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LISA improves statistical analysis for fMRI
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One of the principal goals in functional magnetic resonance imaging (fMRI) is the detection

of local activation in the human brain. However, lack of statistical power and inflated false

positive rates have recently been identified as major problems in this regard. Here, we

propose a non-parametric and threshold-free framework called LISA to address this demand.

It uses a non-linear filter for incorporating spatial context without sacrificing spatial precision.

Multiple comparison correction is achieved by controlling the false discovery rate in the

filtered maps. Compared to widely used other methods, it shows a boost in statistical power

and allows to find small activation areas that have previously evaded detection. The spatial

sensitivity of LISA makes it especially suitable for the analysis of high-resolution fMRI data

acquired at ultrahigh field (≥7 Tesla).
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A principal goal in functional magnetic resonance imaging
(fMRI) is the localization of brain activity associated with
regional changes in deoxyhemoglobin concentration1.

Statistical inference is a crucial part of fMRI data analysis that is
needed in order to separate signal from noise. Due to the high
dimensionality of the data, this is a challenging task for which a
wide range of methods have been employed over the past 25
years, e.g., refs. 2–7.

The aim of statistical methods is to distinguish true brain
activations from false alarms so that both false negative and false
positive rates are kept at bay. Recent publications argue that brain
mapping studies show deficits in both respects. In fact, several of
the most widely used software packages were found to produce
inflated false positive rates meaning that some of the insights
about human brain function gained with the help of neuroima-
ging may in fact be artifactual8. For more about this controversy,
see refs. 9–11.

On the other hand, failure to detect true activations due to lack
of statistical power may be an even more pressing problem12–15.
Increasing sample sizes improves power, but the acquisition of
large samples is expensive and not always practicable. Median
sample sizes in group studies have steadily increased since 1995,
but in 2015 they are still below 307. Thus, new analysis methods
with improved sensitivity are urgently needed so that better
results are obtainable using reasonable sample sizes.

In this paper, we introduce a new method of statistical infer-
ence in fMRI. We call it LISA because it is inspired by the concept
of Local Indicators of Spatial Association used in geographical
information systems16. Its main innovation is the way in which
spatial information is used for improving statistical power and
preserving spatial precision. LISA can be applied to many dif-
ferent types of input maps, including standard group data, single
subject activation maps measured at high spatial resolutions,
results obtained by multivariate pattern analysis (MVPA), and
many more.

The procedure for deriving brain activation maps generally
starts out with a general linear model (GLM) regression in which
voxel time courses are correlated with a predefined hemodynamic
response model2,17,18. This results in a contrast map in which
every voxel contains the difference between two or more regres-
sion intercepts representing effect strengths of various experi-
mental conditions. For a review of standard fMRI data analysis,
see e.g., ref. 19.

Obtaining a map of brain activations from these initial contrast
maps is a difficult task because it requires statistical tests to be
performed in thousands of voxels simultaneously so that many
false positives are to be expected. This is known as the multiple
comparison problem20,21. For example, if the number of voxels
covering the brain is 100,000 and a significance threshold of p <
0.05 is used, we may expect around 5000 false positives. A more
stringent threshold would reduce the number of false positives
but would also lead to a loss in statistical power.

Note that univariate null hypothesis significance tests such as
the t-test ignore spatial information so that adjacent voxels are
treated as if they were independent. However, fMRI images
exhibit spatial coherence so that brain activations do not consist
of isolated voxels. This fact can be exploited to correct for mul-
tiple comparisons. The various methods of statistical inference in
fMRI differ primarily in the way in which this is done.

A common strategy is to reduce the number of tests by com-
puting the test statistic not on individual voxels, but on entire
activation regions where each region (also termed “cluster”) is
defined as a group of connected voxels with high activation
levels18,22–26. This generally reduces the number of tests from
thousands of voxels to a few dozen clusters. Larger clusters are
less likely to arise by chance so cluster size can be efficiently used

as a test statistic. About 75% of all published fMRI studies follow
this approach27.

