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Abstract
Measures of cellular gene expression or behavior, when performed on individual cells, inev-

itably reveal a diversity of behaviors and outcomes that can correlate with normal or dis-

eased states. For virus infections, the potential diversity of outcomes are pushed to an

extreme, where measures of infection reflect features of the specific infecting virus particle,

the individual host cell, as well as interactions between viral and cellular components. Sin-

gle-cell measures, while revealing, still often rely on specialized fluid handling capabilities,

employ end-point measures, and remain labor-intensive to perform. To address these limi-

tations, we consider a new microwell-based device that uses simple pipette-based fluid

handling to isolate individual cells. Our design allows different experimental conditions to be

implemented in a single device, permitting easier and more standardized protocols. Further,

we utilize a recently reported dual-color fluorescent reporter system that provides dynamic

readouts of viral and cellular gene expression during single-cell infections by vesicular sto-

matitis virus. In addition, we develop and show how free, open-source software can enable

streamlined data management and batch image analysis. Here we validate the integration

of the device and software using the reporter system to demonstrate unique single-cell

dynamic measures of cellular responses to viral infection.

Introduction
Phenotypic cellular heterogeneity arises due to myriad intrinsic and extrinsic factors and repre-
sents a topic of growing importance in biology. Intrinsic factors represent genetic or epigenetic
alterations, while extrinsic factors include neighboring cells, the extracellular matrix, or the
organism physiology. Cell heterogeneity impacts disease, including the development of cancer
and drug resistance [1, 2] as well as normal biology, including activation of primary and
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secondary immune responses [3–5] and of developmental processes [6, 7]. Furthermore, het-
erogeneity exists even under tightly controlled and homogeneous conditions such as the cul-
ture of a clonogenic cell-line in a standard culture flask [8, 9]. Single-cell quantification of such
heterogeneity (cytometry) represents a unique opportunity to detect and discover naturally
arising correlations among cellular characteristics, yielding new insights that would be more
challenging or impossible to gain using population-average measures [10]. Complicating this
opportunity, however, is the dynamic nature of of cellular behaviors. While overall distribu-
tions of cell phenotypes in a population might appear relatively constant, the characteristics of
individuals are constantly in flux [11].

Dynamic cytometry (DC), or the ability to measure the time-dependent behavior of individ-
ual cells within a heterogeneous population, can help address this challenge. Fundamentally,
DC enables insight into areas of biology where heterogeneity and dynamics are important or
where rare events are hidden by population averages. For this reason, dynamic cytometry is
particularly well-suited for the study of virus-host interactions, where infection and signaling
can involve stochastic events and variable dynamics [3, 12–19].

Viewed broadly, DC methods can be described as those that quantify population distribu-
tions over time (population dynamic cytometry, PDC), and those that track or follow individ-
ual cells over time (individual dynamic cytometry, IDC). Fig 1 compares common methods for
static, dynamic, population, and individual cytometry methods. Although PDC approaches
can enable new insights into cellular dynamics, there remain many fundamental questions to
be answered that require IDC. For example, relatively little is known about how population dis-
tributions are formed and maintained by the constantly changing individual cells that make up
those distributions. Likewise, IDC enables one to link the kinetics of highly heterogeneous and
stochastic events within individual cells, such as virus-host interactions during an infection,
which could provide significant new insights. Such applications are enabled by the ability to
identify and follow individual cells through time.

Fig 1. Comparison of general approaches that enable fluorescence-based cytometry. The categories and capabilities of each are roughly assessed.
Capability Key: ● = High, ● = Medium, ● = Low, (blank) = not significant.

doi:10.1371/journal.pone.0145081.g001
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There exist multiple approaches to enabling IDC such as cellular bar-coding, image-based
cell tracking analysis, and single-cell isolation [20–27]. Although no single approach is ideal for
all applications, cell confinement strategies can offer an attractive balance of advantages and
limitations. Cellular bar-coding methodologies have tremendous potential to impact a variety
of fields including in vivo work; however, in the context of high-throughput IDC, it is difficult
to implement a cellular bar-coding scheme that provides a sufficient number of labels, does not
impact the biology, and is simple to implement compared to alternative identification methods.
Likewise, image analysis software for tracking and quantifying cells (e.g., via image segmenta-
tion) can be a powerful and cost-effective technique for IDC but encounters limits when per-
forming extended single-cell kinetics studies (i.e., studies that generate a contiguous time-series
of data for each cell over many timepoints). In such cases, tracking must be able to identify
cells and/or their boundaries with* 100% accuracy from timepoint-to-timepoint to provide
contiguous information for kinetics analysis. For example, even with 99% tracking/identifica-
tion accuracy between each timepoint, after 60 timepoints only 55% of the time-series collected
will be complete and accurate for the full time-course of the experiment (0.9959, which assumes
independence that does not hold in practice, yet illustrates the general problem that arises as
the number of timepoints increases). Given that cells can move, change shape, divide, lyse, and
may appear to overlap; robust determination of cell identity among adjacent or overlapping
cells is often not feasible via software or by the human eye. These challenges and considerations
are quantified and described in more detail in previous work by others.[28–30]

