

Stepwise Synthesis of *Tetra*-imidazolium Macrocycles and Their *N*-Heterocyclic Carbene Metal Complexes

Zili Li, Nuchareenat Wiratpruk and Peter J. Barnard*

Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia

А modular stepwise synthetic method has been developed for the Initially preperation of tetra-imidazolium macrocycles. а series of three bis(imidazolylmethyl)benzene precursors were alkylated with 1,2-dibromoethane to produce the corresponding bis-bromoethylimidazolium bromide salts. In the second step the bis-bromoethylimidazolium bromide salts were reacted with selected bis(imidazolylmethyl)benzene molecules to produce a series of two symmetrical and three asymmetrical tetra-imidazolium macrocycles. These tetra-imidazolium salts act receptors for anions and ¹H-NMR titration studies were used to determine the association constants between two of the macrocycles and the halide anions chloride. bromide and iodide. The tetra-imidazolium salts are precursors for N-heterocyclic carbene (NHC) ligands and the corresponding silver(I), gold(I), and palladium(II) NHC complexes have been prepared. Varied structures were obtained, which depend on the chosen macrocyclic ligand and metal ion and in the case of the coinage metals Ag(I) and Au(I), mono, di, and hexanuclear complexes were formed.

Keywords: N-heterocycle carbene, macrocycle, anion receptor, N-heterocarbene-gold(I) complexes, tetraimidazolium

INTRODUCTION

Imidazolium linked macrocycles have attracted significant recent attention because of their capacity to act as anion receptors and to function as pro-ligands for the synthesis of *N*-heterocyclic carbene metal complexes. Due to the great importance of negatively charged anionic species in biology, the preparation of receptor molecules designed to recognize and sense anions is an area of great research interest (Beer and Gale, 2001; Gale, 2003; Martínez-Máñez and Sancenón, 2003). Imidazolium groups are now well-recognized for their favorable features for the generation of anion receptors, which result both from electrostatic and hydrogen bonding interactions (Alcalde et al., 1999, 2007; Chellappan et al., 2005; Wong et al., 2005; Yoon et al., 2006; Xu et al., 2010). For example, a series of *tetra*-imidazolium linked macrocyclic compounds e.g., **I** (**Figure 1**) were shown to bind to biologically relevant anions such as chloride and hydrogen sulfate (Wong et al., 2005; Serpell et al., 2011). Additionally, compounds of this type have been used as selective luminescent sensors for nucleic acids and nucleotide derivatives such as DNA, RNA, ATP, and GTP and to sense and image RNA in the living cells, as a result of strong C-H⁺ · · · A⁻ hydrogen bonding interations (Neelakandan and Ramaiah, 2008; Ahmed et al., 2011, 2012; Shirinfar et al., 2013).

OPEN ACCESS

Edited by:

Angela Casini, Cardiff University, United Kingdom

Reviewed by:

Alexander Pöthig, Technische Universität München, Germany Greta Bergamaschi, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Italy

> *Correspondence: Peter J. Barnard p.barnard@latrobe.edu.au

Specialty section:

This article was submitted to Supramolecular Chemistry, a section of the journal Frontiers in Chemistry

Received: 17 December 2018 Accepted: 02 April 2019 Published: 24 April 2019

Citation:

Li Z, Wiratpruk N and Barnard PJ (2019) Stepwise Synthesis of Tetra-imidazolium Macrocycles and Their N-Heterocyclic Carbene Metal Complexes. Front. Chem. 7:270. doi: 10.3389/fchem.2019.00270

A range of imidazolium linked macrocyclic compounds have been previously reported and both direct macrocyclization (Bass et al., 2010; Altmann et al., 2015; Toure et al., 2016) and stepwise macrocyclization (Mesquida et al., 2013) processes have been previously described for the synthesis of compounds of this type. In the direct macrocyclization approach, equal quantities of a bis-imidazole precursor, and a dihaloalkane are combined under high dilution conditions to produce the desired macrocyclic compound. For example, the imidazolium linked macrocycles II and III were prepared using the direct macrocyclization approach (Hahn et al., 2008; Schulte to Brinke et al., 2013). This approach can be limited due to unintended reactivity between the precursor compounds, which can produce complex reaction mixtures and poor yields of the desired product. Alternatively, stepwise macrocyclization can be used for the synthesis of polyimidazolium linked macrocyclic compounds (Schulte to Brinke and Hahn, 2015) and the synthesis of the tetra-imidazolium macrocycle I was achieved via sequential alkylation of bis-imidazolium precursors (Wong et al., 2005).

Polyimidazolium linked macrocycles have also been utilized as precursors for N-heterocyclic carbene metal complexes and previously the Au(III) complex IV (Figure 2) was prepared the reaction of KAuCl₄ with a macrocyclic tetra-imidazolium salt II (Mageed et al., 2017). Additionally, dinuclear Au(II) and mixed valence Au(I)/Au(III) complexes of have been prepared by the oxidation of dinuclear Au(I) complexes of macrocyclic NHC ligands (Mageed et al., 2018). In the past decade, a number of Ag(I) complexes of macrocyclic NHC ligands that display wide range of structures have been reported (Mckie et al., 2007; Hahn et al., 2008; Schulte to Brinke et al., 2013; Altmann et al., 2016; Fei et al., 2017; Lu et al., 2017, 2018). For example, a sandwich like tetranuclear Ag(I) complex featuring two tetra-NHC ligands was prepared V (Figure 2) and this complex was utilized as a precursor for the preparation of Au(I), Ni(II), Pd(II), and Pt(II) complexes (Altmann et al., 2016). In addition, macrocyclic tetra-NHC ligands have been shown to act as tetradentate ligand for square-planer metals such as Pd(II), Ni(II), Cu(I), and Pt(II) (Fei et al., 2017) and the interesting square-planar Pt(II) complex VI (Figure 2) was prepared by metal-template reaction from the *tetrakis*(trimethylphosphane)platinum(II) triflate and 2-azidophenylisocyanide (Hahn et al., 2005). The biological properties of metal complexes of NHC-based cyclophane and macrocyclic ligands have also been of significant recent interest and Ag(I) and Au(I) complexes have been shown to possess potent antimicrobial and anticancer activities, respectively (Aweda et al., 2013; Shah et al., 2013; Nomiya et al., 2018; Pöthig et al., 2018). Youngs et al. have been particularly active in this field (Hindi et al., 2009; Johnson et al., 2017) and have described the potent antimicrobrial properties of a Ag(I)-NHC complexes of cyclophane ligands (Melaive et al., 2005). Additionally, a series of Au(I) complexes of related cyclophane-based NHC ligand systems were shown to be selectively toxic to cancer cells as a result of an antimitochondrial mechanism (Barnard et al., 2004, 2006). Meyer and more recently Kühn have also extended the application of macrocyclic tetra-NHC ligands to the synthesis of iron complexes, that provide fascinating models of reactive intermediates that are generated in the catalytic cycles of a range of heme and non-heme iron enzymes (Meyer et al., 2013; Anneser et al., 2015).

As imidazolium linked macrocycles offer the potential for the generations of novel sensors for biologically significant anions and as precursors for NHC metal complexes of metals that are well-known for their biological properties, we became interested in developing new strategies for the synthesis of compounds of this type. In the present paper, we report a novel modular stepwise synthetic approach for the synthesis of tetraimidazolium macrocycles. This approach involves the initial synthesis of bis-bromoethylimidazolium bromide precursors, which can then be utilized for the formation of either symmetrical or asymmetrical tetra-imidazolium macrocycles. These tetra-imidazolium salts bind anions in solution and association constants between two of the macrocycles and the halide anions chloride, bromide, and iodide were determined for two macrocycles. A range of silver(I), gold(I), and palladium(II) NHC complexes have been prepared from these pro-ligands.

RESULTS AND DISCUSSION

Synthesis of *Tetra*-imidazolium Macrocycles

The ortho-phenylene linked tetra-imidazolium macrocycle 9-Br4 was prepared via a stepwise macrocyclization procedure. Initially, 1,2-bis(imidazolylmethyl)benzene 1(Baker et al., 2001) was alkylated with an excess of 1,2-dibromoethane (30 equivalents) to obtain the bis-bromoethylimidazolium bromide salt 5-Br2 in a moderate yield (Scheme 1). The ¹H-NMR spectrum of 5-Br₂ shows the imidazolium C2-H proton resonates as a singlet signal at 9.50 ppm, while the ethylene group protons resonate as two upfield shifted triplet signals at 4.00 and 4.68 ppm. The macrocycle 9.Br₄, was prepared by heating an equimolar mixture of 5.Br2 and 1 in a solvent system consisting of a 1:4 mixture of DMF and acetonitrile under high dilution conditions (Scheme 1) and was isolated in a moderate yield of 29.7%. Compound 9-Br₄ gave a simple ¹H-NMR spectrum consistent with its high symmetry (point group D_{2h}) with downfield shifted signals for the imidazolium protons which resonated at 9.45 (C2-H) and 7.98 and 7.88 ppm (C4-H/C5-H). The protons of the ethylene linker groups resonated as a singlet signal at 4.81 ppm. A similar method was adopted for the synthesis of the metaphenylene linked macrocycle 10.Br₄ from a mixture of 2 and $6 \cdot Br_2$ (Scheme 1).