One of the main problems in approaches based on cluster size
is that an initial cluster-defining threshold (CDT) is required, the
exact choice of which can be highly problematic27. Very stringent
thresholds may eliminate relevant brain activations right away
and hence lead to a loss in statistical power. Very liberal
thresholds on the other hand may produce inflated false positive
rates8 and cause adjacent regions to merge into large agglomer-
ates that lack spatial specificity. A threshold-free method called
“threshold-free cluster enhancement” (TFCE) has therefore been
proposed to avoid the problems of thresholding28. However,
TFCE may suffer from limitations of low spatial specificity when
significant clusters are large27.

A widely used cluster-size inference method is based on the
Gauss Random Field (GRF) model18,23. Implementations of the
GRF approach are available in several major software packages29–
31. The main problem with GRF is that it requires spatial
smoothing during preprocessing in order to meet the underlying
assumption of Gaussianity32. According to standard guidelines,
the kernel size needed for Gaussian spatial smoothing is 2–3
times the voxel size 19,33, so that the GRF can only be applied at
the cost of a massive loss of spatial precision. With the advent of
new scanning technology at ≥7 T, neuroscience is now equipped
with much better imaging data acquired at very high spatial
resolutions that should clearly not be sacrificed just to fulfill the
needs of statistical inference15,34. A non-parametric and data-
driven way to estimate a null model is to use random permuta-
tions of subjects or task labels5,35–37. These methods are not
limited by Gaussianity requirements.

Statistical inference methods also differ in the type of error they
control. The two most common ones are the family-wise error
rate (FWER)38 and the false discovery rate (FDR)20,39–43. The
FDR is the percentage of false positives among all reported
activations whereas FWER is the probability of obtaining one or
more false positives.

In the following, we present a new algorithm called LISA for
multiple comparison correction in MRI activation maps. The
main idea is to incorporate spatial context via a non-linear filter
so that spatial precision is preserved and thresholding for cluster-
formation is avoided. Multiple comparison correction is achieved
by a voxelwise control of the FDR in the filtered maps.

Results
Overview of the method. LISA can be applied in several different
scenarios. The first is a group-level analysis involving a one-
sample test across a group of contrast maps. The second scenario
is a single subject analysis involving a test based on only one data
set Finally, LISA can be used in a generic form that is indepen-
dent of the GLM. In the following, we describe each of these
points in detail. For a pseudocode, see Supplementary Note 1.

Group-level analysis. In this setting, the input into LISA is a
group of real-valued 3D images defined on a voxel grid. Typically,
they represent contrast maps obtained via a first-level GLM
analysis. The output of LISA is a 3D image in which every voxel
has a value in [0, 1] representing its FDR. FDR controls the
proportion of falsely rejected null hypotheses. Here, the null
hypothesis for every voxel is that the group mean is not positive.
In the following, we give a detailed description of each step of this
procedure.

Obtaining an initial z-map. Group-level inference in LISA
begins with a voxelwise onesample t-test across a group of con-
trast maps that typically originate from a GLM-based regression.
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This initial step is a standard procedure shared by many other
methods. It yields a map of z-scores (the “z-map”) uncorrected
for multiple comparisons in which each voxel has a standardized
z-score.

Incorporating spatial context. The next step in the LISA analysis
chain is to apply an edge-preserving spatial filter to the z-map.
The effect of this filter is to enhance the signal and suppress noise
while preserving spatial accuracy. This step is quite unconven-
tional because the standard procedure is to apply spatial filtering
during preprocessing, but not as a postprocessing of the z-map.
The unusual order in which spatial filtering is applied here offers
distinct advantages, see Fig. 1 for an illustration.

A large range of adaptive filters exist that might be used in this
context44–48. In the experiments reported below, we have used the
bilateral filter because it is widely used and well known49–51, see
also Supplementary Figure 25. The SUSAN filter52 is very similar
and can therefore be expected to yield comparable results. Note
that the main innovation in LISA is the order in which adaptive
spatial filtering is applied, not the specific type of filter that is
used.