In contrast, cell isolation or confinement strategies (e.g., microfluidic entrapment, microwell
arrays, droplet-based microfluidics, digital microfluidics, and adhesion patterning) offer the
ability to encode the identity of a cell via its location, which makes tracking and quantification
of cells in images unambiguous and simple. Furthermore, this can be done for roughly hun-
dreds of thousands of cells per device or ‘chip’. However, some drawbacks are that cells cannot
migrate, spatially organize or interact, as they might in vivo or in un-constrained culture. Like-
wise, experimental complexity is generally increased to different degrees depending on the
method used to isolate or confine the cells. Additionally, IDC often produces extremely large
datasets and associated challenges of data management/organization, batch processing, and
data analysis that should not be ignored.

In principle, IDC can enable significant opportunity to extract insight from measures of cell
heterogeneity. However, use of IDC approaches remains limited. To expand its use, IDC will
need to simplify and integrate: 1) dynamic readouts of cellular processes, 2) robust methods for
following cells over extended times, and 3) software for streamlined data management and
analysis. Furthermore, IDC has specific potential to impact the study of virus-host interactions
where variability, stochasticity, and dynamics are pushed to an extreme. Here we describe and
validate a microscopy-based approach to IDC that integrates a recently developed dual-color
virus-host system for simultaneously studying virus progression and host response [31]; a new
microwell-array (MA) embodiment for single-cell isolation, perturbation, and imaging; and
new open-source software tools for more streamlined experimentation, analysis, and data man-
agement. The intent of this work is to validate the integrated approach for follow-on studies of
the virus-host system, illustrate the potential for new insights into the dynamics of virus-host
interactions, and establish advancements that simplify and streamline IDC, working towards
methods that can be used by a broader research community.

Methods
The integrated approach consists of three primary components: an engineered dual-color virus-
host system, MAs for cell confinement, and open-source analysis and data management software.
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Dual-color virus-host system
The developed approach is demonstrated and validated using engineered strains of vesicular
stomatitis virus (VSV) that express a red fluorescent protein (RFP), DsRed-Express DR, and a
reporter cell line engineered to express a green fluorescent protein (GFP), Zs-Green, upon acti-
vation of cellular innate immunity. The reporter cells and fluorescent virus strains were created
and characterized as described previously [31], and briefly summarized here.

VSV is a negative-sense, single-stranded, non-segmented RNA virus that is known for its
broad cellular tropism, exceptionally fast replication kinetics in permissive cell types, sensitivity
to interferon stimulated genes (ISGs), and frequent use in studies of innate immunity [32, 33].
Upon infection, VSV broadly prevents host-transcripts from being exported out of the nucleus
via the viral M-protein, effectively disabling the innate immune response of the cell. However,
a single point mutation in the M-protein (M51R) can disrupt this function, allowing transcript
export and robust activation of innate immunity [34]. Engineered versions of the wild-type
strain and M51R strain that contain the DsRed-Express DR gene in the 5th gene position
(VSV-rWT and VSV-M51R, respectively) were created to enable observation and comparison
of viral protein production (Fig 2). The genes of VSV are transcribed in sequence off a single
promoter with attenuation at each intergenic region. This results in defined ratios of gene tran-
scripts that are determined by location along the viral genome [35, 36]. This characteristic
enables us to use viral fluorescent protein production as a reporter of viral protein production.
Placement of the fluorescent protein in the 5th gene position minimizes potential impact of the
reporter expression on virus production while producing a robust fluorescent signal [31, 37].
RFP production is also correlated with the number of VSV plaque forming units (PFU), thus
RFP is also an indicator of infectious virus particle production (see Fig A in S1 Text).

The reporter cell-line was developed using the PC3 human prostate cancer cell line which is
known to have a robust innate immune response to infection by VSV due to an intact inter-
feron pathway [39]. The reporter cell line was created via lentiviral insertion of an engineered
gene followed by expansion from a single cell. The engineered gene encodes for the Zs-Green
fluorescent protein and shares the promoter sequence of the human IFIT2 (interferon-induced
protein with tetratricopeptide repeats 2) gene, a downstream reporter of interferon stimulation.
Thus, upon promotion of the IFIT2 gene, the PC3 reporter cell line (PC3-IFIT2) produces GFP
in addition to its native gene. Upon infection with the wild-type virus, VSV-rWT, cells robustly
produce red fluorescence but little or no green fluorescence (i.e., the virus blocks the host
response and GFP production). In contrast, infection with the mutant virus, VSV-M51R, pro-
duces robust red and green fluorescent protein (i.e., the virus is unable to block the host
response or GFP production). IFIT2 is one of many interferon stimulated genes (ISGs). Thus,
activation of IFIT2 indicates activation of a variety of ISGs with conserved promoter sequence
motifs and is useful for indicating general activation of the host innate immune response.
Experiments were performed with cells below passage 10 from stocking. Details of cell culture
for these studies are contained in the S1 Text.

