
RESEARCH ARTICLE

Poisson balanced spiking networks

Camille E. Rullán BuxóID
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Abstract

An important problem in computational neuroscience is to understand how networks of spik-

ing neurons can carry out various computations underlying behavior. Balanced spiking net-

works (BSNs) provide a powerful framework for implementing arbitrary linear dynamical

systems in networks of integrate-and-fire neurons. However, the classic BSN model

requires near-instantaneous transmission of spikes between neurons, which is biologically

implausible. Introducing realistic synaptic delays leads to an pathological regime known as

“ping-ponging”, in which different populations spike maximally in alternating time bins, caus-

ing network output to overshoot the target solution. Here we document this phenomenon

and provide a novel solution: we show that a network can have realistic synaptic delays

while maintaining accuracy and stability if neurons are endowed with conditionally Poisson

firing. Formally, we propose two alternate formulations of Poisson balanced spiking net-

works: (1) a “local” framework, which replaces the hard integrate-and-fire spiking rule within

each neuron by a “soft” threshold function, such that firing probability grows as a smooth

nonlinear function of membrane potential; and (2) a “population” framework, which reformu-

lates the BSN objective function in terms of expected spike counts over the entire popula-

tion. We show that both approaches offer improved robustness, allowing for accurate

implementation of network dynamics with realistic synaptic delays between neurons. Both

Poisson frameworks preserve the coding accuracy and robustness to neuron loss of the

original model and, moreover, produce positive correlations between similarly tuned neu-

rons, a feature of real neural populations that is not found in the deterministic BSN. This

work unifies balanced spiking networks with Poisson generalized linear models and sug-

gests several promising avenues for future research.

Author summary

A central idea in neuroscience is that populations of neurons work together to efficiently

perform computations, although just how they do that remains unclear. Boerlin et al
(2013) proposed a powerful framework for embedding linear dynamical systems into pop-

ulations of spiking neurons, which they called balanced spiking networks (BSNs). Their

approach starts from the principle that neurons greedily fire spikes to reduce error in the

network output. Here we focus on a key limitation of this framework, which is that the

network may become unbalanced in the presence of physiologically plausible
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open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All code used to

generate the figures in this paper can be found on

https://github.com/pillowlab/PoissonBalancedNets.

Funding: CERB was supported by the NSF GRFP

(DGE1839302). JWP was supported by grants

from the McKnight Foundation, NSF CAREER

Award (IIS-1150186), the Simons Collaboration on

the Global Brain (SCGB AWD543027), the NIH

BRAIN initiative (R01EB026946), and a U19 NIH-

NINDS BRAIN Initiative Award (5U19NS104648).

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

https://orcid.org/0000-0003-4026-1224
https://orcid.org/0000-0002-3638-8831
https://doi.org/10.1371/journal.pcbi.1008261
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008261&domain=pdf&date_stamp=2020-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008261&domain=pdf&date_stamp=2020-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008261&domain=pdf&date_stamp=2020-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008261&domain=pdf&date_stamp=2020-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008261&domain=pdf&date_stamp=2020-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008261&domain=pdf&date_stamp=2020-12-04
https://doi.org/10.1371/journal.pcbi.1008261
https://doi.org/10.1371/journal.pcbi.1008261
http://creativecommons.org/licenses/by/4.0/
https://github.com/pillowlab/PoissonBalancedNets


communication delays. To overcome this shortcoming, propose two different extensions

of the BSN framework that rely on probabilistic spiking. In our first model, we replace

deterministic spiking of the original BSN with a Poisson spiking rule. In the second, we

re-formulate the BSN objective so that Poisson spiking emerges as a way to reduce the

expected network error. Our work brings the BSN framework closer to biological realism

by increasing the stability and, most importantly, allowing communication delays

between neurons without sacrificing accuracy. Furthermore, both probabilistic

approaches reproduce key experimentally observed spiking behaviors of neural

populations.

Introduction

The brain carries out a wide variety of computations that can be implemented by dynamical

systems, from sensory integration [1–4], to working memory [5–7], to movement planning

and execution [8–10]. Although the existence of such computations in the brain is well estab-

lished, the mechanisms by which these computations are implemented in networks of neurons

remains poorly understood. One approach to this problem involves statistical modeling, which

uses descriptive statistical methods to infer the dynamics of neural activity from recorded

spike trains [10–21]. A second approach involves theoretical modeling, which seeks to identify

strategies for implementing dynamical systems with networks of idealized model neurons [2,

22–30]. An important example of this second approach is the balanced spiking network (BSN)

framework introduced by Boerlin et al [31].

The BSN model consists of a network of coupled leaky integrate-and-fire (LIF) neurons

that can emulate an arbitrary linear dynamical system (LDS). The motivating idea is to design

a network that approximates the output of a target LDS with a weighted combination of fil-

tered spike trains. The population is divided into “excitatory” and “inhibitory” populations of

neurons, based on whether they contribute positively or negatively to the output. This leads to

an intuitive spiking rule: a neuron should spike whenever doing so will reduce the error

between the output of the target LDS and the network output, i.e., the weighted combination

of filtered spikes emitted so far. To make this work, each neuron has to maintain an internal

representation of the error between the desired LDS output and the current network output.

Boerlin et al showed that, remarkably, this computation can be mapped precisely onto the

dynamics of an LIF neuron. A neuron’s membrane potential is a local representation of the

network-wide error between target output and current network output, and its spike threshold

is proportional to the amount by which adding a spike will reduce this error.

The BSN framework has many appealing characteristics. Spiking is efficient, in the sense

that every spike contributes meaningfully to reducing error between target and actual output.

The computations performed by the model are robust to perturbations and to the loss of neu-

rons. The model also generates irregular spiking activity with intervals that that resemble those

observed in real neurons.

However, the original BSN model has an important shortcoming that limits its plausibility

as a model for information processing in real neural circuits. Namely, the model requires unre-

alistically fast propagation of information between neurons. Because every neuron’s mem-

brane potential is tracking the overall error between target and actual output, the membrane

potential of all neurons has to reset whenever any neuron emits a spike. Failure to impose this

reset leads to increased activity as multiple neurons attempt to correct same error. In fact,

implementations of the BSN model typically impose a rule enforcing that only one neuron is
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allowed to spike and required to immediately reset in a single time bin, effectively allowing

spikes to propagate faster than the temporal resolution of the simulation (e.g., 0.1ms). Without

this rule, the network can easily enter unstable modes in which excitatory and inhibitory popu-

lations emit massive spike bursts in alternating time bins, overshooting the target in an attempt

to correct the error from the previous time bin.

Here we show that a probabilistic spiking rule can overcome the need for unrealistically fast

propagation of spikes in the BSN framework. The basic intuition for our solution is that

instead of making neurons spike deterministically whenever doing so will reduce error, we can

allow multiple neurons to spike probabilistically such that error will be reduced on average.

We propose two alternate formulations of BSN with Poisson spiking, distinguished from

each other by the level at which the network is attempting to minimize the decoding error.

First, we describe a ‘local’ framework, which preserves the original BSN model dynamics but

replaces the hard integrate-and-fire spiking rule with the soft firing threshold of the Poisson

generalized linear model (GLM) [32–35]. This spiking rule generates stochastic spiking condi-

tioned only on each neuron’s local copy of the error which, on average, leads to a reduction in

the population-level read-out error.

Second, we propose a ‘population’ framework that replaces the greedy, single-neuron per-

spective of the local and BSN models with a rule based on minimizing the expected error at the

population level. A vector of spike rates is generated by calculating the expected spike counts

that minimizes the total decoding error. The probability of a single neuron spiking depends on

its own weight, as with the local rule, but also takes into account the activity of the entire popu-

lation of neurons and their weights. This coordination leads to spiking activity that is efficient

and invariant to network size. Then, we show that both the local- and population-level Poisson

frameworks make the BSN robust to synaptic delays. Finally, we compare all three frameworks

and show that our local and population frameworks preserve the coding accuracy and robust-

ness to neuron loss of the original BSN, while displaying more biologically plausible correla-

tions between similarly tuned neurons.