The bilateral filter uses a product of two Gaussian kernels
where one kernel penalizes spatial distance while the other
penalizes discrepancies in voxel values. More precisely, let i
denote some voxel position, Ωi its local neighbourhood, and zi its
value in the map of uncorrected values. Then the filtered value λi
is defined as

λi ¼
1
Wi

X

j2Ωi

zifrðjjzi � zjjjÞgsðdði; jÞÞ ð1Þ

with fr the range kernel for voxel intensities, gs a spatial kernel for
weighting differences in voxel coordinates, and d the Euclidean
distance between voxels i and j. The normalizing factor Wi is
defined as

P
j2Ωi

frðjjzi � zjjjÞgsðdði; jÞÞ. As customary, we use
Gaussian kernels for fr and gs with fr(x)= exp(−x2/σr) and
gs(x)= exp(−x2/σs).

In the experiments reported below, we used the same
parameter settings throughout, namely σs= 2.0 voxels, σr= 2.0
and a spherical neighbourhood Ωi with a radius of two voxels
comprising 117 voxels. The parameter σr depends on the range of
values present in the input and permuted maps. We therefore
scale all input maps by the standard deviation of the values of the
first 30 permuted maps. Bilateral filtering can be applied
iteratively. In all our experiments, we used two iterations.

Special consideration must be given to voxels for which part of
their local neighbourhood is outside of the brain. We use a
threshold to separate brain from non-brain tissue. If the voxel is
inside the brain, but more than half of its neighbourhood is
outside, we use a median filter in a smaller 18-neighbourhood
provided at least half of this smaller neighbourhood is inside the
brain. Otherwise the voxel is discarded.

Controlling the false discovery rate. The final stage of the ana-
lysis chain in LISA is to control the FDR of the filtered z-map.
Here, we use a non-standard approach for estimating FDR
because the classical algorithm by Benjamini and Hochberg39,53 is
not applicable in our case because it expects p-values or stan-
dardized z-values as input. This requirement is violated here
because of the spatial filter applied to the z-map.

Instead, we propose to control FDR using a Bayesian two-
component mixture model in which the hypothesis to be tested
has a prior probability p0 of being null and p1= 1− p0 of being
non-null with corresponding density functions f0(λ) and
f1(λ)54,39,55, Let F0(λ) and F1(λ) be their left-sided cumulative

distribution functions and Fz(λ) their mixture, so that

FzðλÞ ¼ p0F0ðλÞ þ p1F1ðλÞ: ð2Þ

and hence

FdrðλÞ ¼ p0F0ðλÞ=FzðλÞ ð3Þ

Since the estimation of p0 is not trivial, we simply assume p0=
1 which is the most conservative choice.

An estimate of Fz is obtained from the histogram of the filtered
z-map. The null distribution F0 is derived from random
permutations of subjects (i.e., contrast maps). In each permuta-
tion, contrast maps are randomly selected with probability 0.5
and the signs of all values in the selected maps are switched.
Spatial autocorrelations remain intact in these permutations
because we switch all signs in the entire contrast map
simultaneously. In our experiments, we used 5000 such permuta-
tions. Next, a t-test is performed and the bilateral filter is applied
to the resulting permuted z-map. From the histogram of these
permuted maps, we obtain an estimate of F0, resulting in an FDR
score for every voxel, see Eq. (3).

Note that permutation testing requires that under the null
hypothesis data can be exchanged without significantly affecting
the results. As customary in fMRI, we assume here that subjects
are exchangeable. See refs. 35,36,56 for more information about
this issue.

Note that this approach can be easily transferred to a two-
sample test scenario. In this case, the input into LISA is two
groups of contrast maps. In each random permutation, every
contrast map is randomly assigned to one of the two groups. The
rest of the analysis proceeds as before.

Single subject analysis. In a single subject setting, the input into
LISA is a 4D fMRI time series data set together with information
about the experimental design, i.e., onsets, durations, and task
labels of all trials. Furthermore, a contrast vector must be speci-
fied indicating which experimental conditions are to be con-
trasted. The input data set must have been preprocessed using
some standard preprocessing pipeline. The experimental design
must be randomized and must ensure exchangeability across
trials. The output of LISA is a 3D image in which every voxel has
a value in [0, 1] representing its FDR score where FDR controls
the proportion of falsely rejected null hypotheses. Here, the null
hypothesis is that the user-defined contrast is not positive. A
more detailed description follows.