The virus and host were designed for each other, such that the protein maturation and degra-
dation kinetics are rapid, well-matched, and have minimal impact on the salient features of the
biological system [31] providing a pre-validated system for demonstrating our approach to IDC.

Microwell arrays
The IDC method developed here uses single-cell isolation or entrapment to enable completely
unambiguous long-term tracking of individual cells. Of the many potential strategies for isolat-
ing single cells (e.g., limiting dilution, microfluidic flow-based cell entrapment, valve-based
microfluidics, droplet-based microfluidics, single-cell aspiration), we chose to use microwell

Tools for Single-Cell Kinetic Analysis of Virus-Host Interactions

PLOS ONE | DOI:10.1371/journal.pone.0145081 January 11, 2016 4 / 19



Fig 2. Infection with the recombinant VSV strains leads to the production of RFP as a reporter of viral
protein production. (a) Although VSV-rWT does stimulate the early stages of immune recognition, its matrix
(M) protein suppresses export of host transcripts, thereby suppressing the subsequent innate immune
response and resulting in a GFP−RFP+cell. (b) The well characterized mutant of M protein, M51R [34],
abolishes this function and readily stimulates the innate immune response [38]. Thus, an infection with
VSV-M51R allows production of type-I interferons and activation of interferon stimulated genes, including the
IFIT2 reporter, resulting in a GFP+RFP+cell.

doi:10.1371/journal.pone.0145081.g002
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arrays (MAs, Figs 3 & 4) given their attractive balance of simplicity, throughput, and flexibility
[40–45], characteristics which help facilitate statistically relevant datasets and adoption by
others.

In established MA-based devices a cell suspension is typically overlaid on the MA, where-
upon cells settle into individual microwells, thereby randomly isolating or entrapping single-

Fig 3. Traditional microwell array (MA) design. (a) Typical device dimensions. (b) A lid can be secured to
the top of the PDMSMA to either allow or block cross-talk or communication between the microwells [46].

doi:10.1371/journal.pone.0145081.g003
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cells. Similar to the process of cell seeding, treatments are performed using complete fluid over-
lays or by submerging the device, limiting the device to a single experimental condition [47]
and requiring significant finesse [46] for repeatability and avoidance of spills, drips, and con-
tamination. A common feature of these devices is that, at any point in time, a lid can be added
or removed to control cellular cross-talk between microwells (Fig 3).

Here we designed a MA device that incorporates bull’s-eye features (Fig 4) to enable multi-
ple significant advantages over traditional MA devices. Each bull’s-eye has an outer ring or
groove (* 0.4 mm deep) called a ‘moat’ as well as a recess in the center of the bull’s-eye (same
depth as moat). These simple macroscale features are introduced using the same soft-
lithography technique commonly used to create the microwell devices themselves, thereby
avoiding additional fabrication complexity. The moat passively leverages surface tension to iso-
late reagents and excess fluid into different regions of the array, enabling more than one experi-
mental fluid to be applied to the same device for multiplexed experiments without cross-
contamination. The moats also allow each bull’s-eye to be addressed using pipette transfers of
up to 100 μL droplets instead of fluid overlays that span the entire device. Thus, they signifi-
cantly reduce the finesse required for treatment and washing steps and thereby enable stan-
dardized fluid-handling steps for more repeatable results from user-to-user. The ability to
perform MA fluid manipulations with a micro-pipette also enables potential use of standard
liquid handling automation. The recess in the center of the region provides a site to place the
pipette tip during aspiration and dispensation. The recess significantly reduces the chance of
applying fluid shear directly over the microwells that could result in inadvertent aspiration or
displacement of captured cells. Upon clamping a lid to the MA, excess fluid is displaced into