This paper is organized as follows. We begin with a pedagogical review to the BSN model

(Sec. 2). We then examine the model’s dependence on instantaneous spike propagation, and

document the unstable behavior that arises if multiple spikes are allowed in a single time bin

(Sec. 3). To address this shortcoming, we introduce local and population BSN models with

conditionally Poisson spiking (Sec. 4). We go on to illustrate the accuracy and robustness of

these models to synaptic transmission delays (Sec. 5). Finally, we compare the network perfor-

mance of these models to that of the original BSN (Sec. 6).

Results

Background: Balanced spiking network model

Here we provide a brief introduction to the original balanced spiking network (BSN) frame-

work introduced by Boerlin, Machens, & Denève [31]. The goal is to design a spiking network

that can accurately implement an arbitrary linear dynamical system. Consider a linear dynam-

ical system defined by:

_xðtÞ ¼ AxðtÞ þ cðtÞ; ðtarget dynamicsÞ ð1Þ

where x(t) = (x1(t). . .xJ(t))> is a vector of J dynamic variables that we will refer to as the target,
A is the J × J linear dynamics matrix, and ct = (ci(t), . . .cJ(t))> is a J-dimensional vector of

inputs. The BSN model consists of a spiking network of N neurons that attempts to
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approximate the target output x(t) via a weighted combination of filtered spike trains:

x̂ðtÞ ¼WrðtÞ ðnetwork readoutÞ ð2Þ

where r(t) is the set of spike trains convolved with an exponential decay function, and W are

J × N readout weights. (See Fig 1 for a schematic.) In general, for a 1-D dynamical system, the

population is divided into equal pools of ‘positive’ and ‘negative’ neurons (depending on the

signs of their individual weight components) although this is not a strict requirement. For

J> 1, the ‘positive’ vs ‘negative’ distinction does not necessarily apply as the signs of the

weights need not be consistent across dimensions.

The i’th component of the vector r(t) is given by

riðtÞ ¼ siðtÞ � hðtÞ ¼
Z t

0

e� t0=t siðt
0Þdt0; ðfiltered spike trainsÞ ð3Þ

where siðtÞ ¼
P

tisp
dðt � tispÞ denotes the i’th neuron’s spike train, defined by a series of delta

functions at spike times ftispg, and τ is the time constant of the exponential filter h(t).
From this starting assumption, Boerlin et al introduce a greedy update rule that causes a

neuron to spike whenever doing so will reduce the squared error between target x(t) and net-

work output x̂ðtÞ,

EðtÞ ¼ jjxðtÞ � x̂ðtÞjj2
2
; ðerror functionÞ ð4Þ

which is mathematically equivalent to the threshold-crossing spiking rule in a leaky integrate-

and-fire (LIF) neuron.

Here we recapitulate the derivation of this spiking rule in discrete time, for clarity and ease

of implementation. Let x̂ t ¼Wrt denote the network output at time bin t. The effect of adding

a spike from neuron i in this time bin would be to augment the output vector by that neuron’s

decoding weight vector wi, which is given by i’th row of the decoding weight matrix W. Thus,

network output is x̂ t if neuron i is silent and x̂ t þ wi if it spikes. This suggests that the neuron

Fig 1. A diagram illustrating the BSN. Neurons receive stimulus input projected onto the transpose of a set of linear weights, W>, and the output is

reconstructed by filtering spikes through the same weights, W. Neurons are connected via two coupling weights: fast synapses, W>W, which instantaneously

propagate individual spikes through the network, and slow synapses, W> Aþ 1

t

� �
W, which implement network dynamics by feeding the filtered spike trains

back into all neurons in the network. The network is divided into two equal populations of positive (red) and negative (blue) output weights, whose spikes have

opposite effects on network output. Self-connections for these neurons are shaded in their respective colors, for visualization, but are always negative.

https://doi.org/10.1371/journal.pcbi.1008261.g001
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should spike if doing so will result in smaller error, or

jjxt � ðx̂ t þ wiÞjj
2

2
< jjxt � x̂ tjj

2

2
: ð5Þ

Simplifying this expression yields the condition that the neuron should spike if projection

of the error vector onto wi is greater than half the squared L2 norm of wi:

wi
>ðxt � x̂ tÞ >

1

2
jjwijj

2

2
: ðspike condition for neuron iÞ ð6Þ

Boerlin et al therefore suggest regarding the time-dependent left hand side of (Eq 6) as the

membrane potential for neuron i, and the right hand side as its spike threshold Ti:

v½i�t ¼ wi
>ðxt � x̂ tÞ ðmembrane potentialÞ ð7Þ

Ti ¼
1

2
jjwijj

2

2
ðthresholdÞ: ð8Þ

Under this view, each neuron is computing a local approximation to the difference between

the true target xt and the network’s current output x̂ t ¼Wrt, projected onto that neuron’s

weight vector wi.

The only missing piece from this expression is that the neurons do not of course have access

to the true value of xt. But they do have implicit access to A, and thus to the dynamics govern-

ing xt. Boerlin et al therefore propose that the the network output x̂ t is sufficiently close to the

target output xt that it can be used to accurately approximate the desired dynamics: Axt � Ax̂ t .

To make this explicit, we introduce a proxy variable zt, which denotes the network’s own

(internal) approximation to the true target xt. This proxy variable evolves according to

zt ¼ zt� 1 þ DðAx̂ t� 1 þ ctÞ

¼ zt� 1 þ DðAWrt� 1 þ ctÞ; ðproxy variableÞ
ð9Þ

where for simplicity we use a forward Euler method for integrating the dynamics equation (Eq

1) with time bin size Δ. Higher accuracy can be achieved using exponential Euler integration

(see Methods). Of course zt is never represented explicitly; the network tracks zt via its projec-

tion onto the decoding weights W, as we will see shortly.

Simulating the BSN model. Simulating the BSN model for a single time bin can be

described by a sequence of three steps:

1. Calculate the “pre-spike” membrane potential for each neuron by combining inputs from

the previous time step and external input.

2. Apply the threshold to determine which neurons (if any) emit spikes.

3. Reset to obtain “post-spike” membrane potentials vt and update filtered spike trains rt.

We will describe each of these steps in turn. First, the update rule for the pre-spike mem-

brane potential (consistent with Eq 7) is:

vðpreÞ½i�t ¼ wi
>ðzt � x̂ðpreÞt Þ

¼ wi
> zt� 1 þ DðAWrt� 1 þ ctÞ � 1 � D

1

t

� �

Wrt� 1

� �

¼ v½i�t� 1 þ Dwi
> Aþ

1

t
I

� �

Wrt� 1 þ ct

� �

ðpre‐spike membrane potentialÞ

ð10Þ

where vðpreÞ½i�t denotes the pre-spike membrane potential for neuron i at time bin t,
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x̂ðpreÞt ¼ 1 � D 1

t

� �
Wrt� 1 denotes the network output for the current time bin before spiking,

and v[i]t−1 = wi
>(zt−1 −W rt−1) denotes the (post-spike) membrane potential from the previ-

ous time step.

Second, spikes for the current time bin are computed by determining whether pre-spike

membrane potential exceeds threshold (vðpreÞ½i�t > Ti). When this occurs, the neuron records a

spike: s[i]t = 1.

Lastly, the filtered spike trains r[i]t are augmented and membrane potential is reset:

r½i�t ¼ 1 � D 1

t

� �
r½i�t� 1 þ s½i�t ðfiltered spike train updateÞ ð11Þ

v½i�t ¼ wi
>ðzt � x̂ tÞ ¼ vðpreÞ½i�t � wi

>Wst; ðpost‐spike membrane potentialÞ ð12Þ

which ensures that post-spike membrane potential equals the difference between the projected

proxy variable and network output.

