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Abstract: Huanglongbing (HLB), which is caused by the phloem-limited bacterium ‘Candidatus
Liberibacter asiaticus,’ is an economically important disease of citrus in many regions of the world.
Due to the significant damage caused by the HLB disease in recent years, the use of antibiotics
was recommended for the therapy of this destructive disease. Products with active ingredients
oxytetracycline and streptomycin have been approved for the control of the HLB via foliar application.
However, previous work raised questions about the efficacy of foliar delivery of antibiotics in the
field. In this study, we examined the effects of a variety of adjuvants on the uptake of oxytetracycline
and streptomycin using the foliar application. We also compared the efficiency of foliar application of
oxytetracycline and streptomycin with trunk injection. The ‘Ca. L. asiaticus’ titers in citrus plants
were measured using quantitative PCR, and the levels of antibiotics were determined using the
ELISA assay. Our results include extremely low levels of oxytetracycline and streptomycin in leaves
that were covered during foliar application, indicating that neither streptomycin nor oxytetracycline
was successfully systemically delivered by foliar application even after being mixed with adjuvants.
Likewise, the ‘Ca. L. asiaticus’ titer0 was not affected by any of the foliar applications. High levels
of streptomycin were detected in leaves that were exposed to direct foliar application, indicating
that streptomycin was adsorbed or bound to citrus leaves. On the other hand, the trunk injection of
oxytetracycline resulted in high levels of this antibiotic in leaves and significantly reduced the level
of ‘Ca. L. asiaticus’ titer in citrus trees. Unfortunately, the trunk injection of streptomycin resulted in
low levels of streptomycin in citrus leaves and did not affect the ‘Ca. L. asiaticus’ titer, indicating that
streptomycin was either bound in the xylem of citrus trees or it was not applied in sufficient quantity
required for the inhibition of ‘Ca. L. asiaticus.’ Taken together, our current results demonstrated that
foliar application of oxytetracycline and streptomycin did not effectively deliver antibiotics in citrus
despite using adjuvants. Our results also suggested that oxytetracycline could be more effective
against the HLB pathogen than streptomycin, which is possibly due to differences between the two
in systemic movement in citrus trees.

Keywords: Huanglongbing; citrus; oxytetracycline; streptomycin; adjuvant; foliar application

1. Introduction

Huanglongbing (HLB; “citrus greening”) is currently considered the most destructive
disease of citrus worldwide [1–3]. HLB is assumed to be caused by the uncultured, phloem-
limited bacterium ‘Candidatus Liberibacter asiaticus’. HLB symptoms develop slowly,
and with time, this disease inhibits the growth and yield by interfering with source–sink
dynamics, which restrict the growth of roots, new shoots, and fruits [4–6]. Recently, HLB
has become prevalent and endemic in Florida, Texas, and Brazil [7]. Because there are
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no resistant commercial cultivars to HLB [8], the use of antibiotics has been suggested to
combat ‘Ca. L. asiaticus’ pathogen in plants [9].

Antibiotics have been effectively used for the control of many plant diseases for more
than seventy years [10]. For instance, oxytetracycline has been used to control fire blight
disease on pear and apple and bacterial spot disease on nectarine and peaches [11]. In
addition, oxytetracycline has been used to control several plant pathogens including phy-
toplasmas, Xanthomonas spp., and Pseudomonas spp. [11]. Currently, only two antibiotics
(streptomycin and oxytetracycline) are approved for use in citrus production. Three prod-
ucts with oxytetracycline or streptomycin as active ingredients were given emergency
use approval in Florida in 2016, and they now have permanent labels for use via foliar
application in citrus.

The initial use of antibiotics as a treatment for the HLB disease was proposed in
the 1970s after it has been discovered that it was caused by a plant pathogen [11]. Early
studies showed that tetracycline can suppress HLB symptoms when it is applied by trunk
injection [12–15]. In addition, early works demonstrated that the foliar application of
antibiotics was less efficient than trunk injection [16]. Recent studies have also cast doubts
on the efficacy of foliar application in delivering antibiotics to the phloem, where the ‘Ca. L.
asiaticus’ resides [17,18].

