment, N (%*) 8 (2.5%) 6 (2.7%) 263 (20.3%) 273 (52.0%) 444 (67.1%) 994 (32.8%)
Intracranial pressure monitoring, N (%*) 36 (11.3%) 45 (20.0%) 317 (24.4%) 143 (27.2%) 170 (25.6%) 711 (23.5%)
Dead ICU, N (%*) 9 (2.8%) 2 (0.9%) 63 (4.9%) 38 (7.2%) 108 (16.3%) 220 (7.3%)
Dead hospital, N (%*) 19 (5.9%) 6 (2.7%) 105 (8.1%) 72 (13.7%) 187 (28.2%) 389 (12.8%)
Dead 6-months, N (%*) 27 (8.4%) 12 (5.3%) 220 (17.0%) 142 (27.0%) 309 (46.6%) 710 (23.4%)

Fig. 2   On the left: ROC curves 
of NIRIS, Marshall CT classi-
fication, and Helsinki CT score 
vs. 6-month mortality. On the 
right: ROC curves of NIRIS, 
Marshall CT classification, and 
Helsinki CT score combined 
to a base model vs. 6-month 
mortality
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robust. Our results suggest that the choice of CT model 
when adjusting for case-mix in patients with TBI is of less 
importance than the adjustment of clinical variables such 
as age, GCS score, comorbidities, and acute physiological 
derangements (e.g., SAPS II).

Comparison to previous studies

The NIRIS has been validated in a more general TBI popula-
tion and compared to the Marshall CT classification and the 
Rotterdam CT score [2, 27]. Their results showed that the 
NIRIS performed similarly to the Marshall CT classification 
and the Rotterdam CT score in terms of predicting mortality, 
but markedly better in terms of discriminating the needed 
interventions and intensity of patient care. This is in line 
with the original aim of the NIRIS to predict TBI patient 
care based on initial imaging.

The study populations in both original article introducing the 
NIRIS [25] and in the validation article by Zhou et al., [27] done 
in Stanford Hospital, USA, had a more general TBI population 
compared to our already ICU-admitted study population. Hence, 
our study population had more severe injuries and higher mor-
tality: approx. 2% in earlier studies with the NIRIS compared 
to almost 13% during hospitalization in our study. This is also 
seen in the NIRIS categories as category 2 is the most common 
(43%) in our study population compared to category 0 in Zhou 
et al. [27] (77%). Furthermore, categories 3 and 4 include 39% 
of our study population that leaves less than 20% for categories 
0 and 1. A validation study [2] of NIRIS conducted in India 
had a similar mortality rate in hospital (14%) than in our study; 
however, the patients were general TBI patients, not only ICU-
admitted TBI patients.

In contrast to the NIRIS, the Helsinki CT score was devel-
oped for outcome prediction in patients with TBI treated in 
the ICU [17]. The Helsinki CT score has been validated 

in pediatric TBI patients (AUC 0.84) [9], penetrating TBI 
patients (AUC 0.90) [6], and adult TBI patients (AUC 
0.70–0.81) [1, 5, 20, 23, 26] with good performance. We 
found similar performance measures in the present cohort 
(AUC 0.73, Nagelkerke’s R2 0.20). Thus, due to differences 
in design and granularity, it is not surprising that the Hel-
sinki CT score outperformed the NIRIS in terms of outcome 
prediction. Furthermore, in line with previous results, clini-
cal variables seem to be more important predictors that CT 
predictors [18].

The clinical importance of early CT imaging in 
patients with significant TBI is undisputed. However, 
current CT models seem to be of limited additional prog-
nostic value compared to clinical variables in terms of 
mortality prediction. There is some obvious selection 
bias to this, as all patients were admitted to the ICU. 
Thus, the association between variables such as midline 
shift and mass lesions is diluted since these may be, at 
least partly, reversible due to surgical treatment [23]. It 
is possible that the predictive performance of the current 
CT models could be improved by including spatial and 
volumetric parameters.