With the successful synthesis of the symmetrical macrocycles **9**·**B** \mathbf{r}_4 and **10**·**B** \mathbf{r}_4 , we were interested in further exploring the versatility of our stepwise synthetic methodology with the synthesis of asymmetric *tetra*-imidazolium salts. In initial studies, reaction of either **3** with **5**·**B** \mathbf{r}_2 or **1** with **7**·**B** \mathbf{r}_2 (**Scheme 1**) under high dilution condition did not successfully produce the desired asymmetrical *tetra*-imidazolium salts. Additionally, attempts to use *tetra*-n-butylammonium bromide (Bu₄N·Br) as a templation reagent in the reaction of **3** with **5**·**B** \mathbf{r}_4 also did not give the desired product. By contrast, the reaction of compound **1** with

7.Br₂ under high dilution condition in presence of Bu₄N·Br gave the desired product **11.Br**₄ in a low yield. The ¹H-NMR spectrum of **11.Br**₄ showed the imidazolium C2-H proton as singlet signal at 9.76 ppm and the methyl group on the imidazolium C2 carbon resonated as a singlet signal at 2.64 ppm. In addition, consistent with the lower symmetry structure (point group C_{2h}) the benzylic proton resonates as two singlet signals at 5.47 and 5.52 ppm. The asymmetrical pro-ligands **12.Br**₄ and **13.Br**₄ were prepared in a similar manner from the reaction of either **2** and **8.Br**₂ or **2** and **5.Br**₂, respectively, in presence of Bu₄N·Br. Again, the ¹H-NMR spectrum for **13.Br**₄ is consistent with the lower symmetry structure, with the C2-H protons resonating as two singlet signals at 8.99 and 9.13 ppm.

Synthesis of Ag(I), Au(I), and Pd(II) Complexes

The Ag(I) complex $14 \cdot (PF_6)_6$ was prepared by the reaction of pro-ligand $9 \cdot Br_4$ with Ag₂O in DMF with the exclusion of light (Scheme 2) and product was isolated as a white crystalline solid in a yield of 21%. The ¹H-NMR spectrum of $14 \cdot (PF_6)_6$ showed no imidazolium C2-H proton signal, indicating that the C2 carbon is deprotonated and coordinated to the metal center as a carbene. The ortho-substituted phenyl-linker group protons resonate as two set of doublets (5.68 and 6.94 ppm) and triplet (7.17 and 7.52 ppm) signals, consistent with a more complex magnetic environment for the Ag(I) complex when compared to the pro-ligand. The ¹³C-NMR spectrum for **14**·(**PF**₆)₆ revealed a downfield shifted signal at 182 ppm, for which ¹⁰⁷Ag-¹³C (d, ¹*J* = 182.32 Hz) and ¹⁰⁹Ag-¹³C (d, ¹*J* = 209.99 Hz) couplings were observed, which is also consistent with coordination of the C2 carbon to Ag(I). The high-resolution mass spectrum for **14**·(**PF**₆)₆ produced a series of peaks consistent with a hexanuclear structure with the general formula [Ag₆L₃]⁶⁺ (where L is the macrocyclic *tetra*-carbene ligand). For example, a peak was observed at m/z = 372.0334, which corresponds to the formula [C₉₆H₉₆N₂₄Ag₆]⁶⁺ (calculated = 372.0419).

Using a similar approach, the Ag(I) complex $17 \cdot (PF_6)_3$ was prepared from the pro-ligand $10 \cdot Br_4$, however for this compound the ¹H-NMR spectrum showed a signal at 8.37 ppm, consistent with the C2-H proton being present in the complex. However, the ¹³C-NMR spectrum of $17 \cdot (PF_6)_3$ showed a downfield shifted signal at 180.4 ppm that displays ¹⁰⁷Ag-¹³C (d, ¹J = 183.58 Hz) and ¹⁰⁹Ag-¹³C (d, ¹J = 211.24 Hz) couplings, indicating coordination of the imidazole C2 carbon to Ag(I). These NMR results are consistent with a mononuclear complex, where two of the imidazole units are coordinated to the metal, while the other two remain uncoordinated imidazolium units (Scheme 3). To further investigate this result, a different synthetic method was undertaken where the proligand $10 \cdot (PF_6)_4$ was reacted with AgNO₃ in present of NH₄OH, however the same mononuclear Ag(I) complex was obtained (Scheme 3).

The hexanuclear Au(I) complex $15 \cdot Br_6$ was prepared by the reaction of $9 \cdot Br_4$ with (THT)AuCl in present of the mild base sodium acetate (Scheme 2) and the complex was obtained as an off-white solid in 54.2% yield. The same approach was used in an attempt to prepare the Au(I) complex of proligand $10 \cdot Br_4$, however no complex could be isolated from the reaction mixture. In the next set of reactions, the pro-ligand $11 \cdot Br_4$ (with both normal and C2-blocked imidazolium groups) was reacted with (THT)AuCl in presence of sodium acetate. It was anticipated that this ligand might produce a complex displaying both "normal" and "abnormal" NHC coordination modes, however the dinuclear Au(I) complex $18 \cdot (PF_6)_2$ was obtained, which displayed only the "normal" NHC coordination mode (Scheme 4). Using the same method, a dinuclear Au(I) complex derived from $19 \cdot (PF_6)_4$ was also prepared.

Due to their potential to act as tetradentate ligands with metals that adopt square-planar coordination geometries, the Pd(II) complex of pro-ligand $9 \cdot Br_4$ was prepared. A range of approached have been previously employed for the preparation of Pd(II)-NHC complexes, including *in situ* deprotonation and metallation (Baker et al., 2001; Fei et al., 2017) and transmetallation via an intermediate Ag(I) complex (Schulte to Brinke et al., 2013; Andrew et al., 2016). In this work the former *in situ* deprotonation and metallation approach was initially investigated by reacting $9 \cdot (PF_6)_4$ with Pd(OAc)₂ in DMSO,

however the desired Pd(II) complex could not be isolated. As described previously, a hexanuclear Ag(I) complex could be prepared from the pro-ligand $9 \cdot (PF_6)_4$ and in a second attempt to synthesize the Pd(II) complex, pro-ligand $9 \cdot Br_4$ was first reacted with Ag₂O to form the Ag(I) complex *in situ* followed by addition of K₂PdCl₄ (Scheme 5). ¹H-NMR analysis of Pd(II) complex 16 \cdot (PF_6)_2 showed a relatively simple spectrum with the C4/5 protons of the NHC groups resonating as two sets of doublets at 7.48 and 7.83 ppm. The benzylic protons resonate as two sets of doublet signals at 5.20 and 6.44 ppm (AX pattern), which is consistent with a rigid molecular structure in solution. Furthermore, the ¹³C-NMR spectrum showed a downfield shifted signal at 167.41 ppm, which corresponds to the NHC carbene carbon coordinated to the Pd(II) metal center.

The Ag(I) transmetallation approach did not successfully produced a Pd(II) complex of pro-ligand **11·Br**₄. In this attempt, Ag₂CO₃ was used instead of Ag₂O to avoid the undesirable oxidative cleavage of the C2-blocking methyl group which has been observed previously (Chianese et al., 2004). In a second synthetic attempt, the pro-ligand **11·Br**₄ was reacted with K₂PdCl₄ in presence of NaOAc. The ¹H-NMR of the crude product showed no peak for the C2-H proton for the "unblocked" imidazole units indicating that these groups are coordinated to the metal center. The C4/5 protons of the C2 "blocked" imidazolium group at 7.34 and 7.66 ppm suggesting

SCHEME 3 | Synthesis of Ag(I) complex 17-(PF₆)₃ from the pro-ligand 10-Br₄. (a) Ag₂O (4.0 eq.), DMF, 70°C, 3 d. (b) AgNO₃ (4.0 eq.), NH₄OH (eq.), CH₃CN, RT, overnight.

that C2 blocked imidazolium unit did not react with the metal. Furthermore, the benzylic proton signals at 5.24 and 5.26 ppm and the ethylene linker signal at 4.61–4.70 ppm also indicated an asymmetrical structure of the title complex. The crystal structure in **Figure 5** also suggested the Pd(II) complex **20**·(**PF**₆)₂ was successfully synthesized. Unfortunately, it was unable to separate this complex as pure product.

Structural Studies

Compounds 5·Br₂, 9·Br₄, 10·Br₃PF₆, 11·Br₄, 15·Br₂(PF₆)₄, and 20·(PF₆)₂ were characterized by X-ray crystallography. A representation of the precursor compound 5·Br₂ is shown in Figure S1 while representations of the *tetra*-imidazolium macrocycles 9·Br₄, 10·Br₃PF₆, and 11·Br₄ are shown in Figure 3. In all cases these imidazolium salts display hydrogen bonding interactions between various hydrogens on the cationic imidazolium units and the bromide counter anions. For example, the shortest C2··· Br distances for 5·Br₂, 9·Br₄, 10·Br₃PF₆, and 11·Br₄, respectively, are: 3.4496(3); 3.42219(5) Å; 3.4822(4) Å; and 3.6552 (5) Å, respectively, which fall within a typical range of C-H·· · Br distance caused by hydrogen bonding (Yuan et al., 2002).

Two representations of the X-ray crystal structure for the Au(I) complex $15 \cdot Br_2(PF_6)_4$ are shown in Figure 4. This remarkable structure reveals that the Au(I) complex adopts a cyclic hexanuclear supramolecular assembly with the overall formula $[Au_6L_3]^{6+}$. In the cation, each of the Au(I) centers adopt linear two-coordinate geometries, and they can be divided into

two distinct groups of three atoms each. For the first group, each Au(I) atoms (Au1, Au4, and Au5) is bound to two NHC units on opposite sides of each of the three ligand molecules. While each of the Au(I) atoms in the second group (Au2, Au3, and Au6) are coordinated to NHC donors from adjacent ligand molecules, resulting in the formation of a metallo-macrocycle. In each case, the ligand molecules are bowl shaped to accommodate the two Au(I) coordination modes. Interestingly, the metallo-macrocycle is arrayed around an encapsulated central bromide counterion. This bromide ion displays interactions with Au(I) atoms Au1, Au4, and Au5 with the distances being 3.19488(5), 3.24731(5), and 3.23064(4) Å, respectively. Previously, a hexanuclear Ag(I) complex was reported for a *tetra*-carbene ligand linked by aliphatic butyl chains (Fei et al., 2017).

A representation of the X-ray crystal structure for the Pd(II) $20 \cdot (PF_6)_2$ is shown in Figure 5. The molecular structure shows that the ligand is coordinated to the metal center through the "normal" NHC groups, with the C2 "blocked" groups present as cationic imidazolium units. The Pd(II) center is four-coordinate, with the two-remaining sited being occupied by bromide ions.