Previous studies showed that spiroplasmas were sensitive to several antibiotics in vitro.
However, only tetracyclines were effective against these pathogens in plants, indicating
that tetracyclines can be translocated to the phloem [19]. In a recent study, we investigated
the uptake and distribution of streptomycin and oxytetracycline in citrus plants [20]. These
two antibiotics were found in the xylem, phloem, leaves, and roots after stem delivery and
root drench. The presence of these antibiotics in the phloem indicated that streptomycin
and oxytetracycline could be effective against the HLB pathogen. The concentrations of
these antibiotics in the canopy after stem treatment were higher than those detected after
root drench [20]. On the other hand, the levels of antibiotics found in roots after root
drench were higher than those found after stem delivery. The level of oxytetracycline
detected in the leaves, xylem, and phloem was higher than that of streptomycin after root
treatment [20]. On the other hand, the level of streptomycin in the roots was higher than
that of oxytetracycline after root drench [20].

The efficacy of antibiotics in planta is highly affected by their uptake and transloca-
tion [19]. To understand the mechanism of oxytetracycline uptake and translocation, we
studied the movement of oxytetracycline in girdled and non-girdled citrus seedlings and
trees after root drench and trunk injection, respectively [21]. We found that oxytetracycline
was present in the phloem and xylem below and above the girdle. This result indicated
that the xylem was the main route for oxytetracycline movement [21]. The presence of
oxytetracycline above the girdled area indicated that it was first translocated into the xylem
and then was moved into the phloem [21].

Foliar spray is commonly used for the application of nutrients, insecticides, and
herbicides. Unfortunately, most of the applied materials are deposited in the environment,
and only a very small amount (<1%) reaches its target [22]. Soil drenching is also used
for applying different agrochemicals including imidacloprid, which is used for the control
of D. citri. Likewise, most of the applied materials are deposited in the soil, and only
small amounts are taken up by the plants [23]. To minimize chemical loss during foliar
spray and soil drenching, trunk injection has been developed as an alternative delivery
method for agrochemicals. Trunk injection is considered superior to soil drenching because
it delivers the exact dose, reduces deposition in the environment, and requires fewer
applications [23]. However, trunk injection is not a common agricultural practice due to
the cost of application. It is frequently used in urban areas where soil drench and foliar
application are restricted [23,24].

To target phloem-limited pathogens, antibiotics applied using foliar application should
be able to cross the leaf surface and travel through the plant vascular system. However, the
presence of cuticles on the surface of plant leaves significantly reduces the rate at which
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applied chemicals can pass into the apoplast and subsequently into the vascular system.
Uptake and loading into the phloem adds an additional subsequent limitation to systemic
delivery in the phloem [25]. To enhance the uptake of agrochemicals by plant leaves, these
chemicals are mixed with different types of adjuvants before being delivered using a foliar
application [26].

In our recent study, we investigated the effect of nine commercial adjuvants on the
uptake of oxytetracycline by citrus trees using foliar applications [24]. Our results showed
that low levels of oxytetracycline (≈0.1 µg g−1) were detected in citrus leaves after being
sprayed with aqueous oxytetracycline solution. Unfortunately, the mixing of adjuvants
with the oxytetracycline solution did not improve its uptake by citrus leaves [24]. On the
other hand, higher levels of oxytetracycline (≈6 µg g−1) were detected in leaves obtained
from trunk-injected trees. In agreement with the chemical analysis, the ‘Ca. L. asiaticus’ titer
was substantially diminished in trunk-injected trees one month after treatment, whereas it
was not affected by any foliar application [24]. Interestingly, the uptake of oxytetracycline
upon foliar application was enhanced by the perforation of citrus leaf cuticle, indicating
that the citrus leaf cuticle was the main barrier against the uptake of oxytetracycline [24].