Vector update rules. For convenience, we can rewrite the BSN update equations in vector

form. The pre-spike membrane potential is given by:

vðpreÞt ¼W>ðzt � x̂ðpreÞt Þ

¼ vt� 1 þ DW> Aþ 1

t
I

� �
Wrt� 1 þ DW>ct

¼ vt� 1 þ DðOrt� 1 þW>ctÞ ðvector pre‐spike membrane potentialÞ

ð13Þ

where O ¼W> Aþ 1

t

� �
W are the coupling weights from rt−1 to the pre-spike membrane

potential, which implement computation of the divergence between the target zt and passive

decay of rt in the absence of spiking.

Once the spike vector st has been computed, the filtered spike trains and network output

for the current time bin are given by:

rt ¼ 1 � D 1

t

� �
rt� 1 þ st ðvector of filtered spike trainsÞ ð14Þ

x̂ t ¼Wrt; ðvector network outputÞ ð15Þ

and the vector of post-spike membrane potentials is given by

vt ¼W>ðzt � x̂ tÞ

¼ vðpreÞt � W>Wst
¼ vt� 1 þ DðOrt� 1 þW>ctÞ � W>Wst; ðvector post‐spike membrane potentialÞ

ð16Þ

which reflects reset of the pre-spike membrane potential after spiking, but can equivalently be

seen to be the projected difference between the proxy variable zt and the current network out-

put x̂ t in the current time bin.

It is worth noting that this model requires the instantaneous propagation of spikes between

neurons. After a spike, the membrane potential reset (Eq 16) updates vt for all neurons based

on the spikes in the current time bin via the fast weights, −W>W. Although Boerlin et al refer

to the weights −W>W as “fast synapses” and the O as “slow synapses”, note that the O rt−1

term also involves near-instantaneous propagation of information, since the exponentially-fil-

tered spike trains r jump by 1 after every spike.

The full BSN model first described in [31] contained additional penalties on rt in the objec-

tive function, which had the effect of reducing spiking by trading off minimization of error

(Eq 4) against a cost of inserting spikes. Although we have left these terms out our derivation
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here for simplicity, including them has the limited effect of changing the spike threshold and

post-spike reset and does not change the nature of our findings. The simulations of the original

BSN shown in the following sections use the full version as described in the Methods section.

Simulation parameters for each figure are also included in the Methods section.

Limitations of the BSN model

A key limitation of the BSN model is that it requires unrealistically fast communication

between neurons. In the standard integrate-and-fire model, a spike resets only the membrane

potential of the neuron that emitted it. In the BSN model, by contrast, the membrane poten-

tials of all neurons reset following a spike from any neuron via the −W>W st term in (Eq 16).

The instantaneous reset following a spike is necessary to ensure that each neuron’s membrane

potential maintains an accurate representation of the read-out after each spike. From a norma-

tive standpoint, the hard LIF threshold entails that maintaining an accurate local copy of the

error is critical for the network to encode the target.

In fact, the problem is slightly worse than this: standard implementations of the BSN model

include a constraint that only one neuron is allowed to spike in a single time bin as a way of

imposing instantaneous (i.e., sub-time bin) communication. Without this constraint, neurons

with similar output weights tend to spike in the same time bin, when a spike from any one of

them would have sufficed to compensate for error in network output. This causes the network

output to dramatically overshoot the target. In the subsequent time bin, neurons with oppo-

site-sign weights fire to compensate for this error, and overshoot the target by a large amount

in the opposite direction. This sets up a pathological pattern of oscillatory firing known as

“ping-ponging”, in which two populations spike maximally in alternating time bins of the dis-

crete simulation [31, 36].

Fig 2 illustrates how ping-pong behavior can arise if multiple spikes are allowed in a single

time bin. We set the BSN model to implement a 1-dimensional exact integrator, _xðtÞ ¼ cðtÞ,
using the same parameters as the example from figure 1C of [31]. In brief, the network con-

tained 400 neurons, divided into two equal sized populations with output weights of +0.1

and -0.1, respectively, which we refer to as positive-output and negative-output neurons

(see Methods for complete details). When the rule forbidding multiple spikes per time bin is

imposed, the network accurately tracks the target output variable (Fig 2A). However, removing

this constraint—allowing all neurons with membrane potential above threshold to fire—results

in ping-pong behavior and large errors in tracking the target (Fig 2B).

Note that ping-ponging could be eliminated by computing threshold-crossing times with

extremely high temporal precision, either using very small time bins or spike-time interpola-

tion methods [37, 38]. Such precision may allow us to identify the first neuron to spike and to

near-instantaneously reset the membrane potential of other neurons, preventing overshoot of

the target. However, this near-instantaneous reset of the membrane potential in other neurons

is at odds with the timescale of synaptic communication, and represents a shortcoming of the

original BSN framework that our work seeks to overcome. (See Discussion for an overview of

other approaches to the problem of instantaneous synapses, e.g. [36]). In the following sec-

tions, we imposed the constraint that only one neuron could spike per time bin for all simula-

tions of the original BSN model, consistent with [31].

BSN with conditionally Poisson neurons

To overcome the problems of instantaneous transmission and network instability, we propose

two novel formulations of balanced spiking networks with conditionally Poisson neurons: (1)

a local framework, where each neuron spikes independently based on its local estimate of
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network error; and (2) a population-level framework, which sets firing rates to reduce expected

error for the entire population.

The key idea in both frameworks is to replace the deterministic integrate-and-fire spiking

rule with probabilistic spiking. Under this modified spiking rule, spiking is governed by an

instantaneous probability of spiking λt, also known as the conditional intensity, such that spik-

ing is independent with probability Δλt in any small time window of width Δ. This results in

an auto-regressive Poisson generalized linear model (GLM), also known as a Cox process [33–

35]. This model has a quasi-realistic biophysical interpretation [32, 39, 40], and recent work

has shown that it can capture a wide range of dynamical behaviors found in real neurons [35].

Local framework. A simple way to introduce probabilistic spiking to the BSN framework

is to replace the hard spike threshold of the integrate-and-fire model with a soft threshold, so

that spike probability grows as a nonlinear function of membrane potential, an approach also

known as the “escape-rate approximation” [32]. Specifically, we define each neuron’s condi-

tional intensity function to be a sigmoidal function of membrane potential:

lt ¼ f ðvtÞ ¼
Fmax � Fmin

1þ e� aðvt � TÞ
þ Fmin; ðnonlinearityÞ ð17Þ

where vt is the membrane potential at time t, T is the spike threshold, α is a slope parameter

governing the sharpness of the threshold, Fmax is the maximal firing rate and Fmin is a baseline

firing rate, meant to simulate random firing activity in the absence of a stimulus. The probabil-

ity of spiking in a small time interval is proportional to λt, which models the spike response as

Fig 2. Balanced spiking network implementing an exact integrator. The network consists of 400 neurons, divided into two populations with output

weights of + 0.1 (red) and −0.1 (blue). (A) Simulation results under the condition that only one neuron is allowed to fire per discrete time bin. (B)

Simulation results when all neurons whose membrane potential is above threshold in a single time bin are allowed to fire, leading to “ping-pong”

behavior. Insets show that the read-out (yellow) is alternating between large over- and under-estimates of the target (in black). Insets show, in order

from top to bottom: the voltage traces of neurons in both positively and negatively weighted populations for a small time window, the resulting spikes in

each time bin, and the resulting read-out (yellow) and target (black). Since the weights and inputs are identical across populations, so are the voltage

traces. Ping-ponging results, as all neurons within a population cross the threshold in the same time bin, spike, and cause the read-out to oscillate

between over- and under-estimates of the target.

https://doi.org/10.1371/journal.pcbi.1008261.g002
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an inhomogenous Poisson process. We refer to this as the local Poisson framework because,

like the BSN, spikes are generated by internal dynamics that evolve according to local copies of

the representation error. See Fig 3 for a schematic.