Obtaining a filtered z-map. Single subject inference in LISA
begins with a GLM-based regression that results in a single
contrast map. Here, we assume that each experimental condition
(“task”) is represented by multiple trials that are spread randomly
over the duration of the experiment. The contrast map is con-
verted into a map of standardized z-scores uncorrected for
multiple comparisons (“z-map”) as described in ref. 18. As in the
group-level case, a bilateral filter is subsequently applied to the z-
map, and its histogram is used to estimate Fz.

Exchangeability. Special care must be taken to ensure exchan-
geability of the permutations. Volumes (i.e., 3D images of the
brain) recorded at different timepoints, are not exchangeable
because of temporal autocorrelations. Here, we propose to use
random permutations of task labels that leave the temporal
structure of the data intact57. In each random permutation, every
trial receives a new task label that is randomly selected from the
pool of all task labels. Note that the task labels are exchangeable
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provided the experimental design is properly randomized and the
inter-trial distances are large enough so that the trials are inde-
pendent. Subsequently, a new hemodynamic model is fitted and a
z-map computed to which the bilateral filter is applied. In
experiments with multiple runs, task labels are only permuted
within the same run so that exchangeability is ensured. For more
on random permutations in this setting, see refs. 36,58. As before,
the histograms of the permuted maps are used to estimate the
null distribution F0, and by Eq. (3) an FDR score is obtained for
every voxel.

Generic LISA. LISA is not limited to the scenarios listed above. A
generic implementation that generalizes to other domains is also
available. In its generic form, LISA expects two files as input. The
first file contains a non-permuted input map. The second file
contains a list of permuted maps generated with the same test
statistic after applying a random permutation. LISA subjects all
maps to the bilateral filter, and outputs a map with FDR scores at
every voxel. For example, the generic LISA can be applied in the
context of MVPA. In this case, the input into LISA may be a map
of classifier weights59. Permuted maps are generated by shuffling
the subjects or task labels and computing a weight map in every
permutation. LISA will then produce a map in which each voxel
has an FDR score showing the statistical significance of the fea-
ture weight.

In the following, we assess the validity and effectiveness of the
LISA algorithm using large public databases and supercomputing.
Specifically, we compare the reproducibility of results under
repeated sampling from a large cohort of subjects and the sample
sizes needed to achieve statistical significance against several
widely used methods. Furthermore, we analyze the spatial
precision in ultrahigh field data. To ensure the validity of LISA,
we estimate the false positive rates when applied to null models,
and we estimate statistical power using simulations.

Group studies at 3 Tesla, task fMRI. We applied LISA to fMRI
data acquired at 3 Tesla by the Human Connectome Project
(HCP), WU-Minn Consortium60–62 and compared the results
with those obtained by other commonly used methods. We use
the HCP data as a benchmark because it is widely known and
contains a large number of data sets needed for validation pur-
poses. We focused on the motor and the emotion task, using
minimally preprocessed data of 400 unrelated participants. All
data sets were spatially filtered during preprocessing using a
Gaussian filter with fwhm= 6 mm. In the motor task, we inves-
tigated the left-hand finger tapping condition. In the emotion
task, we used the “faces minus shapes” contrast. For details, see
Supplementary Methods 3.

For comparison, we selected three major software packages,
namely SPM29, FSL63, and AFNI64,65, which cover about 80% of
all published fMRI studies31,66. Specifically, the following
methods were included in the comparison: the GRF method
implemented in SPM with FWER and FDR corrections2,17, the
TFCE method implemented in FSL28, and 3dttest++ implemen-
ted in AFNI9. For the cluster extent based methods (AFNI, SPM),
we used initial cluster forming thresholds of p < 0.001 and p <
0.01. Note that the above methods—except the FDR version of
SPM—correct for FWER while LISA corrects for FDR. We will
discuss this issue in more detail later on.

We used group-level onesample t-tests ignoring the within-
subject variance. For FSL-TFCE, AFNI, and LISA, we used 5000
random permutations to estimate the null distribution. Here, we
report the results of SPM controlled for FWER with p < 0.001 as
CDT, and AFNI controlled for FWER with p < 0.01 as CDT,
because with these parameters sensitivity is maximized and the
false positive rates of AFNI are not inflated. Furthermore, we
report results of FSL-TFCE and LISA. The other results are listed
in Supplementary Figures 3–12.