Anion Binding Studies

Due to the tetracationic charge of the imidazolium linked macrocycles prepared in this work, the propensity of $9 \cdot (PF_6)_4$ and $10 \cdot (PF_6)_4$ to bind to the halide anions F^- Cl⁻, Br⁻, and I⁻ (as their *tetra*-n-butylammonium halide salts) was evaluated using ¹H-NMR titration experiments. In initial studies, it was

SCHEME 5 | Synthesis of Pd(II) complex 16.(PF₆)₂ and 20.(PF6)₂. (a) 9.Br₄, Ag₂O (4.0 eq.), K₂PdCl₄, DMF, 85°C. (b) 11.Br₄, K₂PdCl₄, DMSO, 85°C, overnight.

found that the addition of $Bu_4N \cdot F$ to $10 \cdot (PF_6)_4$ in d₆-DMSO caused an immediate color change to pale yellow. The ¹H-NMR analysis showed that the color change occurred concurrently with a significant broadening and downfield shift of the imidazolium C2-H signal. In addition, the appearance of new unidentified ¹H-NMR signals were observed which were consistent with decomposition of the macrocyclic receptor. As such this anion was not studied further.

Addition of increasing equivalents of Bu₄N·Cl (0.25–14.0 eq.) to a solution of $9 \cdot (PF_6)_4$ in d₆-DMSO caused a significant downfield shift of the resonance corresponding to the imidazolium C2-H signal from 8.96 to 9.64 ppm. In addition, the benzylic proton signal was also shifted downfield from 5.34 to 5.76 ppm. Unfortunately, this study was hampered by the gradual precipitation of the imidazolium salt at higher Cl⁻ concentrations. In a similar manner, addition of increasing

equivalents of Bu₄N·Br and Bu₄N·I to 9·(PF₆)₄ caused downfield shifts in the imidazolium C2-H signal, although to a lesser extent than that seen for Bu₄N·Cl, however for these anions no precipitation of the macrocycle was seen. Figure 6 shows the ¹H-NMR titration between $9 \cdot (PF_6)_4$ and $Bu_4 N \cdot Br$, while Figure 7 shows the change in the imidazolium C2-H chemical shift for $9 \cdot (PF_6)_4$ in response to increasing equivalents of the added halide anion (solid black lines). Similar results were seen for the macrocyclic receptor $10 \cdot (PF_6)_4$ and the plot of experimental titration data is shown in Figure S2. Job plot analysis was then used to evaluate the stoichiometry of the interactions between the macrocyclic receptors and the anions Cl⁻, Br⁻, and I⁻. The results of these studies **Figures S3**, **S4** showed that maxima occurred at close to $\chi = 0.5$ indicating 1:1 stoichiometry for both receptor 9^{4+} and 10^{4+} with these anions.

Binding (association) constants K_a (M⁻¹) for the *tetra*imidazolium macrocycles **9**·(**PF**₆)₄ and **10**·(**PF**₆)₄ were determined by analysis of the ¹H-NMR titration data using the computer program HypNMR 2018 (Frassineti et al., 1995, 2003). The fitted binding isotherms are shown in **Figure 6** and **Figure S2** (red dashed lines) and the calculated binding constants are given in **Table 1**. The values obtained for the compounds studied in this work are similar in magnitude to those reported previously for related compounds. For example, Beer et al. reported association constants of 420(23), 241(3), and 120(1) M^{-1} for a *tetra*-imidazolium macrocycle in d₆-DMSO solution with the anions Cl⁻, Br⁻ and I⁻, respectively (Serpell et al., 2011).

CONCLUSION

In conclusion, a novel stepwise synthetic strategy is reported that allows for the synthesis of both symmetrical and asymmetrical tetra-imidazolium linked macrocyclic compounds. The synthetic strategy is modular as initially a range of bis-bromoethylimidazolium bromide precursors were synthesized, which when combined with chosen bis(imidazolylmethyl)benzene molecules produced a range of tetra-imidazolium linked macrocycles. These tetra-imidazolium salts are of significant interest as they bind anions in solution and offer the potential for the development of sensors for biologically relevant anions. Using ¹H-NMR titration studies, the association constants between $9 \cdot (PF_6)_4$ and $10 \cdot (PF_6)_4$ and the halide anions Cl⁻, Br⁻, and I⁻ were determined and these ranged between 501 and 20 M⁻¹. Imidazolium salts are precursors for N-heterocyclic carbene (NHC) ligands and given that Ag(I) and Au(I) complexes of NHC ligands have been shown to display antimicrobial (Aweda et al., 2013; Shah et al., 2013) and anticancer(Barnard et al., 2004) properties, respectively, the Ag(I), Au(I), and Pd(II) NHC complexes derived from these tetra-imidazolium linked macrocycles were prepared. The Ag(I) complexes 14^{6+} and the analogous Au(I) complex 15⁶⁺ adopted intriguing hexanuclear structures with the general formula $[M_6L_3]^{6+}$. Currently we are exploring the development of silver complexes of NHC ligands as potential antimicrobial agents and supramolecular assemblies such as complex 14⁶⁺ are a particular focus for the slow release of silver ions and the results of these studies will be reported in due course.

EXPERIMENTAL

Li et al

General Details

All solvents and chemicals were purchased from Sigma-Aldrich, Chem Supply, Alfa Aesar, and were used as received unless otherwise stated. Where necessary, solvents were further purified using an Innovative Technology Pure Solv solvent purification system. All experiments were performed under an atmosphere of N₂ unless otherwise stated. ¹H-NMR and ¹³C-NMR spectra were recorded on Bruker Advance 500 (500.023 MHz for ¹H and 125.74 MHz for ¹³C) and spectra were referenced to solvent resonances. Where required, COZY, HSQC, HMBC, and NOESY 2-dimensional experiments were used to assist assignments. Mass spectra were obtained using an Agilent 6530 Q-TOF LC/MS mass spectrometer fitted with an Agilent electrospray ion (ESI) source.

X-ray Crystallography

Single crystals suitable for X-ray diffraction studies were grown as follows: $5 \cdot Br_2$ and $9 \cdot Br_4$ diffusion of diethyl ether into an methanol solution of the title compound; $10 \cdot Br_3 PF_6$ diffusion of diethyl ether into an acetonitrile solution of the title compound containing two drops of a solution of *tetra*-n-butylammonium bromide in acetonitrile; $11 \cdot Br_4$ slow evaporation of a methanol solution of the title compound; $15 \cdot Br_2(PF_6)_4$ diffusion of ethyl acetate into an acetonitrile solution of the title compound; $20 \cdot (PF_6)_2$ was grown by slow diffusion of diethyl ether into an acetonitrile solution of the titled compound. Crystallographic data for all structures determined are given in Table S1. For all samples, crystals were removed from the crystallization vial and immediately coated with paratone oil on a glass slide. A suitable crystal was mounted in Paratone oil on a glass fiber

and cooled rapidly to 173 K in a stream of cold N₂ using an Oxford low temperature device. Diffraction data were measured using an Rigaku Oxford Diffraction SuperNova X-ray Diffraction System mounted with Mo-K α λ = 0.71073 Å and Cu-K α λ = 1.54184. Data were reduced and corrected for absorption using the CrysAlis Pro program. The SHELXL2013-2 program was used to solve the structures with Direct Methods, with refinement by the Full-Matrix Least-Squares refinement techniques on F2. The non-hydrogen atoms were refined anisotropically and

TABLE 1 | Association constants of the *tetra*-imidazolium macrocycles $9 \cdot (PF_6)_4$ and $10 \cdot (PF_6)_4$ with F⁻, Cl⁻, Br⁻, and I⁻.

	9·(PF ₆) ₄	10⋅(PF ₆) ₄
CI-	501 (12) ^a	ppt ^b
Br ⁻	126 (15)	63 (6)
I_	63 (6)	20 (2)

^a Precipitate forms after four equivalents of Bu₄N·Cl added; ^b precipitate forms rapidly and measurement of association constant not possible.

hydrogen atoms were placed geometrically and refined using the riding model. Coordinates and anisotropic thermal parameters of all non-hydrogen atoms were refined. All calculations were carried out using the program Olex2. Further XRD details are provided in the **Supporting Information**. CCDC 1885400-1885405 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

¹H-NMR Titration Studies

A solution of the title compound (10 mg) in d₆-DMSO (600 μ L) and a 1.5 M solution of Bu₄N·X (X = Cl, Br and I) in d₆-DMSO were prepared, respectively. To the solution of title compound, increasing equivalents (0.25–14.0 eq.) of 1.5 M Bu₄N·X solution was added and the resultant solution was thoroughly mixed. The ¹H-NMR spectrum was recorded ~2 min after each addition at 302 K.

Jobs Plot Analysis

A solution of the title compound (10 mg/mL) in d₆-DMSO and a 0.050 M solution of Bu₄N·X (X=Cl, Br and I) in d₆-DMSO were prepared, respectively. A varied fraction of title compound solution and Bu₄N·X solution was added and diluted with d₆-DMSO to 600 μ L to maintain the total concentration of substance at 10 mM. The resultant solution was thoroughly mixed and ¹H-NMR spectrum was recorded at 302 K.