Although it is common to use exponential nonlinearities for Poisson GLMs, here we have

used a scaled sigmoid function to control both the suddenness of firing onset and the maxi-

mum achievable firing rate. The parameter α controls the precision of firing onset, while Fmax
and Fmin control the range of firing rates within a small time window. The resulting function

(Eq 17) resembles an exponential function at low firing rates but saturates at a maximum of

Fmax (see Fig 4). If we let both α, Fmax!1, we recover the (hard-threshold) integrate-and-

fire rule of the original BSN, in which a spike occurs probability 1 when vt> T. However, for

finite α and Fmax, the onset of spiking is more gradual.

As a practical matter, we do not wish to allow a single neuron to fire multiple spikes in a sin-

gle time bin, because the first spike would preclude additional spikes in the same time bin due

to “reset” of the membrane potential. We therefore simulate the model with the spiking rule:

Pðst ¼ 1jltÞ ¼ 1 � exp ð� DltÞ; ðlocal Poisson framework firing ruleÞ ð18Þ

where exp(−Δλt) is the probability of observing no spikes in a time bin of size Δ under the Pois-

son model. For each time-step, we update v as in the original BSN model, pass it through the

nonlinear function f(�) to obtain the vector of Poisson firing rates, λt, and draw spikes as inde-

pendent Bernoulli random variables with probability as given above.

Fig 4 illustrates how α affects spiking precision by comparing spike times of a single neuron

integrating a noisy stimulus implementing the original BSN framework (Fig 4D) to the local

framework with different values of α (Fig 4E). As we expect, for high values of α we recover the

precise spiking behavior of the BSN model. As α decreases, spike times spread around the ideal

BSN spikes. Note that the precise amount of spikes fired in the time window (four) is

Fig 3. Schematic of two neurons in a BSN with conditionally Poisson neurons. The stimulus influences each neuron’s membrane potential vi via a set

of input weights W>. The neurons reset themselves via instantaneous, fast synapses. Fast connections to other neurons propagate the effects of spikes

with a synaptic time delay d. The desired linear dynamics are implemented via slow weights (through spike trains filtered by an exponential) also with a

time delay d. Within each neuron, spiking is probabilistic with an instantaneous probability of firing λi(t) = f(vi(t)), where f(�) is a nonlinear function of

voltage. Self-connections are only shown for neuron i.

https://doi.org/10.1371/journal.pcbi.1008261.g003
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conserved, although the timing is highly variable. On average, though, the local framework has

spike times centered around those of the original BSN.

Robustness to parameters of the nonlinearity. We studied the effects of varying α, Fmax,
and Fmin on the performance of the homogeneous integrator network (Fig 5) and found that

there exists a wide range of values for which the network error is low and the spiking activity is

efficient (Fig 5B and 5C). The rightmost panel on Fig 5A shows raster plots and corresponding

read-outs for ‘optimal’ parameter settings (defined as being in the low error and activity range,

denoted by the red � in Fig 5B and 5C), and in the subsequent panels we modify each of the

parameters in turn to show qualitative changes in spiking activity and read-out accuracy.

Decreasing α and Fmax negatively impacts read-out quality, while removing background spik-

ing returns the network to a high-precision, synchronized regime.

Fig 4. (A) The conditional intensity for the exponential non-linearity (dashed lines) and the sigmoid non-linearity (solid lines). The conditional intensity of the

sigmoidal non-linearity closely follows that of the exponential non-linearity for sub-threshold voltages, but levels off after threshold, keeping firing rates stable. (B)

Family of nonlinearities with varying Fmax. Increasing Fmax raises the firing rate at which the nonlinearity saturates. (C) Family of nonlinearities with varying α.

Increasing α increases the steepness of the nonlinearity, which approaches a hard-threshold function as α!1 (like the BSN). (D) Simulation of the original BSN

implementing an exact integrator, showing membrane potential and spikes of a single example neuron. (E) Spikes and membrane potential of the same neuron in a local

Poisson BSN implementation of the same system. High α simulations (yellow) replicate the behavior of the BSN integrator. Lowering α to 50 (blue) or 10 (red) results in

a spread of spikes centered around the deterministic BSN spikes.

https://doi.org/10.1371/journal.pcbi.1008261.g004

PLOS COMPUTATIONAL BIOLOGY Poisson balanced spiking networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008261 November 20, 2020 10 / 27

https://doi.org/10.1371/journal.pcbi.1008261.g004
https://doi.org/10.1371/journal.pcbi.1008261


As shown in figure (Fig 5B), network performance noticeably deteriorates for very large val-

ues of α and Fmax. This happens because we are forcing the precision to be too high through α
while allowing neurons to spike too frequently through Fmax. Since the spiking rule is localized,

large proportions of the population are active at the same time (Fig 5C), much what happens

when the original BSN starts to ping-pong. However, the values at which this happens (e.g.,

Fmax> 103 spikes/second) are well above what we would expect to see in a biological system.

Likewise, we observe a low R2 value when α and Fmax are very low. In this case, the probability

of spiking is simply too small for spikes to be fired in a given time bin, despite large coding

errors. Although these results are using relatively simple target dynamics, we still observe a

wide ranges of stable Fmax and α settings for more complex or multi-dimensional simulations.

The computational advantage of our probabilistic spiking rule is that it introduces uncer-

tainty into spike timing, therefore preventing all neurons from firing at once. The parameters

controlling this asynchrony, Fmax, Fmin and α, have direct physical interpretations (maximal

and minimal/background firing rate and error tolerance, respectively) which can be mapped

on to characteristics of real neural circuits.

In theory, a BSN network with voltages corrupted by additive Gaussian noise could behave

similarly to the local framework. However, we found that this model still tended to exhibit

ping-ponging unless noise amplitude approached the amplitude of signal-induced fluctuations

in membrane potential, which adversely affected coding accuracy. By contrast, the local frame-

work is stable even when the resets of other neurons is delayed to the next time bin (see Figs 5

and 6) or by several milliseconds (Fig 7). Intuitively, the reason for this is that, in addition to

the slope parameter alpha, which controls the steepness of the soft-threshold-crossing process

(in a way, similar to additive voltage noise in the original BSN), we have a limit on the maximal

firing rate Fmax, which ensures that there will not be too many spikes across the population

Fig 5. (A) Simulations of local Poisson model showing the effects of varying the parameters of the soft-threshold nonlinearity on performance.

Relevant parameters are the slope α, maximal firing rate Fmax, and baseline firing rate Fmin. Network dynamics implemented an exact 1D integrator and

the stimulus was the same as Fig 2. Red and blue dots indicate spikes from neurons with positive and negative output weights, respectively. (B) Network

performance as quantified by R2 across a range of parameter settings with baseline fixed at Fmin = 0 (log-scale). Red asterisk indicates the values for the

rightmost column of A (α = 1000, Fmax = 100). Accuracy remains high across a broad range of parameter values, falling substantially below 1 when slope

and maximum firing rate are both large or very low. (C) Percent of the neural population active as a function of α and Fmax, with Fm in = 0. The

network shows ping-ponging behavior in upper right corner, where the model approaches a deterministic, hard-threshold firing rule.

https://doi.org/10.1371/journal.pcbi.1008261.g005
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even when many neurons are driven simultaneously across their (noisy) threshold. That is, it

would take several time bins for them all to fire given the value of Fmax, which is enough time

for synaptic inhibition to arrive and prevent firing. Moreover, in Fig 5B we show that there is a

broad range of parameters over which the local population is able to achieve stable, accurate

coding. Strictly speaking, by introducing extra degrees of freedom, we are losing the strict nor-

mative angle of the original BSN framework. However, what we gain in the process—a consid-

erably expanded space of stable network configurations—makes it possible to introduce

realistic communication delays between neurons.