Fig 4. Newmicrowell array (MA) device design and assembly for single-cell studies. (a) Regions of microwells are isolated from one another using
grooves or ‘moats’ allowing multiple conditions to be tested on a single device using surface tension to maintain the droplets. Each isolated region is referred
to as a bull’s-eye given its appearance. (inset, d, f) Twelve bull’s-eyes in a 2×6 array fit on a standard glass slide. The device is trimmed to include 2×5 and
only the outer 8 can be imaged through the clamp device. (b-c) The array of bull’s-eyes containing* 2500 microwells each are placed on a microscope slide.
Cells in suspension within each droplet settle into microwells randomly for easy loading and are visualized using nuclear staining. Cells are identified and
counted using image analysis. Only wells containing a single cell are considered. The image in (b) is a stitched phase contrast image, (c) is the same image
with fluorescent nuclei visible, and the magnified image indicates the size and shape of individual microwells. (d-g) Device assembly. (d) The slide of bull’s-
eyes is placed in the base of the microscope insert. (e) The droplets are removed and a glass slide is placed over the bull’s-eyes. (f) The pressure distributor
of the microscope stage insert is placed over the glass slide lid. (g) The top plate is fastened with a bracket using two hex screws. The device is sealed and
ready for time-lapse imaging.

doi:10.1371/journal.pone.0145081.g004
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the center recess and moat regions, again preventing cross contamination between bull’s-eyes.
After placement of the lid, the excess fluid in the moat also acts to guard against potential evap-
oration through the gas/vapor permeable PDMS device for long-term kinetic studies. Although
various MA designs exist, we are not aware of one that encompasses all of these capabilities on
a single MA chip.

Open-source software to streamline IDC
IDC image data was managed and processed using software called JEX [48] (Fig 5). JEX is a
free, open-source Java application that provides a simple user interface for managing/databas-
ing and processing large amounts of data, with specific focus on image data. Other notable
related batch processing and databasing software packages include ImageJ/FIJI [49–51], Cell-
Profiler [52], Knime [53], Icy [54], and OMERO [55]. Like these other software packages, a sig-
nificant portion of the JEX image processing capability is enabled by the extensibility of
ImageJ/ImageJ2/FIJI and the underlying libraries developed in parallel with them (e.g., SciJava,
ImgLib, BioFormats, and SCIFIO). The primary benefit of JEX, over these other more mature
options is that databasing and batch processing are tightly integrated and given equal weight in
the design and user interface of JEX. That is to say, JEX integrates batch processing and data-
basing into a single user interface while also visually organizing the database entries to mimic
multiwell plates or other experimental setups for a simpler, more intuitive workflow. Thus,
focus can be placed on analysis instead of data management to associate specific image sets

Fig 5. Data acquisition and analysis. a) Images are acquired in multiple colors and locations over time. The resultant list of files is imported into JEX. JEX
performs analysis on the imported data, and stores the outputs into the same database. All function parameters and data from intermediate steps can be
recorded in the JEX database. b) The database of information is stored in a simply named and transparent folder structure for perusal and use outside of
JEX, but is also easily accessed via the JEX user interface. c) The workflow for baseline microscopy experiments generally consists of: 1) an initial
background and illumination correction, 2) stitching the image array for each color and timepoint within each well, 3) identification of cells based on Hoechst
staining, 4) quantification of cell location and fluorescence intensity for each color, and 5) plotting of results. The workflow for MA-based experiments includes
additional functions for identifying microwells, counting the number of cells within each microwell, and quantifying whole-microwell and single-cell
fluorescence. See S1 Text for details of all steps.

doi:10.1371/journal.pone.0145081.g005
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with specific experimental conditions, helping to directly address logistical challenges associ-
ated with extensive microscopy experiments common to dynamic cytometry.

JEX also enables the use of R [56–58] and Octave [59, 60] (a free and open-source alterna-
tive to Matlab) from within JEX functions for integrating or automating downstream modeling
and statistical analysis for further streamlining of protocols. This capability was used to auto-
matically generate dynamic cytometry plots for rapid feedback on the population dynamics of
each experiment (via the ‘Make Gated FACS Plots’ and ‘Make Movie’ functions).

The image processing algorithms used in this study are stored as JEX workflows. A JEX
workflow is sequence of JEX functions with linked inputs and outputs and associated parame-
ters. The functions used in each JEX workflow are included as part of the default function
library in JEX. Furthermore, an example workflow, dataset, and instructions for quantifying
single-cell fluorescence in microwells is included with the S1 Text and illustrates that JEX
workflows can be saved and shared with those who have limited expertise in image processing.
Details of image processing methodologies are also contained in the S1 Text.

Validation Experiments
The primary components of the approach (i.e., the biological system, MA-based device, and
open-source software) were integrated and validated using three sets of experiments. The first
two baseline experiments were performed in parallel and consisted of flow cytometry (FC)
(referred to as FC experiments) and image analysis of infections in standard 12-well plate
(referred to as microscopy experiments). The first two experiments establish baselines for vali-
dation of data obtained in the third set which employs the MAs to perform IDC (referred to as
MA experiments).

A high-level summary of the validation experiments follows, while more detailed descrip-
tions of the experimental protocol, image quantification, data fitting, and statistics are included
in the S1 Text.