The SAPS II and APACHE scores are measured during 
the first 24 h of ICU treatment and thus contain more infor-
mation than the CT models based upon admission charac-
teristics. This will be in favor of the clinical model in terms 
of prognostic accuracy.

Strengths and limitations

Some strengths should be highlighted. We used a large mul-
ticenter high-quality database collecting data prospectively. 
Thus, we were able to include more than three thousand 
patients in our study. In addition, there was a small number 

Table 5   Performance measures 
of the CT scores, base model, 
and combined models for 
predicting 6-month mortality

* Based on age, GCS, chronic comorbidities, and modified SAPS II. ǂ AUC comparison using DeLong test 
to NIRIS for CT models and to Base model for Clinical + CT models. Abbreviations: AUC​, area under 
curve; CT, computed tomography; GCS, Glasgow Coma Scale; IDI, integrated discrimination improve-
ment; NIRIS, NeuroImaging Radiological Interpretation; SAPS, Simplified Acute Physiology Score. The 
Hosmer–Lemeshow test was not applicable for NIRIS and Marshall CT as these consist of less than 10 
categories

CT models AUC (95% CI) p valueǂ Hosmer–
Lemeshow p 
value

Nagelkerke’s R2 IDI (95% CI)

NIRIS 0.70 (0.68–0.72) Ref NA 0.147 NA
Marshall CT 0.68 (0.66–0.70) 0.021 NA 0.136 NA
Helsinki CT 0.73 (0.70–0.75) 0.007 0.20 0.200 NA
Clinical + CT models
Base* 0.86 (0.84–0.87) Ref 0.96 0.427 Ref
Base + NIRIS 0.87 (0.85–0.88)  < 0.001 0.51 0.442 0.012 (0.007–0.017)
Base + Marshall CT 0.87 (0.85–0.88)  < 0.001 0.95 0.448 0.011 (0.006–0.016)
Base + Helsinki CT 0.87 (0.86–0.88)  < 0.001 0.71 0.456 0.028 (0.019–0.036)
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of missing data, and we had a complete 6-month follow-up. 
Our patient cohort also represents well the general ICU-
treated TBI population in Finland as the referral population 
of the four neurointensive ICUs is approximately 3.5 million 
people, encompassing two-thirds of the Finnish population.

Some limitations should be acknowledged. The FICC is 
a general ICU database and lacks some TBI-specific param-
eters, like specific neurosurgical procedures, admission GCS 
score, pupillary light reactivity, and thus information on 
IMPACT or CRASH models. The FICC database used in 
this study did not include data on such devastating injuries 
that the more aggressive treatment was withheld. Informa-
tion regarding admission due to organ donation has been 
added later. Still, for case-mix adjustment, our base model 
displayed good statistical performance. Second, we only had 
all-cause mortality as an outcome measure. Predicting func-
tional outcome would be desirable as well. Noteworthy, the 
Helsinki CT score was designed to predict outcome while 
Marshall CT and NIRIS were not. Thus, this might skew the 
results in favor of the Helsinki CT score when predicting 
outcome. Third, we highlight that we only included patients 
treated in a university hospital ICU and did not include 
milder TBIs. In this study, we did not include in compari-
sons the two other significant CT scores, namely, the Stock-
holm CT score and the Rotterdam CT score. Earlier, both 
of these scores have been validated against the Helsinki CT 
score [23] and the Rotterdam CT score against the NIRIS 
[2, 27]. The Stockholm CT score has shown to have superior 
predictive power, to some extent, over the Helsinki CT score 
and the Rotterdam CT score [23]. Further work should be 
done to compare the Stockholm CT score to the NIRIS.

Conclusion

In patients with TBI treated in the ICU, the Helsinki CT 
score outperformed the NIRIS for 6-month mortality. How-
ever, clinical variables outweighed the current CT-based 
models in terms of predictive performance. Thus, accounting 
for clinical variables when adjusting for TBI injury severity 
is imperative.
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