Population framework

We now describe a second framework for implementing BSNs with conditionally Poisson neu-

rons. In this approach, we take a population-level instead of a neuron-level view of the optimi-

zation problem to be solved. Instead of assigning each neuron to carry an independent

representation of the error between the target and actual network output, we assign each neu-

ron an analog probability of firing such that expected number of spikes across the network

compensates appropriately for the total error. We refer to this as the population framework.

The derivation of this framework starts from the same foundation of the original BSN,

namely, an error function describing the discrepancy between target and actual network out-

put. However, instead of specifying that each neuron should spike whenever doing so will

reduce error (Eq 5), we compute a vector of spike rates λ, such that the expected spike response

Fig 6. Simulations of the local and population frameworks implementing a 1D and 2D dynamical system. (A) The target was a 1-dimensional integrator: _xðtÞ ¼ cðtÞ.
Left side shows spikes and outputs from local Poisson model, while right side shows spikes and outputs for population Poisson model. As in previous figures, red dots

indicate spikes from neurons with positive output weights, blue dots indicate spikes from neurons with negative weights. (B) The target was a 2-dimensional oscillator

_x1ðtÞ ¼ � x1ðtÞ � 10x2ðtÞ þ cðtÞ; x2ðtÞ ¼ 10x1ðtÞ � x2ðtÞ þ cðtÞ. For the population model, the time window for computing expected spike count was κ = 5ms (50 time

bins). Weights were randomized to be positive or negative in either dimension, such that neurons are no longer divided into strictly positive- or negative-weight groups.

(C) Accuracy (measured by root-mean-squared error) of the two models for 1D and 2D systems. (D) Number of spikes emitted by each model during simulations (log

scale).

https://doi.org/10.1371/journal.pcbi.1008261.g006
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across the population over some time window of length κ will minimize error. This leads to

the following network objective function:

Et ¼ jjxt � ðx̂ t þ kWλÞjj2
2
; ð‘population’ error functionÞ ð19Þ

where xt is the target output at time t, x̂ t is the actual network output at time t, W are the

decoding weights, and λ is the vector of firing rates (conditional intensities) of a network of

Poisson spiking neurons. In this expression, κW λ is expected contribution to network output

over a time window of size κ. For implementation in discrete time, κ should be an integer mul-

tiple of the bin size Δ.

To minimize the above error, we set the instantaneous spike rate vector equal to the least-

squares solution:

λt ¼
1

k
~Wðxt � x̂ tÞ ð20Þ

where ~W ¼W>ðWW>Þ
� 1

is the Moore-Penrose pseudo-inverse of the decoding weight

matrix W. Poisson neurons firing independently with conditional intensity λt will therefore

minimize the expected error between target and actual network output. Note that if W has

orthogonal unit-vector rows, such that WW> = I, then ~W ¼W> and we obtain the same

encoding weights as the original BSN framework. For the implementation of the population

framework, we make the same substitution of the proxy variable z for x.

In the local framework, increasing the population size means more neurons are competing

to reduce the read-out error in a single time window. This increased activity can lead to ping-

ponging. The population level view of the problem scales the probability of spiking, λ[i],

Fig 7. Illustration of local and population conditionally Poisson BSN frameworks with synaptic delays. (A) Spike trains simulated from the local Poisson

framework implementing a 1D exact integrator, both without (top) and with a 1-ms synaptic delay (middle). The network output accurately tracked the target variable

for both models (bottom). As before, red/blue spike trains indicate neurons with positive/output weights. (B) Analogous plots for population Poisson framework. (C)

Stimulus used for simulations shown in A and B. (D) Coefficient of determination (R2) computed using 50 simulations of each framework. Black trace indicates the

maximum possible R2 value that could be obtained given the exponential Euler integration rule (see Methods).

https://doi.org/10.1371/journal.pcbi.1008261.g007
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by WW>, which increases with population size. This re-scaling effectively spreads the ‘respon-

sibility’ of correcting an error across the entire population by incorporating information about

the total network size in an individual neuron’s activity.

However, the solution in (Eq 19) is not valid generally because the right-hand-side can take

on negative values, whereas the conditional intensity for a Poisson process must be positive.

To overcome this, we create two mirrored copies of the population. Positive firing rates are

assigned to one copy with weight vector W, and negative firing rates are assigned to the other

copy with weight vector −W. We distinguish between these neurons and ‘anti-neurons’ by the

sign of their membrane potential as determined by the least squared solution. Similarly to the

local and BSN models, spikes from either population will have opposite effects on the output

variable. However, in this case these designations are not fixed labels and do not apply to the

actual sign of wi. For example, spikes from the i’th neuron will contribute wi to the network

output, while a spike from its ‘anti-neuron’ counterpart will have a contribution of −wi to net-

work output, but the entries of wi themselves may be positive or negative.

Formally, we define the population framework in terms of the update equations:

vt ¼ ~Wðzt � x̂ tÞ

¼ vt� 1 þ Dð
~Ort� 1 þ

~WctÞ ðpre‐spike membrane potentialÞ
ð21Þ

λðþÞt ¼
1

k
maxðvt; 0Þ ðneuron spike rateÞ ð22Þ

λð� Þt ¼
1

k
maxð� vt; 0Þ ðanti‐neuron spike rateÞ ð23Þ

sðþÞt � PoissðDλðþÞt Þ ðneuron spikesÞ ð24Þ

sð� Þt � PoissðDλð� Þt Þ ðanti‐neuron spikesÞ ð25Þ

rt ¼ 1 � D 1

t

� �
rt� 1 þ sðþÞt � sð� Þt ðpopulation filtered spike ratesÞ ð26Þ

where ~O ¼ ~W Aþ 1

t

� �
W are the coupling weights from rt−1 to the pre-spike membrane poten-

tials. This differs from the standard BSN framework in that spikes, rather than being driven by

deterministic threshold crossing, arise from a Poisson process with conditional intensity λðþÞt

or λð� Þt . If v[i]t is negative, then λðþÞ½i�t is set to zero, and the corresponding anti-neuron’s firing

rate is positive. The voltage updates and spiking resets are identical to the local and BSN

models.

Fig 6 shows a comparison of the activity of the local and population-level frameworks, as

well as the accuracy and spike counts between all three models. Fig 6A and 6B show that the

local and population models perform similarly, although the population framework has a

higher spike rate. Between the three models, the original BSN model has a lower decoding

error than the local and population Poisson models for both the one-dimensional and two-

dimensional dynamical systems (Fig 6C), although at the expense of a greatly increased num-

ber of spikes (Fig 6D). This is due to the deterministic spike rule, which enforces that any spike

fired must perfectly compensate for the error in every given time bin (or as well as is allowed

by the size of the decoding weights, W). Spiking in the local and population frameworks is

driven by this requirement, but is stochastic.
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However, in terms of accuracy, all three models had similar R2 values: 0.9961 (BSN), 0.9957

(local), and 0.9928 (population) for the 1-D and 0.9686 (BSN), 0.9395 (local) and 0.9565 (pop-

ulation) for the 2-D dynamical system. Thus, the probabilistic frameworks, on average, com-

pensate for the error as well as the original BSN. But in any given time bin, there is a certain

probability of firing too early or too late to optimally compensate for the error, which results

in a higher RMSE. Note that the performance of the local and population models depends on

the parameters of the firing rate nonlinearity and on κ, respectively, and modifying those can

move the models into lower-error (and higher spike count) regimes.

Incorporating synaptic time delays

The original BSN model relies on near-instantaneous synaptic communication between neu-

rons since all neurons in the population must reset immediately after a spike in any neuron. A

more realistic model would require that synaptic inputs arrive only after a brief synaptic delay;

only the reset of a neuron’s own membrane potential following a spike could be considered

instantaneous.