The physical properties of the compound such as the strength of acidity (pKa, how
easily H+ ions are dissociated) and polarity or membrane permeability (log Kow) enable an
initial forecast of its phloem translocation and distribution in plants [27,28]. Previous studies
suggested that a compound with a pKa of 3.5–6.5 and Log Kow of −0.5–3.5 is expected to be
transported in the phloem, although these two properties interact in a non-linear fashion [25].
Based on these characteristics, oxytetracycline (pKa: 3.27, log Kow: −0.9) is expected to have a
higher translocation rate than streptomycin (pKa: 10, log Kow: −7.5) in the phloem. In cases
where delivery to meristematic or phloem tissues is the aim, phloem-translocated compounds
have been found to be much more effective than those that are not [27,29]. In the current study,
we assessed whether adjuvants could improve the delivery of streptomycin using the foliar
application. In addition, we compared the efficiency of trunk injection and foliar application
of streptomycin and oxytetracycline. Furthermore, we studied the degree to which these two
antibiotics circulate within citrus plants as a proxy for systemic distribution to the phloem.
We hypothesized that the trunk injection of streptomycin and oxytetracycline would be more
effective against ‘Ca. L. asiaticus’ than foliar application and that oxytetracycline would be
more effective than streptomycin.

2. Results
2.1. Effect of Adjuvants on the Uptake of Streptomycin (Study 1)

High levels of streptomycin (8.1 ± 0.61 µg g−1 FWT) were detected in citrus leaves
that were directly exposed to foliar applications (Table 1). On the other hand, low levels
of streptomycin (0.33 ± 0.07 µg g−1 FWT) were detected in covered leaves upon foliar
applications (Figure 1). The levels of streptomycin in covered leaves that were sprayed with
streptomycin in the presence of adjuvants treatments were not significantly different from
those that were treated with streptomycin solution or water (Figure 1). As Figure 1 shows,
the variance of the streptomycin content in covered leaves was high relative to the means,
indicating that the systemically delivered proportion was not statistically different from
0 µg g−1 FWT. Additionally, the concentrations of streptomycin in leaves obtained from
trunk-injected trees were similar to those found in covered leaves of foliar-treated trees
(Figure 1). No treatment achieved a mean greater than 1.92 µg g−1 FW in covered leaves,
which is the minimum in plant effective concentration required for the inhibition of ‘Ca. L.
asiaticus’ [30]. Uncovered leaves had nearly 20× the streptomycin concentration of covered
leaves (Table 1). Neither the foliar application nor the trunk injection of streptomycin
showed a significant decrease in ‘Ca. L. asiaticus’ (Table 2)
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Table 1. Concentrations of streptomycin and oxytetracycline in covered or directly sprayed leaves of
‘Hamlin’ sweet orange (C. × sinensis) after foliar application in two different adjuvant studies.

Study Compound Rate per Tree
Antimicrobial Concentration (µg g−1 FW)

Covered Leaves Sprayed Leaves

Streptomycin—9 adjuvants Streptomycin 0.78 g 0.33 ± 0.07 b 8.1 ± 0.61 a

Combined—4 adjuvants Streptomycin 0.78 g 0.78 ± 0.27 b 10.7 ± 1.6 a

Combined—4 adjuvants Oxytetracycline 0.72 g 0.95 ± 0.34 a 1.3 ± 0.42 a

Means with different letters are significantly different using a two-tailed student t-test (p < 0.05).
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Figure 1. Concentrations of systemically delivered streptomycin in leaves of ‘Hamlin’ sweet orange
(C. × sinensis) two days after delivery by the foliar application using various adjuvants or trunk
injection. Values are concentrations in leaves that were covered to protect them from foliar sprays.
The application dose was 0.78 g streptomycin per tree, which is equivalent to the labeled rate for
foliar application. Bars represent means and error bars represent standard error (n = 12). The absence
of labeling of treatments with different letters indicates that none are significantly different using
Bonferroni’s protected least significant differences (p < 0.05). AB: anti-bacterial compound, in this
case streptomycin. Bars not labeled with letters indicate that the treatment effect was not significant
according to an analysis of variance.