Synthesis

4. Sodium hydride (1.14 g, 47.35 mmol) was added to a solution of 2-methylimidazole (3.11 g, 37.88 mmol) in DMF (50 mL) cooled to $0^{\circ}C$ and the resultant mixture was stirred at RT for 1 h and α, α' -dibromo-*m*-xylene (5.00 g, 18.94 mmol) was then added. Stirring was continued at RT for 12h and the mixture was then diluted with water (100 mL). The mixture was then extracted with CH_2Cl_2 (5 × 10 mL) and the combined organic extracts were washed with water (5 \times 50 mL) and then brine (20 mL). The organic layer was dried with MgSO₄ and the solvent was evaporated in vacuo yielding a yellow oil. Yield: 2.18 g, 43.2%. ¹H-NMR (500.02 MHz, d₆-DMSO): $\delta = 7.33$ (t, ${}^{3}J_{H-H} = 7.5$ Hz, 1H, ArH), 7.08 (d, ${}^{3}J_{H-H} =$ 1.0 Hz, 2H, $H_{\rm imi}$), 7.02 (d, ${}^{3}J_{\rm H-H}$ = 8.0 Hz, 2H, ArH), 6.96 (s, 1H, ArH), 6.76 (d, ${}^{3}J_{H-H} = 1.5$ Hz, 2H, H_{imi}), 5.12 (s, 4H, CH₂), 2.19 (s, 6H, CH₃). ¹³C-NMR (125.74 MHz, d₆-DMSO): $\delta = 144.36 (C_q), 138.55 (C_q), 129.64 (C_{Ar}), 126.96 (C_{imi}),$ 126.59 (C_{Ar}), 126.07 (C_{Ar}), 120.70 (C_{imi}), 48.94 (CH_2), 13.18 (CH_3). HRESI-MS⁺ (CH_3CN): $C_{14}H_{15}N_4^+$ m/z = 267.1543, calcd = 267.1604.

5-Br₂. To a solution of 1,2-dibromoethane (21.69 mL, 251.7 mmol) in CH₃CN (50 mL) stirred at 110°C, was added dropwise a solution of 1 (2.0 g, 8.39 mmol) in CH₃CN (100 mL) over a period of 3 h. The resultant mixture was stirred at the same temperature for 12h and then filtered whilst still hot. The filtrate was then evaporated in vacuo and the resulting solid was recrystallized from hot ethanol (20 mL) yielding a white crystalline solid. Yield: 2.19 g, 41.2%. ¹H-NMR (500.02 MHz, d₆-DMSO): δ = 9.50 (s, 2H, H_{imi}), 7.98 (t, ${}^{3}J_{\text{H-H}}$ = 1.8 Hz, 2H, H_{imi}), 7.88 (t, ${}^{3}J_{\text{H-H}}$ = 1.8 Hz, 2H, H_{imi}), 7.49 (dd, ${}^{3}J_{H-H} = 5.8 \text{ Hz}$, ${}^{4}J_{H-H} = 3.5 \text{ Hz}$, 2H, ArH), 7.30 $(dd, {}^{3}J_{H-H} = 5.5 \text{ Hz}, {}^{4}J_{H-H} = 3.5 \text{ Hz}, 2H, \text{ Ar}H), 5.75 (s,$ 4H, CH_2), 4.69 (t, ${}^{3}J_{H-H} = 6.0 \text{ Hz}$, 4H, CH_2), 4.01 (t, ${}^{3}J_{H-H} = 6.0 \text{ Hz}, 4H, CH_{2}$). ${}^{13}\text{C-NMR}$ (125.74 MHz, d₆-DMSO): $\delta = 137.56 (C_{imi})$, 133.38 (C_q), 130.10 (C_{Ar}), 129.83 (CAr), 123.42 (Cimi), 123.38 (Cimi), 50.76 (CH₂), 49.61 (CH₂), 32.90 (CH₂). HRESI-MS⁺ (CH₃OH): $C_{18}H_{22}N_4Br_2^{2+}$ m/z = 227.0094, calcd = 227.0090, $C_{18}H_{22}N_4Br_3^+$ m/z = 532.9367, calcd = 532.9369.

6·Br₂. This compound was prepared using the same method as described for **5·Br**₂ from 1,2-dibromoethane (10.80 mL, 125.90 mmol) and **2** (1.00 g, 4.20 mmol). The crude product was purified by a trituration with diethyl ether (3 × 10 mL) yielding a light brown oil. Yield: 0.62 g, 24.0%. ¹H-NMR (500.02 MHz, d₆-DMSO): δ = 9.63 (s, 2H, $H_{\rm imi}$), 7.95 - 7.97 (m, 4H, $H_{\rm imi}$), 7.65 (s, 1H, ArH), 7.44 - 7.50 (m, 3H, ArH), 5.56 (s, 4H, CH₂), 4.69 (t, ³*J*_{H-H} = 5.9 Hz, 4H, CH₂), 4.01 (t, ³*J*_{H-H} = 5.9 Hz, 4H, CH₂), 13C-NMR (125.74 MHz, d₆-DMSO): δ = 137.31 (*C*_{imi}), 136.02 (*C*_q), 130.19 (*C*_{Ar}), 129.08 (*C*_{Ar}), 128.90 (*C*_{Ar}), 123.36 (*C*_{imi}), 123.16 (*C*_{imi}), 52.05 (CH₂), 50.76 (CH₂), 32.90 (CH₂). HRESI-MS⁺ (CH₃OH): C₁₈H₂₂N₄Br₂²⁺ m/z = 227.0102, calcd = 227.0090.

7.Br₂. This compound was using the same method as described for **5.Br**₂ from 1,2-dibromoethane (4.85 mL, 56.31 mmol) and **3** (0.50 g, 1.88 mmol). The crude product was recrystallized from ethanol yielding a white solid. Yield: 0.62 g, 51.6%. ¹H-NMR (500.02 MHz, d₆-DMSO): $\delta = 7.90$ (d, ³*J*_{H-H} = 2.1 Hz, 2H, *H*_{imi}), 7.68 (d, ³*J*_{H-H} = 2.1 Hz, 2H, *H*_{imi}), 7.40 (dd, ³*J*_{H-H} = 5.5 Hz, ⁴*J*_{H-H} = 3.4 Hz, 2H, ArH), 6.82 (dd, ³*J*_{H-H} = 5.7 Hz, ⁴*J*_{H-H} = 3.5 Hz, 2H, ArH), 5.67 (s, 4H, CH₂), 4.68 (t, ³*J*_{H-H} = 5.9 Hz, 4H, CH₂), 4.00 (t, ³*J*_{H-H} = 5.9 Hz, 4H, CH₂), 2.69 (s, 6H, CH₃). ¹³C-NMR (125.74 MHz, d₆-DMSO): $\delta = 146.15 (C_q)$, 132.62 (C_q), 129.28 (C_{Ar}), 126.95 (C_{Ar}), 122.65 (C_{imi}), 122.43 (C_{imi}), 49.29 (CH₂), 48.85 (CH₂), 31.96 (CH₂), 10.70 (CH₃). HRESI-MS⁺ (CH₃OH): C₂₀H₂₆N₄Br²⁺₂ m/z = 241.0306, calcd = 241.0246.

8.Br₂. This compound was prepared using the same method as described for **5.Br**₂ from 1,2-dibromoethane (8.15 mL, 94.61 mmol) and **4** (0.84 g, 3.15 mmol). The crude product was recrystallized from ethanol yielding a white solid. Yield: 0.76 g, 37.5%. ¹H-NMR (500.02 MHz, d₆-DMSO): δ = 7.81 (s, 2H, $H_{\rm imi}$), 7.79 (s, 2H, $H_{\rm imi}$), 7.46 (t, ³J_{H-H} = 7.8 Hz, 1H, ArH), 7.33 (s, 1H, ArH), 7.27 (d, ³J_{H-H} = 7.7 Hz, 2H, ArH), 5.47 (s, 4H, CH₂), 4.62 (t, ³J_{H-H} = 6.0 Hz, 4H, CH₂), 3.93 (t, ³J_{H-H}

= 5.9 Hz, 4H, CH₂), 2.67 (s, 6H, CH₃). ¹³C-NMR (125.74 MHz, d₆-DMSO): δ = 145.47 (C_q), 135.76 (C_q), 130.32 (C_{Ar}), 128.15 (C_{Ar}), 127.59 (C_{Ar}), 122.40 (C_{imi}), 122.35 (C_{imi}), 50.88 (CH₂), 49.17 (CH₂), 31.78 (CH₂), 10.37 (CH₃). HRESI-MS⁺ (CH₃OH): C₂₀H₂₆N₄Br₂²⁺ m/z = 241.0294, calcd = 241.0246, HRESI-MS⁺ (CH₃OH): C₂₀H₂₆OH): C₂₀H₂₆N₄Br₃⁺ m/z = 560.9702, calcd = 560.9682.

9-Br₄. Solutions of 1 (0.31 g, 1.30 mmol) in CH₃CN (100 mL) and 5-Br₂ (0.80 g, 1.30 mmol) in DMF (100 mL) were added simultaneously dropwise to 150 mL of CH₃CN heated at 110°C over a period of 3 h. The mixture was then stirred at the same temperature for a further 5 d during which time a precipitate formed. The precipitate was collected and washed with CH₃CN $(3 \times 5 \text{ mL})$ and recrystallized from a mixture of methanol and isopropanol yielding a white crystalline solid. Yield: 0.33 g, 29.7%. ¹H-NMR (500.02 MHz, d₆-DMSO): $\delta = 9.45$ (s, 4H, H_{imi}), 7.90 (t, ${}^{3}J_{H-H} = 1.5 \text{ Hz}$, 4H, H_{imi}), 7.77 (t, ${}^{3}J_{H-H} = 1.5 \text{ Hz}$, 4H, H_{imi}), 7.52 (dd, ${}^{3}J_{\text{H-H}} = 5.8 \text{ Hz}$, ${}^{4}J_{\text{H-H}} = 3.0 \text{ Hz}$, 4H, ArH), 7.40 (dd, ${}^{3}J_{H-H} = 5.5 \text{ Hz}$, ${}^{4}J_{H-H} = 3.5 \text{ Hz}$, 4H, ArH), 5.68 (s, 8H, CH₂), 4.81 (s, 8H, CH₂). ¹³C-NMR (125.74 MHz, d₆-DMSO): $\delta = 136.75 \ (C_{imi}), \ 133.13 \ (C_q), \ 131.04 \ (C_{Ar}), \ 130.38 \ (C_{Ar}),$ 123.66 (C_{imi}), 123.51(C_{imi}), 49.95 (CH₂). HRESI-MS⁺ (CH₃CN): $C_{32}H_{36}N_8^{4+}$ m/z = 133.0655, calcd = 133.0760, $C_{32}H_{36}N_8P_3F_{18}^+$ m/z = 967.2020, calcd = 967.1967.