To test the robustness of the two Poisson BSN frameworks introduced above, we altered

synaptic currents to incorporate a synaptic delay in neural outputs. In the revised model, fil-

tered spike trains and “fast” membrane potential resets are received by other neurons only

after a synaptic delay d. Thus, if neuron fires at time t, it resets its own membrane potential in

the next time bin, but we will update spike trains and filtered spike trains received by other

neurons only at time t + d.

To compensate for synaptic delays, we altered the network dynamics so that membrane

potential—instead of reflecting the current error, as in the original BSN— reflects the network

error extrapolated d time steps into the future. The basic logic of this approach is that the net-

work dynamics should look into the future to predict whether firing a spike now will reduce

error at the time when the spike actually arrives. The resulting solution is equivalent to mini-

mizing an objective function (Eqs 4 or 19) where xt+d and x̂ tþd take the place of xt and x̂ t .:

vt ¼W>ðztþd � x̂ tþdÞ; ðmembrane potential with synaptic delayÞ ð27Þ

Here, ztþd ¼ exp ðAdÞzt þ c
A ðe

Ad � 1Þ and x̂ tþd ¼ exp ð� d=tÞx̂ t ¼W exp ð� d=tÞrt represent

the extrapolated target and network outputs at time t + d, respectively. This solution arises by

analytically solving the differential equation dz
dt ¼ Azþ c, which describes the target dynamics,

for z at time t + d given an initial condition zt and c = c(t), and solving the equation
dr
dt ¼ � ð1=tÞr, which describes passive network dynamics in the absence of spiking, for r at

time t + d given an initial condition rt. For the population-level Poisson framework, the encod-

ing weights ~W replace W> in (Eq 27). (See Methods for details).

Fig 7 shows an analysis of the accuracy of the local and population-level Poisson frame-

works with synaptic delays. For both models, a 5ms synaptic delay does not have pronounced

effects on the spiking activity or the quality of the read-out (Fig 7A and 7B). Fig 7D shows the

R2 values as a function of time delay for both frameworks. We compare it against a theoretical

upper bound on the coding accuracy (in black), which is a consequence of the exponential

Euler approximation (see Methods for details).

For the local framework, the R2 value is lower than for the simulation shown in Fig 6

because the parameters were chosen to make the network more robust to synaptic delays. Oth-

erwise, in the high-precision (high α) regime with synaptic delays, ping-ponging may result, as

shown by the higher error regime in Fig 5B. By contrast, the population framework can main-

tain high levels of accuracy for a large range of synaptic delays.
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These revised dynamics could also be used to increase accuracy of a standard BSN with syn-

aptic delays, for example as defined in [36]. We attempted to incorporate synaptic delays into

our implementation of the standard BSN, but it led to ping-ponging, after which the model

was no longer able to track the target dynamics. The resulting R2 values were negative, so they

are not included in Fig 7D.

Network performance

Lastly, we analyzed the performance of our local and population frameworks as compared to

the original BSN model. Fig 8 shows the cross-correlations of spike trains generated by a net-

work of forty neurons implementing a one-dimensional integrator, _xðtÞ ¼ cðtÞ, with a white-

noise stimulus c(t), for the local, population and original BSN models. Local and population

Poisson BSN models both enforced a synaptic delay of 1 ms.

To compute cross-correlations, we divided the neurons into positive-output and negative-

output groups. We then computed average within-group (positive-positive and negative-nega-

tive) and across-group (positive-negative) cross-correlations. These curves show substantial

differences between the original BSN model and the two Poisson models. First, cross-correla-

tions of the original BSN model are 0 at lag zero, due to the rule that only one neuron can

spike in a single time bin. More importantly, the within-group correlations for the BSN model

exhibit a trough at time zero, meaning that neurons with the same output weight are anti-cor-

related. Conversely, across-group correlations exhibit an increase at small lags, meaning that

neurons with opposite sign output weights are more likely to fire together in a small time win-

dow. This relationship is at odds with correlations in both retina and visual cortex, where stud-

ies have reported that correlations are highest for neurons with similar tuning, and lowest for

neurons with dissimilar tuning [34, 41–43]. By contrast, the local and population Poisson

models successfully recapitulate this pattern of correlations, with a peak in the cross-correla-

tions between pairs of neurons with the same sign weights, and a trough for pairs of opposite-

sign neurons. Cross-correlations from these models also exhibit no trough at zero due to the

lack of a rule prohibiting simultaneous spiking. Thus, cross-correlations represent an addi-

tional dimension of biological plausibility of the proposed Poisson frameworks.

Fig 9A shows the relationship between root-mean-square error (RMSE) and network size

(N). The RMSE values shown are relative values, normalized in order to best compare the

trend in error with respect to N. The original BSN model has a decoding error that scales

Fig 8. Cross- and auto-correlations for the original BSN, local Poisson and population Poisson BSN models with synaptic delay. The top row shows average

auto-correlations across both populations of neurons. The bottom row shows average cross-correlations for pairs of neurons with the same sign output weight

(i.e., both positive or both negative, in purple) and for pairs of neurons with opposite-sign output weights (e.g., one positive and one negative neuron, in yellow).

The original BSN network exhibits negative correlations between neurons with the same sign, and positive correlations between neurons with opposite sign. The

local and Population Poisson models show the opposite pattern, which more closely resembles correlations found in neural populations in (e.g.) visual cortex.

https://doi.org/10.1371/journal.pcbi.1008261.g008
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with 1

N, provided that the weights are likewise scaled by 1

N, and we find similar scaling for the

local and population frameworks, although the BSN has a tighter bound. Poisson rate codes

typically scale as 1ffiffiffi
N
p due to the Cramér-Rao bound, which places a lower bound on the variance

(and therefore the mean-squared-error) of an unbiased estimator. We might expect the local

and population networks to scale similarly.

However, the 1ffiffiffi
N
p scaling applies under the assumption of a constant firing rate. Our local

and population models have rates that are a function of voltage dynamics, or the coding error.

Although the spiking mechanism is Poisson, the conditional intensity is still driven by the cod-

ing error. So even if the Poisson spikes over- or under-shoot the target in a particular time win-

dow, on average the network corrects it in the following bins. In sum, this makes our

frameworks’ coding capabilities scale better than 1ffiffiffi
N
p .

We also looked at how spike counts varied with network size, shown in Fig 9B. In general,

as the weights get smaller, the read-out is more precise, but more spikes are needed to recon-

struct the target. The local framework initially has a low spike rate because of the large weights

and higher error tolerance (α = 1000). However, as the weights get smaller, spiking increases

and the local framework exhibits ping-ponging at very small weight sizes. Likewise in the BSN,

for small weight sizes the decoding error increases because weights become too small to

encode the target given the one-spike rule.

Finally, we looked at how robust both frameworks are to neuron loss. The authors of [31]

show in Fig 7G that the original BSN is robust to sudden inactivation of neurons. We ran a

similar simulation, shown in Fig 10, silencing 50% of the negatively weighted and positively

weighted neurons for.6s at a time by setting the probability of spiking in that time bin to 0.

Like in the original BSN, our networks maintain coding accuracy despite large neuron “loss”

by increasing the firing rates of remaining neurons.

Discussion

In this paper, we have highlighted a shortcoming of the balanced spiking network (BSN) para-

digm, namely the requirement of near-instantaneous communication between neurons, which

arises from the fact that a spike in any neuron causes an instantaneous reset of membrane

potential in all other neurons. In practice, the BSN model is often implemented with the addi-

tional rule that only one neuron can spike in a single time bin. When synaptic delays are

Fig 9. Scaling of error and spike count with population size (weights held fixed). (A) Relative root-mean-square error (RMSE) decreases

approximately linearly with the network size for all three models. R2 values for the fit to 1/N were .98, .91, and .82 for the BSN, local and population

models, respectively. (B) Total spike count as a function of network size. The results shown are the average of five simulations of the networks

performing exact integration of a signal formed by a sum of two sinusoids.

https://doi.org/10.1371/journal.pcbi.1008261.g009
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introduced, or multiple spikes are allowed per bin, the model easily enters a ping-ponging

regime in which the network output overshoots and undershoots the target output on alternat-

ing time bins.