Baseline FC and microscopy experiments. Briefly, PC3-IFIT2 cells were cultured in
12-well plates on tissue culture polystyrene, infected with VSV, and quantified via FC and/or
time-lapse microscopy. For time-lapse microscopy, images were acquired at 10X magnification
on an incubated microscope. Acquisition of a 2 × 3 array of images every 10 minutes over the
course of 15.5 hours in 9 wells for 3 fluorescent channels captured changing levels of protein
expression using a total of 15066, 2048 × 2048 pixel, 16-bit images (i.e.,* 122 gigabytes of raw
data). JEX was used to automate subsequent single-cell fluorescence analysis. In this case, the
algorithm quantified fluorescence by identifying nuclei labeled with a live cell nuclear stain
(Hoechst 33342) followed by quantification of the mean intensity within a small radius of the
nucleus location (S1 Text). The signals from* 1500 cells per condition/well produced a data
set of roughly 3,766,500 data points that were tabulated and analyzed using the specialized data
handling methods of JEX to maintain a low memory overhead for scalability.

Baseline FC and microscopy experiments were carried out in parallel. In order to obtain a
time-course with standard FC, we fixed multiple samples at different times post infection (6,
12, and 18 hpi). Thus, each timepoint represents a different cell population. In contrast, each
timecourse obtained with microscopy in a well-plate follows a single population and thus rep-
resents an approach to PDC. For a more accurate comparison, the 18 hpi timepoint in the
microscopy experiments were immediately fixed and quantified via FC. Thus, the last time-
point in the FC data and the microscopy data of each matching condition represent the same
population of cells quantified using both approaches.

MA-based IDC. PC3-IFIT2 cells were infected off-chip and seeded via pipette into the
bull’s-eye regions of a MA device. A glass slide was clamped over the MA to isolate the
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confined cells. The entire bull’s eye (a 4-by-3 image array) was imaged every 30 min for> 24
hrs in 3 fluorescent channels at 4X magnification. JEX was used to pre-process timelapse
images to correct for spatial and temporal variation in background intensity (S1 Text). Special-
ized JEX functions were also developed to automatically identify microwell locations, identify
cells within microwells, and quantify whole-cell fluorescence from microwells containing a sin-
gle cell. The quantification algorithm minimized signal cross-over between microwells while
enabling exclusion of background (non-cell) pixels from intensity measurements for
a* 4-fold improvement in the signal-to-noise ratio compared to quantification of total micro-
well fluorescence (S1 Text).

A compressed file of fluorescence data from the baseline and MA experiments experiments
is provided as supplementary information, S1 Data.

Results and Discussion

Baseline FC and microscopy experiments
FC and microscopy results at 6, 12, and 18 hpi are shown in Fig 6 for comparison. Within the
scatter plots, the threshold values (3σ) are estimated based on basal expression levels at the first
timepoint (i.e., prior to infection progression, see S1 Text for associated plots). Unless other-
wise noted throughout, the default ‘mad’ function (median absolute deviation) in the R soft-
ware is used as an estimator of the standard deviation, σ, due to its robustness to outliers. The
blue threshold lines exhibit curvature on the log-scale fluorescence plots to account for a small
constant fraction of spectral overlap or crossover of signal from the red fluorescence channel to
the green that was present in both microscope and flow cytometry instrumentation. Cross-over
the other direction was negligible. The axes of the plots are on a ‘logicle’ scale which transitions
from a linear scale to logarithmic at the blue threshold lines to enable plotting of a wide
dynamic range while accurately representing the background noise of values near 0. The gray
‘cross-hair’ represents the population mean. Each scatter plot also shows gated population per-
centages and intensity means for cells in each ‘quadrant’. The last column of Fig 6 plots the
gated percentages for each imaged timepoint.

Given the temporal resolution of the microscopy data, we leveraged JEX and its connection
to R to compile the microscopy plots into image stacks and render them as movies, termed
PDC plots. The PDC plots provide a powerful means of representing the dynamic behavior of
individual cells and sub-populations. PDC plots/movies are provided in S2–S4 Movies along
with an example timelapse movie of microscopy data for VSV-M51R (S1 Movie). One general
phenotype evident in the timelapse movie is the rounded morphology of many of the cells. It is
well established that expression of the matrix (M) protein of VSV causes cell rounding, likely
by depolymerization of microtubules.[61] This cytopathic effect is apparent not only in the
cells in baseline experiments but also MA experiments, (S5 Movie).

Data in Fig 6 demonstrate a similar detection sensitivity (i.e., time of detection) and
dynamic range (i.e., the range from the calculated 3σ threshold to the highest detected cellular
fluorescence), as well as percentages of gated populations over time, generally validating the
microscopy-based method of quantification for flow-cytometry-like readouts. As expected, the
VSV-rWT infections produce ample viral protein (RFP+) and elicited almost no host activation
(GFP−) while the large majority of VSV-M51R infections (* 90% of cells or more) produced
high levels of both viral protein and host activation (RFP+GFP+).