10·Br₄. This compound was prepared using the same method as described for **9·Br**₄. from **2** (0.24 g, 1.01 mmol) and **6·Br**₂ (0.62 g, 1.01 mmol). Yield: 0.16 g, 18.0%. ¹H-NMR (500.02 MHz, d₆-DMSO): $\delta = 9.53$ (s, 4H, $H_{\rm imi}$) 7.83 (t, ³ $J_{\rm H-H} = 1.7$ Hz, 4H, $H_{\rm imi}$), 7.80 (t, ³ $J_{\rm H-H} = 1.7$ Hz, 4H, $H_{\rm imi}$), 7.51 (s, 2H, ArH), 7.36 (t, ³ $J_{\rm H-H} = 7.7$ Hz, 4H, ArH), 7.26–7.28 (m, 4H, ArH), 5.45 (s, 8H, CH₂), 4.84 (s, 8H, CH₂). ¹³C-NMR (125.74 MHz, d₆-DMSO): $\delta = 137.50$ (C_{imi}), 135.80 (C_q), 130.70 (C_{Ar}), 128.92 (C_{Ar}), 128.87 (C_{Ar}), 128.39 (C_{imi}), 52.21 (CH₂), 48.83 (CH₂). HRESI-MS⁺ (CH₃CN): C₃₂H₃₆N⁴⁺₈ m/z = 133.0686, C₃₂H₃₆N⁴⁺₈ calcd = 133.0760, C₃₂H₃₆N₈P₂F²⁺₁₂ m/z = 411.1099, C₃₂H₃₆N₈P₂F²⁺₁₂ calcd = 411.1163, C₃₂H₃₆N₈P₃F⁺₁₈ m/z = 967.1990, C₃₂H₃₆N₈P₃F⁺₁₈ calcd = 967.1967.

11-Br₄. Solutions of 1 (0.19 g, 0.80 mmol) in CH₃CN (50 mL) and 7.Br₂ (0.50 g, 0.80 mmol) in DMF (50 mL) were added simultaneously dropwise to a solution of Bu₄N·Br (1.55 g, 4.80 mmol) in CH₃CN (150 mL) heated at 110°C over a period of 3 h. The mixture was stirred at the same temperature for a further 5 d during which time a precipitate formed. The precipitate was collected and washed with CH_3CN (3 × 5 mL) and then recrystallized from a mixture of methanol and diethyl ether yielding a white crystalline solid. Yield: 0.10g, 7.5%. ¹H-NMR (500.02 MHz, d_6 -DMSO): $\delta = 9.76$ (s, 2H, H_{imi}), 8.00 (s, 2H, H_{imi}), 7.65 (s, 2H, H_{imi}), 7.49-7.53 (m, 10H, ArH, $H_{\rm imi}$), 7.23 (dd, ${}^{3}J_{\rm H-H} = 5.4 \,{\rm Hz}$, ${}^{4}J_{\rm H-H} = 3.6 \,{\rm Hz}$, 4H, ArH), 5.52 (s, 4H, CH₂), 5.47 (s, 4H, CH₂), 4.81 - 4.83 (m, 4H, CH₂), 4.70 – 4.72 (m, 4H, CH₂), 2.64 (s, 6H, CH₃). ¹³C-NMR (125.74 MHz, d₆-DMSO): δ = 145.98 (*C*_q), 137.44 (*C*_{imi}), 132.92 (C_q) , 132.34 (C_q) , 131.15 (C_{Ar}) , 130.47 (C_{Ar}) , 129.97 (C_{Ar}) , 129.56 (CAr), 123.98 (Cimi), 123.42 (Cimi), 122.83 (Cimi), 122.67 (C_{imi}), 49.48 (CH₂), 49.38 (CH₂), 49.19 (CH₂), 47.90 (CH₂), 10.02 (CH₃). HRESI-MS⁺ (CH₃CN): $C_{32}H_{36}N_8P_2F_{12}^{2+}$ m/z = 425.1335, calcd = 425.1324, $C_{34}H_{40}N_8P_3F_{18}^{+}$ m/z = 995.2323, calcd 995.2296.

12.Br₄. This compound was prepared using the same method described for 11.Br₄ from 2 (0.11g, 0.47 mmol) and 8.Br₂ (0.30 g, 0.47 mmol). The crude product was recrystallized from methanol yielding a white crystalline solid. Yield: 0.068 g, 16.5%. ¹H-NMR (500.023 MHz, d_6 -DMSO): $\delta = 9.53$ (s, 2H, H_{imi}), 7.80-7.84 (m, 4H, H_{imi}), 7.62 (d, ${}^{3}J_{\text{H-H}} = 2.2 \text{ Hz}$, 2H, H_{imi}), 7.48 (d, ${}^{3}J_{H-H} = 2.2 \text{ Hz}$, 2H, H_{imi}), 7.46 (s, 1H, ArH), 7.40 $(t, {}^{3}J_{H-H} = 7.7 \text{ Hz}, 1\text{H}, \text{Ar}H), 7.34 (s, 1\text{H}, \text{Ar}H), 7.24 - 7.30$ (m, 3H, Ar*H*), 7.12 (dd, ${}^{3}J_{H-H} = 7.7 \text{ Hz}$, ${}^{4}J_{H-H} = 1.3 \text{ Hz}$, 2H, ArH), 5.42 (s, 4H, CH2), 5.38 (s, 4H, CH2), 4.74 (s, 8H, CH₂), 2.63 (s, 6H, CH₃). ¹³C-NMR (125.74 MHz, d₆-DMSO): $\delta = 145.85 (C_q), 137.61 (C_{imi}), 135.54 (C_q), 135.39 (C_q), 128.47$ (CAr), 128.04 (CAr), 123.50 (Cimi), 123.41 (Cimi), 122.30 (Cimi), 122.23 (C_{imi}), 52.19 (CH₂), 50.92 (CH₂), 48.33 (CH₂), 47.73 (CH_2) , 10.49 (CH_3) . HRESI-MS⁺ (CH_3CN) : $C_{32}H_{36}N_8Br_2^{2+}$ m/z = 360.0861, calcd = 360.0865.

13-(PF₆)₄ This compound was prepared using the same method described for 11-Br₄ from 2 and 5-Br₂ (0.52 g, 0.85 mmol) and Bu₄N·Br (1.37 g, 4.25 mmol). The crude product was then dried in vacuo and re-dissolved in water (5 mL) and then filtered through a plug of celite. To this solution, a solution of KPF₆ saturated in aqueous (3 mL) was added to obtain a white precipitate. The precipitate was washed with isopropanol (5 mL) and recrystallized by vapor diffusion of CH3CN/diethyl ether to obtain a white crystalline. Yield: 0.15 g, 16.0%. ¹H-NMR (500.023) MHz, d₆-DMSO): δ = 9.13 (s, 2H, H_{imi}), 8.99 (s, 2H, H_{imi}), 7.84 $(t, {}^{3}J_{H-H} = 1.8 \text{ Hz}, 2H, H_{imi}), 7.72 (t, {}^{3}J_{H-H} = 1.8 \text{ Hz}, 2H, H_{imi}),$ 7.71 (t, ${}^{3}J_{H-H} = 1.8$ Hz, 2H, H_{imi}), 7.65 (t, ${}^{3}J_{H-H} = 1.8$ Hz, 2H, H_{imi}), 7.39 - 7.43 (m, 3H, ArH), 7.11 (s, 1H, ArH), 7.02 $(dd, {}^{3}J_{H-H} = 7.7 \text{ Hz}, {}^{4}J_{H-H} = 1.1 \text{ Hz}, 2H, ArH), 6.92 - 6.96$ (m, 2H, ArH), 5.37 (s, 4H, CH2), 5.36 (s, 4H, CH2), 4.72-4.80 (m, 8H, CH₂). ¹³C-NMR (125.74 MHz, d_6 -DMSO): $\delta = 137.40$ (C_{imi}), 137.28 (C_{imi}), 135.56 (C_q), 132.55 (C_q), 130.16 (C_{Ar}), 130.04 (CAr), 129.30 (CAr), 127.75 (CAr), 127.35(CAr), 123.99 (Cimi), 123.74 (Cimi), 123.72 (Cimi), 123.57 (Cimi), 52.14 (CH₂), 49.50 (CH₂), 49.20 (CH₂). HRESI-MS⁺ (CH₃CN): C₃₂H₃₆N₈⁴⁺ m/z = 133.0750, calcd = 133.0760, $C_{32}H_{36}N_8P_2F_{12}^{2+}$ m/z =411.1158, calcd = 411.1168, $C_{32}H_{36}N_8P_3F_{18}^+$ m/z = 967.1985, calcd = 967.1983.