To address this problem, we proposed two extensions to the BSN model that incorporate

conditionally Poisson spiking. Our proposed models both preserve the readout structure of

the original BSN, in which a linear combination of exponentially filtered spike trains approxi-

mates a linear dynamical system of interest. However, they both replace of “hard threshold”

integrate-and-fire spiking of the original BSN with a spiking process governed by an instanta-

neous spike rate or conditional intensity. We note that although conditioning spiking allows

for more stable network activity and for synaptic delays, we do so at the expense of the single

time bin precision of the original BSN (see, e.g., Fig 6C). The BSN spikes deterministically to

correct the coding error in a given time bin, while the local and Poisson frameworks may fire

spikes earlier or later than optimal. As such, we relax the guarantee that spikes fired will pre-

cisely compensate for the coding error.

In the local Poisson BSN framework, the conditional intensity arises from passing the mem-

brane potential through a sigmoidal nonlinearity. The accelerating phase of this nonlinearity is

consistent with nonlinearities observed in neural data [44–47] and closely resembles the

Fig 10. Simulation showing robustness of local and population Poisson models to silencing of a subset of neurons.

Left: We created a local Poisson BSN model with 400 neurons, with weights set to perform exact integration, and

presented it with a slowly varying 1D stimulus (top). From time t = .4 to t = 1s we artificially silenced 50% of neurons

in the negative-weight (blue) population, preventing them from spiking by setting p(spike) = 0 (silencing period

indicated by the grey bar). From time t = 1.2 to t = 1.8s we did the same for 50% of neurons in the positive-weight (red)

population. Right: Likewise for the population framework.

https://doi.org/10.1371/journal.pcbi.1008261.g010
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exponential nonlinearity commonly used in generalized linear modeling analyses [33, 34],

while the saturating phase is consistent with saturation in real neural firing rates.

In the “population” Poisson BSN framework, the conditional intensity is obtained by setting

the vector of expected spike counts to the least-squares solution for the total output error. This

model differs from the original BSN in that the encoding weights, the linear mapping from

output error to membrane potential, uses the pseudo-inverse of the decoding weights, ~W ,

whereas the original BSN used the transpose W>. This change ensures that the spike rate of

each neuron takes account of how many other neurons in the population have similar decod-

ing weights, so that the expected spike count across the entire population in some finite time

window compensates optimally for the output error. These modifications make both frame-

works robust to both parameter settings and synaptic delays on realistic time scales (1-3ms).

They also allow the network to have realistic auto- and cross-correlations, while preserving the

decoding accuracy and the robustness of the original BSN.

Related work

Recent literature has explored a variety of other extensions and applications of the BSN frame-

work, including nonlinear dynamical systems and the learning of synaptic weights [48, 49],

synaptic plasticity rules [50], and biological extensions like finite timescale synapses [51] and

synaptic delays [52]. The BSN framework has also been adapted to other computational prob-

lems such as probabilistic computation [53] and sensory adaptation [54].

Our paper is not the first to address the issue of instability in the BSN. Recent work from

[52] examined the use of penalties on spiking to reduce ping-ponging (referred to in that

paper as “up states”). We found that this strategy required fine-tuning and succeeded in a rela-

tively narrow parameter regime compared to the solutions we proposed here. Other work by

by Chalk et al. [36] has argued that oscillations in the brain activity may arise from BSNs with

synaptic delays, suggesting that a substantially damped form of ping-ponging may be a signa-

ture of efficient computation in neural circuits. This work used the finite timescale dynamics

of [51] to implement the BSN with synaptic delays. Similarly to our work, spiking activity in

the Chalk model is asynchronous and sparse, and neurons are not prevented from firing syn-

chronously. However, the Chalk model avoids ping-ponging behavior by injecting a carefully

tuned amount of noise into membrane potential and using slow membrane time constants

(100ms). The added membrane noise degrades the network representation of coding error,

forcing a trade-off between stability and accuracy of representation. By contrast, our models

do not require tuning membrane potential noise to achieve stability; although firing is stochas-

tic, the membrane potential maintains an accurate representation of the error over a wide

range of input and network sizes. Our network also uses membrane time constants with more

biophysically plausible ranges (10-20ms).

The topic of balanced networks has also received considerable attention outside the specific

BSN framework introduced by [31]. Balanced networks have been proposed as a substrate for

working memory [55, 56], probabilistic inference [57, 58], and the control of complex move-

ments [59]. Excitatory-inhibitory balance is also a key topic in the mathematical theory of neu-

ral circuit dynamics, where it has been proposed as an explanation for the correlations found

in large-scale population activity [60–62]. Finally, a rich literature has focused on the training

of spiking neural networks in more general supervised and reinforcement learning settings,

where the objective involves task performance or can only be evaluated at the end of a trial

[63–67].

Our population Poisson model is similar to work by Eliasmith and Anderson [68] in that

the network objective is to minimize the expected squared error between a target function and
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a network estimate using a spiking neural network. However, their model does so by optimiz-

ing for the decoding weights instead of network activity and uses a spiking mechanism that is

driven linearly by the magnitude of the input, instead of the error-correcting computational

principle used in the BSN. Later work by Eliasmith [69] extended this framework to allow for

embedding of the desired dynamics (i.e., the A matrix) into the population activity.

Our work also connects to a rich literature on point process models of neural spike trains.

The local Poisson framework draws direct inspiration from the work of [32], which sought to

approximate a noisy integrate-and-fire model with an inhomogeneous Poisson process via the

so-called “escape-rate approximation”, which refers to the instantaneous probability of noisy

membrane potential crossing threshold in a small time window. Subsequent work on the spike

response model [39, 70–73] and Poisson generalized linear model [33–35, 74–76] further

explored the connection between integrate-and-fire and conditionally Poisson spike train

models. The latter are sometimes referred to as “soft-threshold” integrate-and-fire model [77],

making the local Poisson model a natural extension of the original BSN model.

Future challenges

Although our proposed frameworks are a step in the direction of biological plausibility, there

remain a variety of open challenges. A straightforward way of extending the biological realism

of our proposed network is to reformulate it with a separate inhibitory population to comply

with Dale’s law, as was done in [36]. Another extension is the development of neurally plausi-

ble learning rules and weight patterns. The network we proposed has a static weight matrix

with all-to-all connectivity. A more realistic model would allow for sparse connectivity, sign

constraints forcing neurons to be purely excitatory or inhibitory, and plausible learning rules

that allow weights to change over time as a function of reward signals. There have been suc-

cesses learning the fast, slow and feed-forward weights through non-local, supervised, control

theoretic approaches [48, 49] or, much more recently, through local, Hebbian plasticity rules

[78]. Our probabilistic formulation of the Poisson BSN frameworks makes implementing

local, Hebbian plasticity rules more tractable, as it opens up the possibility of applying unsu-

pervised learning techniques from traditional machine learning methodology.

We note that our implementation of synaptic delays merely shifts the arrival time of spikes

but still involves an instantaneous jump in the filtered spike train dynamics. In future work,

we hope to implement time delays with a finite rise time, as was done in [51]. We suspect that

since our network is stable with instantaneous jumps in r(t), it will also be stable with smoothly

increasing spiking dynamics. Finally, at the level of implementation, we recognize that

although our model does not rely on additional spiking conditions or spike-time interpolation,

using Poisson firing dynamics instead of the integrate-and-fire approximation represents a

slight step away from biological plausibility. We also hope to address the biological plausibility

of ‘anti-neurons’ in the population framework.