Beyond validation, the data also demonstrate the extensive heterogeneity in virus-host inter-
actions. The location of the population average at each time point (gray cross-hair) in most
cases represents the behavior of only a small fraction of the total cell population and highlights
the vast heterogeneity of behaviors that is missed by using average population measures. The
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movie version of the PDC plots contained in the S1 Text illustrate the kinetic heterogeneity of
virus-host interactions. It appears that in most cells the viral reporter rises first, while in a
minority of cells the host response reporter can be readily detected before the viral reporter. In
this way, cells appear to take different ‘trajectories’ through the plot of red vs green, passing

Fig 6. Movie frames of FC andmicroscopy PDC plots at 6, 12, and 18 hpi. The green and red fluorescence of each cell in VSV-rWT and VSV-M51R
infections are shown in each scatter plot. All timepoints for the microscopy data are taken from the same sample whereas the FC data at each timepoint
represents data from separate samples obtained in parallel. Furthermore, the microscope sample was sacrificed at 18 hpi and used for the FC 18 hpi
timepoint. Thus, the 18 hpi timepoint is the same sample for both methods and is directly comparable. The summary plots on the right-hand side show gated
population percentages over time, illustrating the similarity in sensitivity of the two methods but highlighting the improved temporal resolution of the
microscopy approach. The gray cross-hair in each plot represents the overall population mean.

doi:10.1371/journal.pone.0145081.g006
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through and remaining in the various quadrants for different amounts of time and in different
sequence. The approach also provides physical location information for each cell (i.e., x-y pixel
coordinates) that could be used to leverage spatial heterogeneity as done by Snijder et al. or in
cell profiling applications which leverage spatial context during single-cell characterization [8,
62]. It is also imagined the information can be used to analyze virus-host interactions in spa-
tially spreading infections [31].

In summary, these baseline experiments validate the quantitative capabilities and scalability
of our microscopy approach and JEX for dynamic cytometry. They also highlight the extensive
heterogeneity of individual cell trajectories in their timing and level of expression of viral and
host response reporters as well as the future potential for spatial analysis of spreading infec-
tions. We now add MAs for cell-confinement to advance from PDC to IDC, using these base-
line results for comparison and validation.

MA-based IDC
MAs have been used in myriad applications including single-cell PCR [43, 44, 63], protein secre-
tion [64], cell-cell interactions [40], and IDC [41, 65]. The study performed by Roach et al. is
one of the earliest demonstrations of howMAs enable unambiguous tracking and quantification
of single-cell intracellular fluorescence kinetics using a single fluorescent readout; however, oth-
ers have also recognized and highlighted this potential [41, 66]. Furthermore, the considerable
work done by the Love group and others to quantify cell secretion and physical cell-cell interac-
tions over time are notable demonstrations of different types of IDC endpoints [40, 64].

The MA-based approach to IDC presented here is unique in multiple respects. The novel
bull’s-eye MA design enables pipette-based operation and simplified treatment, washing, seal-
ing, and isolation of separate treatment conditions on a single chip. The biological application
is also unique, focusing on enabling detailed kinetics of competing virus-host interactions
using a unique engineered dual-color virus-host system. We have also developed and inte-
grated our approach with an open-source software package that specifically addresses the issue
of data management for IDC applications while enabling streamlined and flexible automation
of data analysis challenges specific to MA-based assays.

Data collected using this MA-based approach to IDC is compared to the baseline experi-
ments. Individual timepoints of the PDC plots and summary plots of VSV-M51R infections
reveal similar trends and some differences between MA and baseline results (Figs 6 and 7, S6
Movie). The summary plot for each dataset shows similar distributions of cellular fluorescence
intensity at 6, 12, and 18 hpi as well as similar trends in the frequency of the 4 gated popula-
tions. However, the percentage of GFP−/RFP−cells falls more quickly and GFP−/RFP+ cells are
initially detectable* 1 hours earlier for cells in MAs than in baseline experiments. These dif-
ferences may reflect, in part, differences in the initiations of infection (see S1 Text). Briefly,
cells in MA experiments were treated with virus in suspension in a tube on ice to promote
adsorption without entry [19, 67], then washed three times in the cold to remove free particles
without entry, incubated at 37°C for 7 min to allow viral entry, and immediately transferred to
the MA for imaging. This was done to minimize time between infection and imaging, which is
separated by 20–30 min for seeding and sealing the MA device and microscope setup. By con-
trast, virus for baseline experiments was incubated with cells for 20 minutes at 37°C, followed
by washing with media and placement on the microscope for imaging. Thus, virus in MA
experiments was ‘pre-adsorbed’ and provided a shorter window of time for entry prior to wash
(7 min vs 20 min), likely producing a more synchronized start to infection that allows for ear-
lier detection in the summary plot. The baseline results also exhibit a ‘two-stage’ rise in the
number of infected cells compared to MA results. Baseline experiments allow successfully