14•(**PF**₆)₆. A slurry of **9**•**B**r₄ (0.10 g, 0.12 mmol) and Ag₂O (0.11 g, 0.47 mmol) in DMF (10 mL) was stirred at 50°C for 3 d with the exclusion of light. Diethyl ether (~50 mL) was then added to the mixture and a gray precipitate formed which was collected and dissolved in hot water (5 mL). The solution was clarified by filtration through syringe filter and a saturated solution of KPF₆ (2 mL) was added to obtain an off-white precipitate. The solid collected and washed with hot isopropanol (2 mL) and then recrystallized from a mixture of CH₃CN and diethyl ether to obtain a white crystalline solid. Yield: 0.026 g, 21.4%. ¹H-NMR (500.02 MHz, d₆-DMSO): δ = 7.70 (s, 6H, *H*_{imi}), 7.68 (s, 6H, *H*_{imi}), 7.52 (d, ³J_{H-H} = 7.5 Hz, 6H, ArH), 7.17 (t_{app}, J = 7.5 Hz, 6H, ArH), 7.09 (s, 6H, *H*_{imi}), 6.94 (t_{app}, J = 7.5 Hz, 6H, ArH), 6.76 (s, 6H, *H*_{imi}), 5.75 (d, ²J_{H-H} = 15.0 Hz, 12H, CH₂),

5.68 (d, ${}^{3}J_{H-H} = 7.5$ Hz, 6H, ArH), 5.60 (d, ${}^{2}J_{H-H} = 17.0$ Hz, 6H, CH₂), 4.98 (d, ${}^{2}J_{H-H} = 14.5$ Hz, 6H, CH₂), 4.65 (t, ${}^{3}J_{H-H} = 12.5$ Hz, 6H, CH₂), 4.52 (t, ${}^{3}J_{H-H} = 12.5$ Hz, 6H, CH₂), 4.21 (d, ${}^{3}J_{H-H} = 12.0$ Hz, 6H, CH₂), 2.48 (s, 6H, CH₂). 13 C-NMR (125.74 MHz, d₆-DMSO): $\delta = 186.31$ (d, ${}^{1}J = 182.32$ Hz, 107 Ag-C_{carbene}), 186.31 (d, ${}^{1}J = 209.99$ Hz, 109 Ag-C_{carbene}), 178.75 (d, ${}^{1}J = 182.32$ Hz, 107 Ag-C_{carbene}), 178.75 (d, ${}^{1}J = 209.99$ Hz, 109 Ag-C_{carbene}), 135.80 (C_q), 131.60 (C_q), 130.88 (C_{Ar}), 129.41 (C_{Ar}), 128.14 (C_{Ar}), 124.63 (C_{Ar}), 123.90 (C_{imi}), 123.78(C_{imi}), 121.75 (C_{imi}), 55.37 (CH₂), 52.58 (CH₂), 51.66 (CH₂), 51.24 (CH₂), 50.50 (CH₂). HRESI-MS⁺ (CH₃CN): C₉₆H₉₆N₂₄Ag₆⁶⁺ m/z = 372.0334, calcd = 372.0419, C₉₆H₉₆N₂₄Ag₆P₃F₁₈³⁺ m/z = 889.0490, calcd = 889.0485.

15-Br₆. A slurry of 9-Br₄ (0.10 g, 0.12 mmol) and (THT)AuCl (0.083 g, 0.26 mmol) in DMF (10 mL) was stirred at 110°C for 0.5 h. To this mixture NaOAc (0.050 g, 0.59 mmol) was added and the solution was stirred at the same temperature for 1 h. The resultant mixture was cooled to RT and then diethyl ether (50 mL) was added to obtain a white precipitate. The precipitate was collected and recrystallized from hot methanol ($\sim 5 \text{ mL}$). Yield: 0.048 g, 54.2%. ¹H-NMR (500.02 MHz, d₆-DMSO): δ = 7.83 (s, 6H, $H_{\rm imi}$), 7.72 (s, 6H, $H_{\rm imi}$), 7.57 (d, ${}^{3}J_{\rm H-H}$ = 7.5 Hz, 6H, ArH), 7.21 (t_{app} , J = 7.5 Hz, 6H, ArH) 7.11 (s, 6H, $H_{\rm imi}$), 6.93 (t_{app}, J = 7.5 Hz, 6H, ArH) 6.84 (s, 6H, $H_{\rm imi}$), 6.07 (d, ${}^{2}J_{H-H} = 16.5 \text{ Hz}$, 6H, CH₂), 5.74 – 5.78 (m, 12H, ArH, CH_2), 5.66 (d, ${}^{3}J_{H-H} = 16.5 \text{ Hz}$, 6H, CH_2), 5.06 (d, ${}^{3}J_{H-H} =$ 14.0 Hz, 12H, CH_2), 4.49 (t, ${}^{3}J_{H-H} = 12.8$ Hz, 6H, CH_2), 4.37 (d, ${}^{3}J_{H-H} = 12.5 \text{ Hz}$, 6H, CH₂), 2.33 (d, ${}^{3}J_{H-H} = 12.5 \text{ Hz}$, 6H, CH₂). ¹³C-NMR (125.74 MHz, d₆-DMSO): δ = 186.31 (*C*_{carbene}), 181.48 ($C_{carbene}$), 135.84 (C_q), 131.37 (C_q), 131.02 (C_{Ar}), 129.62 (CAr), 127.99 (CAr), 124.59 (CAr), 123.95 (Cimi), 123.64 (C_{imi}), 121.86 (C_{imi}), 51.89 (CH₂), 51.27 (CH₂), 50.22 (CH₂). HRESI-MS⁺ (CH₃CN): $C_{96}H_{96}N_{24}Au_6^{6+}$ m/z = 461.1022, calcd = 461.1035.

16 (PF₆)₂. A slurry of 9 · Br₄ (0.050 g, 0.059 mmol) and Ag₂O (0.030 g, 0.13 mmol) in DMF (5 mL) was stirred at 50°C for 12h with the exclusion of light. To this mixture K₂PdCl₄ (0.019 g, 0.059 mmol) was added and stirring was continued for a further stirred for 12 h at 80°C. The reaction mixture was clarified by centrifugation and diethyl ether (30 mL) was added to the supernatant yielding a gray precipitate. The precipitate was collected and re-dissolved in hot water (5 mL) and the solution filtered through a syringe filter. To the filtrate, a saturated solution of KPF₆ (2 mL) was added to obtain an off-white precipitate. The precipitate was dried in vacuo and then recrystallized from a mixture of CH₃CN and diethyl ether to obtain a white crystalline solid. Yield: 0.0052 g, 9.6%. ¹H-NMR (500.02 MHz, d₆-DMSO): δ = 7.87 – 7.92 (m, 4H, ArH), 7.83 (d, ³J_{H-H} = 2.0 Hz, 4H, H_{imi}), 7.48 (d, ${}^{3}J_{\text{H-H}}$ = 2.0 Hz, 4H, H_{imi}), 7.42 – 7.47 (m, 4H, ArH), 6.44 (d, ${}^{3}J_{H-H} = 15.0 \text{ Hz}$, 4H, CH_2), 5.20 (d, ${}^{3}J_{H-H} = 14.7 \text{ Hz}$, 4H, CH_2), 4.98 -5.06 (m, 4H, CH₂), 4.54 - 4.61 (m, 4H, CH₂). ¹³C-NMR (125.74 MHz, d₆-DMSO): δ =167.41 ($C_{carbene}$), 135.56 (C_q), 131.73 (CAr), 129.83 (CAr), 124.96 (Cimi), 122.68 (Cimi), 50.79 (CH₂), 47.39 (CH₂). HRESI-MS⁺ (CH₃CN): $C_{32}H_{32}N_8Pd^{2+}$ m/z = 317.0889, calcd = 317.0887.

 $17 \cdot (PF_6)_3$. This compound was prepared using the same method as described for 14-(PF₆)₆ from 10-Br₄ (0.050 g, 0.059 mmol) and Ag₂O (0.057 g, 0.24 mmol). Yield: 0.0050 g, 6.2%. ¹H-NMR (500.02 MHz, CD₃CN): $\delta = 8.37$ (t, J = 1.5 Hz, 2H, $H_{\rm imi}$), 7.45 – 7.53 (m, 12H, ArH, $H_{\rm imi}$), 7.21 (t, ${}^{3}J_{\rm H-H}$ = 1.8 Hz, 2H, $H_{\rm imi}$), 6.98 (s, 2H, ArH), 6.95 (t, ${}^{3}J_{\rm H-H}$ = 1.9 Hz, 2H, H_{imi}) 5.31 (s, 4H, CH₂), 5.08 (s, 4H, CH₂), 4.60 $(d, {}^{3}J_{H-H} = 4.3 \text{ Hz}, 4H, CH_{2}), 4.55 (d, {}^{3}J_{H-H} = 4.7 \text{ Hz},$ 4H, CH₂). ¹³C-NMR (125.74 MHz, CD₃CN): δ = 180.39 (d, ${}^{1}J = 183.58 \text{ Hz}, {}^{107}\text{Ag-}C_{\text{carbene}}$), 180.39 (d, ${}^{1}J = 211.24 \text{ Hz}$, ¹⁰⁹Ag-C_{carbene}), 138.62 (C_q), 136.79 (C_q), 136.18 (C_{imi}), 130.86 (CAr), 129.82 (Cimi), 129.48 (Cimi), 126.74 (CAr), 125.47 (CAr), 125.42 (CAr), 124.47 (Cimi), 124.12 (Cimi), 122.39 (CAr), 122.35 (C_{Ar}), 55.33 (CH₂), 53.45 (CH₂), 52.73 (CH₂), 50.96 (CH₂). HRESI-MS⁺ (CH₃CN): $C_{32}H_{34}N_8Ag^{3+}$ m/z = 213.0643, calcd = 213.0646, $C_{32}H_{34}N_8AgPF_6^{2+}$ m/z = 391.2845, calcd = 391.0794, $C_{32}H_{34}N_8AgP_2F_{12}^+$ m/z = 927.1228, calcd = 927.1235.