Another main challenge is the incorporation of nonlinear dynamics. Although the original

BSN model was designed to implement linear dynamical systems, it is well known that a wide

variety of neural computations are nonlinear. Recent work has proposed an extension of the

BSN framework to nonlinear dynamics [30, 48]; combining this approach with conditionally

Poisson spiking therefore represents a promising avenue for future work.

Finally, the conditionally Poisson extensions we have proposed provide new opportunities

for applying the BSN framework to the interpretation and analysis of real neural data sets.

Both the original BSN model and ours assume access to the precise spiking patterns of all the

neurons in a population, but real neural recordings typically record only a small fraction of the

neurons in a population. Previous work has shown that latent BSN dynamics can be recovered
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from spike trains in the fully observed case [53]. Other work has discussed the recovery of

Poisson generalized linear models from partial recordings [79, 80]. This motivates the develop-

ment of new methods for identifying balanced network dynamics and computations from par-

tially observed data sets, which may offer fundamental insights into spike-based computation

in the brain.

Methods

Exponential integrator

Exponential integrators are a class of numerical methods for solving first-order differential

equations of the form

_yt ¼ � Ayt þ gðytÞ þ c ð28Þ

where −Ayt is a linear term with a dynamics matrix A, c is a constant, and the nonlinear terms

are grouped in g(yt). We use this method of integration throughout our simulations because it

is much more numerically stable than explicit Euler methods. For equations without nonlinear

terms, it above can be solved exactly from time 0 to a later time t as

yt ¼ y0eAt þ
c
A
ðeAt � 1Þ ð29Þ

For A = 0,

yt ¼ y0 þ ct ð30Þ

Using exponential integrators allows us to implement a time delay of magnitude d by hav-

ing the network spike on the basis of an extrapolated future error at a time t + d. Specifically,

we have the network voltage track the error between a predicted x(t + d) and x̂ðt þ dÞ. Eq 16

then becomes

vt ¼W>ðztþd � x̂ tþdÞ

¼W>ðeAdzt þ
c
A
ðeAd � 1Þ � e� d=tWrtÞ

ð31Þ

where we have assumed that the input to the network, c(t), stays at constant value, c, from t to t
+ d and that the spike rate evolves passively in the absence of spiking. In the case that A = 0,

vt ¼W>ðzt þ cd � e� d=tWrtÞ ð32Þ

In the case of the population framework, the W> above is replaced by ~W>

.

Theoretical minimum error. In Fig 7D we compared the R2 values for the local and

population models as a function of delay to a theoretical upper bound. This bound comes

from the expected mismatch between the predicted xtþd ¼ eAdyt þ c
A ðe

Ad � 1Þ and the actual

value of xt+d. To determine this bound, we integrated the target dynamics for the length of the

simulation with exponential Euler integration for a range of delays (d). We then compared it

to the target dynamics integrated without a time delay to get an R2 for each delay length d.

Simulation parameters

For our simulations, all parameters are non-dimensionalized. Time is measured in seconds

and dt = 0.1ms. All other simulation parameters are shown in Table 1, below.

Fig 2 was generated using the parameter settings described in Boerlin et al, fig. 1C (included

below for comparison). The cost terms are μ = 10−6 and ν = 10−5 and the voltage decay constant
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is τv = 20. The noise added to the voltage dynamics and the stimulus was Gaussian with σv =

10−3 and σc = 0.01, respectively. When enforcing the constraint that one neuron should spike

per time bin, we selected the neuron with the highest voltage above threshold. Another option

with similar results would be to select randomly between the ones above threshold.

As a reminder, N is the number of neurons in the network and W is the vector of read-out

weights. For the local framework, α is the slope of the exponential nonlinearity, Fmax is the sat-

uration, and Fmin is the minimum firing rate. For the population framework, κ is the time win-

dow over which the network minimizes the error. Finally, A is the dynamics matrix of the

linear dynamical system, τ is the decay time constant of the filtered spike trains r, and d is the

time delay.

A software implementation of Poisson BSNs, along with code to re-generate figures shown

in the manuscript, is available at https://github.com/pillowlab/PoissonBalancedNets.

Cost terms

The original BSN model objective function incorporated two additional cost terms to penalize

spiking: a quadratic cost term μ and the linear cost term ν. These terms encouraged the net-

work to use fewer spikes and to distribute spiking more evenly across neurons with large and

small output weights. We did not incorporate these in our derivation for clarity, but they are

included in our simulations of the BSN.

Including both cost terms into the derivation in the Results section, Eq (4) becomes

Et ¼ jjxt � x̂ tjj
2

2
þ njjrtjj1 þ mjjrtjj

2

2
ð33Þ

and the voltage and threshold equations become

vt ¼W>ðxt � x̂ tÞ �
m

t
rt ð34Þ

_v t ¼ �
1

tv
vt� 1 þ Ort � ðW

>W þ
m

t2
Þst þW>ct ð35Þ

Ti ¼

n

t
þ
m

t2
þ jjWijj

2

2

ð36Þ

Table 1. Simulation parameters.

Figure N W α Fmax Fmin κ A τ d
Fig 2 400 ± 0.1 N/A N/A N/A N/A 0 10 0

Fig 4D, BSN 1 1 N/A N/A N/A N/A 0 20 0

Fig 4D, GLM 1 1 Varies 50 0 N/A 0 20 0

Fig 5 400 ±.1 + noise (μ = .01) 1e4 1 0 N/A 0 10 0

Fig 6A and 6B 400 ±.1 + noise (μ = 1) 1000 1 0 200 0 1 0

Fig 6C and 6D 400 ±.1 + noise (μ = 1) 1000 1 0 200 � 1 � 10

10 � 1

 !
1 0

Fig 7A and 7B 200 ± 0.02 + noise (μ = .01) 800 100 0 30 -50 0.2 0 or 5ms

Fig 8 40 ± 0.0025 + noise (μ = .01) 2000 5000 5 20 0 0.5 1ms

Fig 9 varies (50-1000) � 300

N 1000 2 0.01 1 -100 20 0

Fig 10 400 ± 0.2 5000 3 0 50 -100 1 0

https://doi.org/10.1371/journal.pcbi.1008261.t001
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The linear cost term (ν) is proportional to the L1 norm of r(t), or jjrjj1 ¼
PN

i¼1
r½i�t . This cost

term penalizes the network’s total activity. The quadratic cost term (μ) limits individual neu-

ron firing rates, forcing a spread of activity across all neurons in a population. Over time, the

network transfers activity from precise, costly neurons with high firing rates to imprecise,

larger weighted neurons to maintain a compromise between efficiency and accuracy of the

read-out. Boerlin et al also include a voltage leak term for biological realism.

In our Poisson models, we did not observe the ping-pong effects described in Boerlin et al
for the range of parameters we considered, so we don’t need cost terms for network stability.

For the local Poisson framework, the cost terms can be included when α and Fmax are high

enough to cause ping-ponging.

Performance metrics

We use R2 as a measure for how well the network read-out is approximating the target variable.

The formula for calculating these is

R2 ¼ 1 �

PT
t¼0
ðx̂ t � xtÞ

2

PT
t¼0
ðx̂ t � �̂xÞ2

ð37Þ

for a simulation of time length T, where �̂x is the mean of x̂ over the entire simulation. The

root-mean-squared error (RMSE) is simply

RMSE ¼
1

T

XT

t¼0

ðx̂ t � xtÞ
2

ð38Þ

The cross- and auto-correlations between spike trains were calculated as unbiased estimates

r̂ with a maximum lag of l = 50 time bins according to

r̂ ¼
1

T � l
ð
XT� l� 1

n¼0

xnynþlÞ ð39Þ

where x and y are spike trains from two different neurons.
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