As a first step, we used the full cohort of all 400 subjects
to obtain a reference map (Fig. 2). Specifically, we applied

No filter Pre-test Gaussfilter Post-test Gaussfilter Bilateral filter (LISA)

4

–4

Z

Fig. 1Motivating LISA. The top row shows z-maps obtained by applying a voxelwise onesample t-test applied to 20 randomly generated images. The maps
were computed with either no spatial filtering, or spatial filtering before versus after applying the t-test. The bottom row shows the same results
thresholded so that the false discovery rate was 0.05 with the simulated signal as an underlay in light grey. Here we scaled the filtered and unfiltered
z-values to the same range. Note however, that after filtering the z-values are no longer standardized so that their interpretation differs. The true positives
rates were 0.035 (no filter), 0.89 (pre-test Gaussfilter), 0.97 (post-test Gaussfilter), 0.99 (post-test bilateral filter). Applying the Gaussfilter prior to the
t-test diminishes spatial accuracy and yields a poor true positive rate. A better result is achieved by applying the Gaussian filter after the t-test. The post-
test bilateral filter produces the best results in terms of both spatial accuracy and statistical power. Therefore, we propose this approach for our new
method “LISA”
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FSL-TFCE to all 400 subjects, and corrected for FWER < 0.01
using 5000 random permutations. High power entails an
increased likelihood that statistically significant results reflect
true effects so that this map can serve as a highly reliable
reference12.

To assess reproducibility, we randomly drew 100 samples of
size 20 with replacement from the cohort of 400 subjects and
applied the above statistical inference procedures corrected at
FWER < 0.05 or FDR < 0.05. The computation time for one
sample (5000 permutations) with LISA was approximately 10 min
on a standard Linux PC (16 cores). We generated maps showing
the reproducibility per voxel across 100 tests (Fig. 2). When
comparing the results, we found that LISA exceeded the
reproducibility scores of the other methods considerably.

We also compared the clusters found by each method where
clusters are defined as connected components of the resulting
activation maps. We made the following observations. First, LISA
not only detected more voxels, but also entire clusters that were
ignored by the other methods. They are marked in Fig. 2. Second,
the differences in reproducibility occur mostly in cluster centers,
and not just at their peripheries (Supplementary Figures 7, 8).
Third, we computed the size of the smallest clusters detected by
all four methods (Fig. 3). As expected, the cluster size thresholds
of SPM and AFNI prevent small clusters from being detected. For
example, the median of the smallest cluster sizes found by AFNI
in the emotion task was 1854 voxels= 14,832 mm3. For
comparison, note that in healthy subjects, the entire thalamus
has a volume of less than about 7700 mm3 67. Using p < 0.001 as
an initial CDT, much smaller clusters were detected (Supple-
mentary Figures 3, 4, 5). However, at this more stringent
threshold, AFNI produces results that are about as conservative as
those of SPM. Both LISA and FSL are able to detect small clusters,
but FSL shows a large variability in the size of the smallest cluster
its finds, see Fig. 3.

Next, we computed minimal sample sizes that are needed to
detect an activation with a reasonable chance of success which we
defined to be 50 of the 100 tests (Fig. 4). For this purpose, we

investigated various samples sizes, namely 20, 40, 60, and 80. We
found that LISA detected more voxels, and even entire brain
regions at noticeably smaller sample sizes. For example, in the
motor task, LISA needed a sample size of 40 to detect 10,401
voxels in at least half of all tests. The best competitor (AFNI)
needed a sample size of about 50 to achieve a similar result, while
SPM needed sample sizes of almost 70. In the emotion task, LISA
detected more voxels using samples of size 20 than SPM with
samples of size 40.

Furthermore, we investigated the effect of the bilateral filter.
We found that reproducibility declined markedly when we
omitted the bilateral filter, see Supplementary Figures 23, 24.
Lastly, we note that the type of error that is controlled in SPM
(FWER versus FDR) made almost no difference, see Supplemen-
tary Figures 4, 6.