Tools for Single-Cell Kinetic Analysis of Virus-Host Interactions

PLOS ONE | DOI:10.1371/journal.pone.0145081 January 11, 2016 12 / 19



infected cells to spread to adjacent cells that may not have been successfully infected initially,
producing a second round of infection. In MA experiments, microwells prevent spread of virus
well-to-well and analysis is limited to singly isolated cells; therefore, there is no opportunity for
multiple rounds of infection to be observed. The physical isolation of infections is an funda-
mental difference between the methodologies and might also play a role in the observed differ-
ence in final values of the GFP−RFP+ population between baseline and MA experiments (18%
vs 7%) and the corresponding reduction of the GFP+RFP+ cell population. The microwells iso-
late and deprive each cell of antiviral cytokines from neighboring cells, potentially lowering the
frequency of activated cells compared to a population context of the baseline experiments
where soluble factor communication can exist between cells. Thus, the physical isolation
enabled by MAs should be considered when interpreting results using this approach, but also
provides a potential opportunity to distinguish between effects of autocrine versus paracrine
signaling depending on microwell device setup [27].

The MA-based approach also addressed important challenges specific to studying virus
infections. Given the significant cell density, number of timepoints, and amount of pathology,
lysis, and migration in the infected cells, cell tracking on a standard 2D culture substrate using
nearest neighbor methods, more advanced linear assignment methods (with and without man-
ual curation)[22], as well as completely manual tracking were unproductive. Manual curation
(i.e., elimination or fixing of erroneous tracks) did not scale well for datasets beyond* 100
tracks. Success was highly dependent on the time between images given cells were moving
quickly in a dense population. Completely automated methods appeared to track less mobile
cells more robustly, thus potentially biasing analysis. Physically isolating individual cells in
microwells eliminated the need for tracking algorithms and enabled detailed whole-cell kinetic
studies amidst such challenges. This method also posed less risk of aerosolized virus compared

Fig 7. Microwell-array-based cytometry plots (VSV-M51R & VSV-rWT) show agreement with results from baseline cytometry experiments from Fig
6.

doi:10.1371/journal.pone.0145081.g007
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to FC, enabling dynamic study and re-interrogation of live cells infected with competent virus.
The new MA embodiment also allowed us to perform mock and infected controls on the same
chip instead of requiring separate devices. This allowed us to avoid potential device-to-device
variability and microscope/incubation variability from day-to-day.

The approach also enables high-fidelity analysis of kinetics. The intensity of each cell in each
fluorescence channel through time is termed a trajectory. Fig 8 illustrates qualitatively some dif-
ferent ‘types’ of trajectories or behaviors present in the data. The examples illustrate many dif-
ferent ways in which infections can progress, and include a wide range of overall reporter
protein yields. Virus and host fluorescence trajectories were also used to estimate characteristic
kinetic parameters including max intensity (max), time-delay to fluorescent protein production
(delay), the initial exponential growth rate upon production (α), and the time between initial
production and plateau of production (rise). Lastly, if cell lysis is detected, the time of lysis is
recorded. See the S1 Text for details on quantification of these metrics. This enables quantitative
multi-parametric kinetic analysis of competing viral and host processes. Although the data are
from just a single set of paired experiments, these data demonstrate an integrated method and
approach for detailed interrogation of virus-host interaction heterogeneity and dynamics.

Fig 8. Sample VSV-rWT viral and innate immune reporter protein expression kinetics from six individual cells. Kinetic parameters have been
extracted from the trajectories of both the viral (red) and host (green) trajectories and displayed in the top left corner of each figure. Maximum yields from
individual cells vary greatly (a-b), host reporter expression can be greater or lesser than viral gene expression given similar starting conditions (c-d), and cells
can lyse (d) or remain intact during imaging. Single-cell analysis can detect and quantify cells displaying rare behavior, such as those that appear to have a
basal level of innate immune activation all the time (e) and cells infected with wt-VSV that express ZS-Green despite encoding a functional matrix gene.

doi:10.1371/journal.pone.0145081.g008
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The fidelity of the approach enabled us to be confident in our observations of rare events in
the MA experiments such as VSV-rWT infected cells that become activated (Fig 8f, S6 Movie).
These rare events are corroborated by similar observations in baseline experiments (Figs 6 and
7, S7 Movie). Likewise, it can also be seen that the innate immune response, as measured by
IFIT2 reporter expression, is typically inactive initially, yet some cells are active well before
detection of infection progression (Fig 8e). Indeed single cell variability observed in baseline
experiments of non-infected cells suggest some cells might be active prior to infection (Fig 2,
S1 Text). Isolation of each infection enabled detection of cell lysis, which occurred in a signifi-
cant fraction of infections; however, detailed analyses of correlations between such events and
parameters of infections are outside the scope of this discussion and left for follow-on studies.