 $18 \cdot (PF_6)_2$. This compound was prepared using the same method as described for 15.Br₆ from 11.Br₄ (0.050 g, 0.057 mmol), (THT)AuCl (0.040 g, 0.13 mmol), and NaOAc (0.019 g, 0.23 mmol). For exchange of the bromide anion to hexafluorophosphate the crude product was dissolved in water (3 mL) and the solution filtered through celite. To this solution, a saturated solution of KPF₆ (2 mL) was added to obtain a white precipitate which was then recrystallized from a mixture of CH₃CN and diethyl ether yielding a white crystalline solid. Yield: 0.020 g, 29.9%. ¹H-NMR (500.02 MHz, CD₃CN): $\delta = 7.55 -$ 7.57 (m, 1H, ArH), 7.46 – 7.48 (m, 1H, ArH), 7.44 (d, ${}^{3}J_{H-H} =$ 2.0 Hz, 1H, H_{imi}), 7.41-7.42 (m, 1H, ArH), 7.38 (s, 1H, H_{imi}), 7.23 (d, ${}^{3}J_{H-H} = 2.1 \text{ Hz}$, 1H, H_{imi}), 7.21-7.22 (m, 1H, ArH), 7.15 (d, ${}^{3}J_{H-H} = 1.9$ Hz, 1H, H_{imi}), 5.53 (s, 2H, CH₂), 5.49 (s, 2H, CH₂), 4.66 – 4.67 (m, 2H, CH₂), 4.57 – 4.59 (m, 2H, CH₂), 2.54 (s, 3H, CH₃). ¹³C-NMR (125.74 MHz, CD₃CN): $\delta = 145.20$ (C_{carbene}), 133.61 (C_q), 130.51 (C_{Ar}), 130.43 (C_{Ar}), 130.22 (C_{Ar}), 129.75 (C_{Ar}), 122.74 (C_{imi}), 122.50 (C_{imi}), 122.24 (C_{imi}), 122.05 (Cimi), 51.84 (CH2), 50.05 (CH2), 49.69 (CH2), 48.48 (CH2), 10.36 (CH₃). HRESI-MS⁺ (CH₃CN): $C_{34}H_{38}N_8Au_2Br_2^{2+}$ m/z = 556.0369, calcd = 556.0443.

 $19 \cdot (PF_6)_2$. This compound was prepared using the same method as that described for 15.Br₆ from 11.Br₄ (0.030 g, 0.034 mmol), (THT)AuCl (0.024 g, 0.075 mmol), and NaOAc (0.11 g, 0.14 mmol). For exchange of the bromide anion to hexafluorophosphate the crude product was dissolved in water (3 mL) and the solution filtered through celite. To this solution, a saturated solution of KPF₆ (2 mL) was added to obtain a white precipitate which was then recrystallized from a mixture of CH₃CN and diethyl ether yielding a white crystalline solid. Yield: 0.0070 g, 1.5%. ¹H-NMR (500.02 MHz, d_6 -DMSO): $\delta =$ 7.71 (d, ${}^{3}J_{H-H} = 1.9$ Hz, 2H, H_{imi}), 7.62 (d, ${}^{3}J_{H-H} = 1.9$ Hz, 2H, H_{imi}), 7.56 (d, ${}^{3}J_{\text{H-H}} = 1.9 \text{ Hz}$, 2H, H_{imi}), 7.39–7.43 (m, 3H, ArH, H_{imi}), 7.28 - 7.38 (m, 3H, ArH), 7.14 - 7.19 (m, 1H, ArH), 7.07 – 7.14 (m, 1H, ArH), 6.56 – 6.69 (m, 2H, ArH), 5.31 (s, 4H, CH₂), 5.06 (s, 4H, CH₂), 4.67 (s, 4H, CH₂), 4.66 (s, 4H, CH₂), 2.40 (s, 6H, CH₃). ¹³C-NMR (125.74 MHz, d₆-DMSO): $\delta = 172.52 \ (C_{\text{carbene}}), \ 144.61 \ (C_{\text{q}}), \ 136.79 \ (C_{\text{q}}), \ 134.11 \ (C_{\text{q}}),$ 130.12 (CAr), 127.96 (CAr), 125.29 (CAr), 123.45 (Cimi), 122.28 $(C_{\rm imi}), 121.98 (C_{\rm imi}), 121.91 (C_{\rm imi}), 52.82 (CH_2), 50.44 (CH_2),$

49.84 (CH₂), 48.11 (CH₂), 9.19 (CH₃). HRESI-MS⁺ (CH₃CN): C₃₄H₃₈N₈Au₂Br₂²⁺ m/z = 556.0422, calcd = 556.0443.

20·(PF₆)₂. To a solution of 11·Br₄ (0.050 g, 0.057 mmol) and K₂PdCl₄ (0.019 g, 0.057 mmol) in DMSO (5 mL) at 85°C, NaOAc (0.019 g, 0.23 mmol) was added and the reaction mixture was stirred same temperature for 12 h. The resultant mixture was then diluted with acetone (5 mL) followed by adding diethyl ether (20 mL) to form a precipitate. The crude precipitate was collected and then re-dissolved in water and filtered through a plug of Celite followed by addition of a saturated solution of KPF₆ (3 mL). The resultant precipitate was collected and washed with isopropanol (5 mL) and diethyl ether $(2 \times 5 \text{ mL})$ and then recrystallized from a mixture of CH₃CN and diethyl ether vielding the product as a pale yellow solid. NMR analysis showed this material to be impure and the ¹H-NMR spectrum is reported for the impure material. ¹H-NMR (500.02 MHz, CD₃CN): $\delta =$ 7.66 (s, 2H, H_{imi}), 7.55 - 7.57 (m, 4H, ArH), 7.35-7.40 (m, 2H, ArH), 7.34 (s, 2H, H_{imi}), 7.22 – 7.24 (m, 2H, H_{imi}), 7.03 (s, 2H, *H*_{imi}), 7.02 (s, 2H, *H*_{imi}), 5.26 (s, 4H, *CH*₂), 5.24 (s, 4H, *CH*₂), 4.61 - 4.70 (m, 8H, CH₂), 2.57 (s, 6H, CH₃). A crystal suitable for single crystal X-ray diffraction analysis of $20 \cdot (PF_6)_2$ was grown from diffusion of diethyl ether into an acetonitrile solution of 20.(PF₆)₂.

REFERENCES

- Ahmed, N., Shirinfar, B., Geronimo, I., and Kim, K. S. (2011). Fluorescent imidazolium-based cyclophane for detection of guanosine-5'-triphosphate and I– in aqueous solution of physiological pH. Org. Lett. 13, 5476–5479. doi: 10.1021/ol202183t
- Ahmed, N., Shirinfar, B., Youn, I. S., Bist, A., Suresh, V., and Kim, K. S. (2012). A highly selective fluorescent chemosensor for guanosine-5[']-triphosphatevia excimer formation in aqueous solution of physiological pH. *Chem. Commun.* 48, 2662–2664. doi: 10.1039/c2cc17145g
- Alcalde, E., Mesquida, N., Perez-Garcia, L., Alvarez-Rua, C., Garcia-Granda, S., and Garcia-Rodriguez, E. (1999). Hydrogen bonded driven anion binding by dicationic [14]imidazoliophanes. *Chem. Commun.* 0, 295–296. doi: 10.1039/a808503j
- Alcalde, E., Mesquida, N., Vilaseca, M., Alvarez-Rúa, C., and García-Granda, S. (2007). Imidazolium-based dicationic cyclophanes. solid-state aggregates with unconventional (C–H)+…Cl– hydrogen bonding revealed by X-ray diffraction. *Supramol. Chem.* 19, 501–509. doi: 10.1080/10610270601132624
- Altmann, P. J., Jandl, C., and Pöthig, A. (2015). Introducing a pyrazole/imidazole based hybrid cyclophane: a hydrogen bond sensor and binucleating ligand precursor. *Dalton Trans.* 44, 11278–11281. doi: 10.1039/C5DT01775K
- Altmann, P. J., Weiss, D. T., Jandl, C., and Kühn, F. E. (2016). Exploring coordination modes: late transition metal complexes with a methylenebridged macrocyclic tetra-NHC ligand. *Chem. Asian J.* 11, 1597–1605. doi: 10.1002/asia.201600198
- Andrew, R. E., Storey, C. M., and Chaplin, A. B. (2016). Well-defined coinage metal transfer agents for the synthesis of NHC-based nickel, rhodium and palladium macrocycles. *Dalton Trans.* 45, 8937–8944. doi: 10.1039/C6DT01263A
- Anneser, M. R., Haslinger, S., Pöthig, A., Cokoja, M., Basset, J.-M., and Kühn, F. E. (2015). Synthesis and characterization of an iron complex bearing a cyclic tetra-N-heterocyclic carbene ligand: an artifical heme analogue? *Inorg. Chem.* 54, 3797–3804. doi: 10.1021/ic503043h
- Aweda, T. A., Ikotun, O., Mastren, T., Cannon, C. L., Wright, B., Youngs, W. J., et al. (2013). The use of 111Ag as a tool for studying biological distribution of silver-based antimicrobials. *Med. Chem. Commun.* 4, 1015–1017. doi: 10.1039/c3md00082f

AUTHOR CONTRIBUTIONS

PB conceived of the presented idea. ZL synthesized compounds and recorded NMR spectra. NW recorded and analyzed high resolution mass spectra. PB and ZL collected X-ray diffraction data. All authors discussed the results and contributed to the final manuscript.

FUNDING

This research was financially supported by The Australia Research Council, DP150102741 and ZL acknowledges receipt of a La Trobe University postgraduate award.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem. 2019.00270/full#supplementary-material

Supporting Information | Synthetic details for compounds 1-3, Crystallographic data for compounds $5 \cdot Br_2$, $9 \cdot Br_4$, $10 \cdot Br_3 PF_6$, $11 \cdot Br_4$, $15 \cdot Br_2 (PF_6)_4$, and $20 \cdot (PF_6)_2$ and further X-ray crystallographic details and anion binding Job plots for compounds $9 \cdot (PF_6)_4$ and $10 \cdot (PF_6)_4$ and 1H and 13C NMR spectra for tetra-imidazolium salts and metal complexes.