Ultrahigh resolution imaging. Task-based fMRI data were
acquired of a single subject at a 7 Tesla MR scanner with a spatial
resolution of 1.5 mm3 68. The participant gave written informed
consent prior to the experiment, and was paid for her attendance.
The study was approved by the local Ethics committee at the
University of Leipzig. In this experiment, the subject was stimu-
lated in the MR scanner at four fingers of her right hand using an
MR-compatible tactile stimulator, for details see Supplementary
Methods 4.

We compared the results obtained by LISA against those
obtained by SPM. For the single subject case there are no clear
guidelines for the amount of smoothing needed in SPM to ensure
a valid inference. Here, we used a Gaussian kernel with fwhm= 4
mm which is consistent with the guidelines for group-level
studies. We made this selection based on the report by Eklund
et al. who found that in single subject data the false positive rates
were inversely correlated with the amount of spatial smoothing69,
so that a smaller Gaussian kernel might have produced invalid
results. For LISA, we did not apply any spatial smoothing. The
results are shown in Figs. 5, 6 and Supplementary Figures 13–16.
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Fig. 2 Reproducibility across 100 tests based on randomly drawn samples of size 20. The colors in the left image (panel a) represent reproducibility scores,
i.e., the number of tests in which a given voxel consistently passed the significance threshold. The underlying blue areas show the reference map which was
derived using all 400 subjects. The corresponding cumulative histograms (panel b) show that the reproducibility scores are considerably higher for LISA.
For example, in the emotion task, LISA has detected 11,115 voxels consistently in at least 60 of the 100 tests. The corresponding numbers for the other
methods are 8759 (AFNI), 8594 (FSL), and 5709 (SPM)
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Note that the maps derived by LISA follow the expected order of
finger representations in primary somatosensory cortex but are
spatially more specific than the smoothed maps obtained by SPM.

The other two methods (FSL-TFCE, AFNI) are not directly
applicable because they use permutation of volumes to derive the
null distribution. This is not a problem in group-level studies
where each volume corresponds to one subject so that individual
volumes can be regarded as exchangeable. However, in the case of
a single subject analysis, volumes correspond to time steps that
are not exchangeable because of temporal autocorrelations. In
LISA, this problem does not arise because we shuffle task labels
rather than volumes. However, to still allow for some form of
comparison, we cut the data into small chunks corresponding to
the 26 individual trials with a duration of 9 s each. We then
obtained a contrast map for each trial and performed an analysis
using AFNI and FSL assuming that trials are exchangeable, see

Supplementary Figure 15. Note that this approach is not feasible
for event-related designs.

Simulations for checking false positive rates at 3 Tesla. To make
sure that LISA does not produce inflated false positive rates, we
subjected it to the test described by Eklund et al.8. We found that
the false positive rates were well within the acceptable range of
5%. For details, see Supplementary Methods 1, Supplementary
Figure 1, and Supplementary Table 1.

Simulations for checking false positive rates at 7 Tesla. To
check whether LISA produces inflated false positive rates when
applied to single subject data at ultrahigh fields we modified the
tests proposed by Eklund et al.8,69. Specifically, we used resting
state 7 T fMRI data of the HCP of 25 subjects60,62, and applied a
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variety of “fake” experimental designs. We found that the false
positive rates were well below the acceptable level of 5%. For
details, see Supplementary Methods 2, Supplementary Figure 2,
and Supplementary Table 2.

Simulations for power calculations. In addition, we performed a
range of simulations for power calculations. The details are
described in Supplementary Methods 5, Supplementary Table 3,
and Supplementary Figures 26–32.

In brief, we first generated background noise using a non-
Gaussian autocorrelation function using the model proposed by
Cox et al.70 with various parameters settings, see Supplementary
Figure 27. We then added synthetic signals using signal-to-noise
ratios in the range of [0.4, 1.0]. The signals had various shapes
and sizes. We have used stick-like shapes to test the sensitivity to
detect fine-grained structures in ultra-high resolution images. We
also used spheres of various sizes to test the sensitivity w.r.t. area
size, see Supplementary Figure 28. For each simulation run, we
generated 26 maps to simulate a typical sample size of fMRI
group studies. Finally, we performed statistical inferences using
the same four methods as in Figs. 2, 3 and calculated their power.
The results are shown in Supplementary Figures 29–32. We
found that all methods performed similarly well in detecting
signals that are large and strong. However, LISA was clearly
superior in detecting signals that are small or medium in size.
This agrees with the results shown in Fig. 3.