The MA-based method also improves throughput for high-fidelity quantification of single-
cell kinetics (IDC). The MA device has* 2500 microwells per bull’s eye, of which 340 ± 60
(mean ± sd) contained only a single cell. A total of 8 bull’s eyes could be imaged at once, thus
providing an opportunity to unambiguously track 2712 individual cells throughout the experi-
ment for kinetic analysis. Although data from all these cells could be analyzed, analysis was lim-
ited to the 39% of cells where there was detectable RFP for a subtotal of 1056 (505 VSV-M51R
and 550 VSV-rWT). In comparison, advance cell tracking applied to the 2900 ± 500 cells
imaged per well in the microscopy experiment was likely to result in* 15–20% of cell tracks
being invalid [28–30]. Therefore, we did not venture to manually curate the data, which would
still not guarantee fidelity, but instead performed PDC analysis, calculating population charac-
teristics at each time point. FC experiments gathered* 10,000 datapoints per condition and
provided the highest throughput, but required parallel samples to perform PDC. Lastly, in previ-
ous work, limiting dilution was used to isolate single cells in a standard 24-well plate, of which
12 were successfully infected and unambiguously tracked for single-cell kinetics analysis of virus
production (IDC).[19] Thus, although the raw throughput (i.e., number of cells studied) of MAs
is well-below flow cytometry and standard microscopy, the throughput for unambiguous, high-
fidelity, single-cell kinetics analysis (IDC) is significantly improved.

Conclusion
Methods for individual-cell dynamic cytometry (IDC) are able to address unique sets of ques-
tions compared to static cytometry or PDC methods which are unable to follow single-cells
through time. These methods are poised and already making significant contributions to a
broad range of topics where dynamics and or cellular heterogeneity play important roles such
as development, cancer, immunology, and virology. However, these approaches are often
costly, complex, and/or challenging across multiple aspects from readout development and
imaging to analysis and interpretation. Thus, advances to streamline IDC are needed to achieve
broader adoption for accelerated progress. To help address this need we have advanced an inte-
grated set of tools consisting of: 1) a dual-color virus-host system with matched fluorescence
kinetics; 2) a newMA-based device embodiment that streamlines protocols for single-cell isola-
tion, tracking, and quantification; and 3) a set of batch processing algorithms for microwell
analysis within a free and open-source software package called JEX for image analysis and data-
basing. We validated these integrated components for single-cell fluorescence quantification
against flow-cytometry and microscopy of standard 2D cultures. The MA-based approach pro-
vides high-fidelity time-course data that enables parametric quantification of viral infection
kinetics that has already been used to elucidate co-infections of virus with defective interfering
virus-like particles [68], and will be leveraged to probe the biology of virus and immune
response dynamics. This study provides a base to advance IDC methods for new insights that
cannot be obtained with other static or population-based approaches.
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Supporting Information
S1 Text. Supporting Information. Topics include cell culture; VSV RFP vs plaque forming
units; background subtraction and illumination correction; Baseline experiment cell prepara-
tion, data acquisition, analysis, and supplemental PDC plots; microwell device fabrication,
preparation, seeding, and clamping; automated microwell identification; quantification of
whole-cell intensity; analysis in R; curve fitting of fluorescence kinetics; quantification of cell
lysis; PDC plots of control conditions; and instructions for microwell analysis using JEX on a
provided example dataset.
(PDF)

S1 Movie. Fluorescence timelapse movie of VSV-M51R condition in standard 2D culture
baseline experiment. (blue) Hoechst 33342 nuclear stain, (red) viral DsRed-Express DR
reporter protein, and (green) host IFIT2 Zs-Green reporter protein.
(MOV)

S2 Movie. Baseline PDC plot of VSV-rWT condition in standard 2D culture baseline exper-
iments.
(MP4)

S3 Movie. PDC plot of VSV-M51R condition in standard 2D culture baseline experiments.
(MP4)

S4 Movie. Baseline PDC plot of mock condition in standard 2D culture baseline experi-
ments.
(MP4)

S5 Movie. Fluorescence timelapse movie of VSV-M51R condition in MA experiment. (blue)
Hoechst 33342 nuclear stain, (red) viral DsRed-Express DR reporter protein, and (green) host
IFIT2 Zs-Green reporter protein.
(MOV)

S6 Movie. PDC plot of VSV-rWT condition in MA experiments.
(MP4)

S7 Movie. PDC plot of VSV-M51R condition in MA experiments.
(MP4)

S1 Data. Compressed file of fluorescence data for baseline and MA experiments.
(ZIP)
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