- Baker, M. V., Skelton, B. W., White, A. H., and Williams, C. C. (2001). Palladium carbene complexes derived from imidazolium-linked ortho-cyclophanes. J. Chem. Soc. Dalton Trans. 111–120. doi: 10.1039/b0072931
- Barnard, P. J., Baker, M. V., Berners-Price, S. J., and Day, D. A. (2004). Mitochondrial permeability transition induced by dinuclear gold(I)-carbene complexes: potential new antimitochondrial antitumour agents. *J. Inorg. Biochem.* 98, 1642–1647. doi: 10.1016/j.jinorgbio.2004.05.011
- Barnard, P. J., Wedlock, L. E., Baker, M. V., Berners-Price, S. J., Joyce, D. A., Skelton, B. W., et al. (2006). Luminescence studies of the intracellular distribution of a dinuclear Gold(I) N-heterocyclic carbene complex. Angew. Chem. Int. Ed. 45, 5966–5970. doi: 10.1002/anie.200601526
- Bass, H. M., Cramer, S. A., Price, J. L., and Jenkins, D. M. (2010). 18-atom-ringed macrocyclic tetra-imidazoliums for preparation of monomeric tetra-carbene complexes. Organometallics 29, 3235–3238. doi: 10.1021/om100625g
- Beer, P. D., and Gale, P. A. (2001). Anion recognition and sensing: the state of the art and future perspectives. *Angew. Chem. int. Ed.* 40, 486–516. doi: 10.1002/ 1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
- Chellappan, K., Singh, N. J., Hwang, I. C., Lee, J. W., and Kim, K. S. (2005). A Calix[4]imidazolium[2]pyridine as an anion receptor. *Angew. Chem. Int. Ed.* 44, 2899–2903. doi: 10.1002/anie.200500119
- Chianese, A. R., Zeglis, B. M., and Crabtree, R. H. (2004). Unexpected oxidative C–C cleavage in the metallation of 2-substituted imidazolium salts to give N-heterocyclic carbene complexes. *Chem. Commun.* 2176–2177. doi: 10.1039/B409672J
- Fei, F., Lu, T., Chen, X., and Xue, Z. (2017). Synthesis and structural characterization of metal complexes with macrocyclic tetracarbene ligands. N. J. Chem. 41, 13442–13453. doi: 10.1039/C7NJ02485A
- Frassineti, C., Alderighi, L., Gans, P., Sabatini, A., Vacca, A., and Ghelli, S. (2003). Determination of protonation constants of some fluorinated polyamines by means of 13C NMR data processed by the new computer program HypNMR2000. Protonation sequence in polyamines. *Anal. Boianal. Chem.* 376, 1041–1052. doi: 10.1007/s00216-003-2020-0
- Frassineti, C., Ghelli, S., Gans, P., Sabatini, A., Moruzzi, M. S., and Vacca, A. (1995). Nuclear magnetic resonance as a tool for determining protonation constants of natural polyprotic bases in solution. *Anal. Biochem.* 231, 374–382. doi: 10.1006/abio.1995.9984

- Gale, P. A. (2003). Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. *Coord. Chem. Rev.* 240, 191–221. doi: 10.1016/S0010-8545(02)00258-8
- Hahn, F. E., Langenhahn, V., Lügger, T., Pape, T., and Le Van, D. (2005). Template synthesis of a coordinated tetracarbene ligand with crown ether topology. *Angew. Chem. Int. Ed.* 44, 3759–3763. doi: 10.1002/anie.200462690
- Hahn, F. E., Radloff, C., Pape, T., and Hepp, A. (2008). Synthesis of silver(I) and gold(I) complexes with cyclic tetra- and hexacarbene ligands. *Chem. Eur. J.* 14, 10900–10904. doi: 10.1002/chem.200801877
- Hindi, K. M., Panzner, M. J., Tessier, C. A., Cannon, C. L., and Youngs, W. J. (2009). The medicinal applications of imidazolium carbene-metal complexes. *Chem. Rev.* 109, 3859–3884. doi: 10.1021/cr800500u
- Johnson, N. A., Southerland, M. R., and Youngs, W. J. (2017). Recent developments in the medicinal applications of silver-NHC complexes and imidazolium salts. *Molecules* 22:1263. doi: 10.3390/molecules22081263
- Lu, T., Yang, C., Steren, C. A., Fei, F., Chen, X., and Xue, Z. (2018). Synthesis and characterization of Ag(I) and Au(I) complexes with macrocyclic hybrid amine N-heterocyclic carbene ligands. *N. J. Chem.* 42, 4700–4713. doi: 10.1039/C7NJ04020B
- Lu, T., Yang, C. F., Zhang, L. Y., Fei, F., Chen, X. T., and Xue, Z. L. (2017). Metal complexes with a hexadentate macrocyclic diamine-tetracarbene ligand. *Inorg. Chem.* 56, 11917–11928. doi: 10.1021/acs.inorgchem.7b01896
- Mageed, A. H., Skelton, B. W., and Baker, M. V. (2017). Stable AuIII complexes with four N-heterocyclic carbene groups can be prepared in high yield directly from KAuCl₄. *Dalton Trans.* 46, 7844–7856. doi: 10.1039/C7DT01272A
- Mageed, A. H., Skelton, B. W., Sobolev, A. N., and Baker, M. V. (2018). Formation of dinuclear AuII and AuI/AuIII mixed-valence complexes is directed by structural constraints imposed by cyclophane-NHC ligands. *Eur. J. Inorg. Chem.* 2018, 109–120. doi: 10.1002/ejic.201701272
- Martínez-Máñez, R., and Sancenón, F. (2003). Fluorogenic and chromogenic chemosensors and reagents for anions. *Chem. Rev.* 103, 4419–4476. doi: 10.1021/cr010421e
- Mckie, R., Murphy, J. A., Park, S. R., Spicer, M. D., and Zhou, S. Z. (2007). Homoleptic crown N-heterocyclic carbene complexes. *Angew. Chem. Int. Ed.* 46, 6525–6528. doi: 10.1002/anie.200702138
- Melaiye, A., Sun, Z., Hindi, K., Milsted, A., Ely, D., Reneker, D. H., et al. (2005). Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc. 127, 2285–2291. doi: 10.1021/ja040226s
- Mesquida, N., Dinarès, I., Ibáñez, A., and Alcalde, E. (2013). [14]Heterophane prototypes containing azolium and/or azole anion-binding motifs. *Org. Biomol. Chem.* 11, 6385–6396. doi: 10.1039/c3ob41214h
- Meyer, S., Klawitter, I., Demeshko, S., Bill, E., and Meyer, F. (2013). A tetracarbene–oxoiron(IV) complex. *Angew. Chem. Int. Ed.* 52, 901–905. doi: 10.1002/anie.201208044
- Neelakandan, P. P., and Ramaiah, D. (2008). DNA-assisted long-lived excimer formation in a cyclophane. Angew. Chem. Int. Ed. 47, 8407–8411. doi: 10.1002/anie.200803162
- Nomiya, K., Morozumi, S., Yanagawa, Y., Hasegawa, M., Kurose, K., Taguchi, K., et al. (2018). Syntheses, structures, and antimicrobial activities of gold(I)- and

copper(I)–N-heterocyclic carbene (NHC) complexes derived from basketshaped dinuclear Ag(I)–NHC complex. *Inorg. Chem.* 57, 11322–11332. doi: 10.1021/acs.inorgchem.8b00011

- Pöthig, A., Ahmed, S., Winther-Larsen, H. C., Guan, S., Altmann, P. J., Kudermann, J., et al. (2018). Antimicrobial activity and cytotoxicity of Ag(I) and Au(I) pillarplexes. *Front. Chem.* 6:584. doi: 10.3389/fchem.2018.00584
- Schulte to Brinke, C., and Hahn, F. (2015). Synthesis of a flexible macrocyclic tetraimidazolium salt-precursor for a tetracarbene ligand with metal dependent coordination modes. *Dalton Trans.* 44, 14315–14322. doi: 10.1039/C5DT02115D
- Schulte to Brinke, C., Pape, T., and Hahn, F. E. (2013). Synthesis of polynuclear Ag(I) and Au(I) complexes from macrocyclic tetraimidazolium salts. *Dalton Trans.* 42, 7330–7337. doi: 10.1039/c2dt32905k
- Serpell, C. J., Cookson, J., Thompson, A. L., and Beer, P. D. (2011). A dualfunctional tetrakis-imidazolium macrocycle for supramolecular assembly. *Chem. Sci.* 2, 494–500. doi: 10.1039/C0SC00511H
- Shah, P. N., Lin, L. Y., Smolen, J. A., Tagaev, J. A., Gunsten, S. P., Han, D. S., et al. (2013). Synthesis, characterization, and *in vivo* efficacy of shell crosslinked nanoparticle formulations carrying silver antimicrobials as aerosolized therapeutics. ACS Nano. 7, 4977–4987. doi: 10.1021/nn400322f
- Shirinfar, B., Ahmed, N., Park, Y. S., Cho, G. S., Youn, I. S., Han, J. K., et al. (2013). Selective fluorescent detection of RNA in living cells by using imidazoliumbased cyclophane. J. Am. Chem. Soc. 135, 90–93. doi: 10.1021/ja3112274
- Toure, M., Charles, L., Chendo, C., Viel, S., Chuzel, O., and Parrain, J.-L. (2016). Straightforward and controlled shape access to efficient macrocyclic imidazolylboronium anion receptors. *Chem. Eur. J.* 22, 8937–8942. doi: 10.1002/chem.201601174
- Wong, W. W., Vickers, M. S., Cowley, A. R., Paul, R. L., and Beer, P. D. (2005). Tetrakis(imidazolium) macrocyclic receptors for anion binding. Org. Biomol. Chem. 3, 4201–4208. doi: 10.1039/b510068b
- Xu, Z., Kim, S. K., and Yoon, J. (2010). Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006–2009. *Chem. Soc. Rev.* 39, 1457–1466. doi: 10.1039/b918937h
- Yoon, J., Kim, S. K., Singh, N. J., and Kim, K. S. (2006). Imidazolium receptors for the recognition of anions. *Chem. Soc. Rev.* 35, 355–360. doi: 10.1039/ b513733k
- Yuan, Y., Gao, G., Jiang, Z., You, J., Zhou, Z., Yuan, D., et al. (2002). Synthesis and selective anion recognition of imidazolium cyclophanes. *Tetrahedron* 58, 8993–8999. doi: 10.1016/S0040-4020(02)01153-5

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Li, Wiratpruk and Barnard. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.