Discussion
Here, we have introduced the new method LISA for statistical
inference of fMRI data that receives a power boost from a non-
linear edge-preserving filter. In our experiments, we found that
LISA was considerably more sensitive compared to other meth-
ods and required much smaller samples to achieve similar results.
Considering the cost of data acquisition, this has a direct impact
on the possibility of detecting true activations. Importantly, the
increase in sensitivity was achieved without inflating false positive
rates and without compromising spatial specificity.

This latter point is particularly relevant as it makes LISA sui-
table for high-resolution imaging. Ultrahigh field MRI (≥7 Tesla)

is a rapidly growing field that for the first time allows investi-
gating structure-function correspondences at the meso- and
micro-scale in the living human brain. Spatial precision is crucial
in this context34,71–73.

We found that small activations are in the blind spot of
cluster-based methods. Using a CDT of p < 0.01, AFNI could
only detect regions that were larger than the entire thalamus. At
a more stringent threshold, smaller regions were detected,
however at the cost of a severe loss in sensitivity. Similar
observations hold for SPM. The threshold-free algorithm FSL-
TFCE avoids the problem of defining a CDT. However, its
spatial specificity is also poor as can be seen from the high
variability in the sizes of the smallest clusters it finds (Fig. 3),
see also ref. 27. We therefore conclude that voxel-level methods
such as the one proposed here offer clear advantages over
cluster-based methods.

Importantly, the boost in statistical power achieved by LISA is
not merely due to its use of FDR which by definition is less
conservative than FWER. Rather, it is the spatially adaptive filter
that is crucial in securing LISA’s advantage. This became evident
from a direct comparison of results with and without the bilateral
filter, see Supplementary Figs. 23, 24. Furthermore, we found
virtually no difference between the FDR and FWER results
obtained using SPM. This suggests that the initial CDT largely
determines the final result rather than the type of error that is
controlled, see also ref. 74.

In conclusion, we hope that because of its improved sensitivity
and better spatial specificity, LISA will help in developing novel
and more realistic models of human brain function.

Software availabilty
The LISA software is available at https://github.com/lipsia-fmri/lipsia. The other
software packages (SPM, AFNI, FSL) are available from their respective websites.

Data availability
Data of the Human Connectome Project are available from www.
humanconnectomeproject.org (1200 Subjects Data Release, Release Date: March 01,
2017). Resting state data used for the “Eklund test” (“Beijing sample”) are available as
described in ref. 8. The fMRI data acquired of a single subject at 7 Tesla are available
upon request from the corresponding author.

LISA

SPM

Central
sulcus

Posterior → Anterior

Fig. 5 Stimulation of the index finger (single subject, 7 Tesla fMRI). The
experiment is expected to activate parts of the somatosensory cortex which
is located posterior to the central sulcus. The images in the bottom row
show the central sulcus marked manually in four sagittal slices of the input
data (not AC-PC aligned). The two top rows show the results obtained by
SPM (top row, (p < 0.05, cluster-based FWE-corrected)) and LISA (middle
row, (FDR < 0.05)) superimposed on the preprocessed input data. For SPM,
a Gaussian filter was applied during preprocessing. The ensuing loss in
spatial precision makes it difficult to identify the exact anatomical location
of the activation. The results obtained by LISA show that the activation is
indeed inside the thin cortical ribbon posterior to the central sulcus. See
also Supplementary Figures 15, 16

LISA

D2 D2/3 D3 D3/4 D4

SPM

Fig. 6 Result of a finger stimulation experiment (single subject, 7 Tesla
fMRI). Four contrasts were computed. In each contrast, one finger was
contrasted against all other fingers. For clarity, here we only show three of
these contrasts. The colors indicate areas that show a statistically
significant contrast (FDR < 0.05), index finger (D2, red), middle finger (D3,
green), ring finger (D4, blue). Areas of overlap are marked in yellow (D2/3)
and cyan (D3/4). Large overlaps indicate a lack of spatial specificity. Here,
we only show one slice of the somatosensory area as indicated in the
overview image on the right. The full images are shown in Supplementary
Figures 13, 14
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