Table 2. Cycle threshold values for detection of ‘Candidatus Liberibacter asiaticus’ DNA in leaves
of ‘Hamlin’ sweet orange (C. × sinensis) before and after foliar application or trunk injection of two
different adjuvant studies. P(T) represents a two-tailed paired t-test. Post-treatment sampling was 1
month after application.

Study Anti-Microbial Compound Treatment
Pre-Treatment Post-Treatment P(T)

Mean ±SE Mean ±SE

Streptomycin only Streptomycin Cohere 31.3 0.72 31.9 0.67 0.41
Exit 31.2 0.92 31.0 0.62 0.86

Grounded 29.7 0.67 30.1 0.54 0.59
Joint Venture 29.9 0.66 31.8 0.67 0.14

Keyplex 445 DP 32.3 0.76 31.2 0.51 0.27
LI 700 30.7 0.95 31.0 0.59 0.82
Tactic 30.5 0.72 30.9 0.48 0.73

Injection 30.5 0.86 31.2 0.77 0.55
Water − AB 30.3 0.83 30.3 0.77 0.92
Water + AB 30.5 0.74 32.0 0.46 0.12

None Water − AB 30.3 0.83 30.3 0.77 0.92

Oxytetracycline
and Streptomycin

Streptomycin Injection 29.8 1.25 30.8 0.83 0.87
Joint Venture 30.4 0.60 30.8 0.68 0.75

Nutrisync Micro Pak 31.3 0.59 30.4 0.68 0.37
Water 29.7 0.40 30.3 0.72 0.41

Oxytetracycline Injection 30.7 0.61 29.8 0.98 0.002
Joint Venture 30.4 0.92 31.0 0.52 0.47

LI 700 29.8 0.64 30.8 0.68 0.19
Water 29.3 0.86 30.7 0.66 0.17

None Water 29.8 0.88 29.7 0.71 0.82
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2.2. Comparison of Oxytetracycline and Streptomycin Delivery (Study 2)

The average level (1.3 ± 0.42 µg g−1 FWT) of oxytetracycline in uncovered Hamlin
leaves was similar to that of covered leaves (0.95 ± 0.34 µg g−1 FWT) upon foliar applica-
tion (Table 1). Only the uncovered samples of Joint Venture and LI-700 resulted in greater
foliar oxytetracycline than the water treatment (data not shown). The addition of adjuvants
to the oxytetracycline solution did not result in a significant increase in its uptake in covered
leaves upon foliar application (Figure 2). On the other hand, higher levels of oxytetracycline
(≈7 µg g−1 FWT) were detected in leaves of Hamlin trees that were injected with oxytetra-
cycline (Figure 2A). In the same manner, only the trunk injection of oxytetracycline showed
a significant decrease in ‘Ca. L. asiaticus’ titer (p = 0.013).
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Figure 2. Concentrations of systemically delivered streptomycin (A) and oxytetracycline (B) in leaves
of ‘Hamlin’ sweet orange (C. × sinensis) two days after delivery by the foliar application using various
adjuvants or the trunk injection. Values are concentrations in leaves that were covered to protect
them from direct contact with foliar sprays. The application dose was 0.78 g streptomycin per tree
or 0.72 g of oxytetracycline per tree. Bars represent means and error bars represent standard error
(n = 12). Treatments with different letters (a, b) are significantly different using Bonferroni’s protected
least significant differences (p < 0.05). Bars not labeled with letters indicate that the treatment effect
was not significant according to an analysis of variance. AB: anti-bacterial compound.

The level of streptomycin in uncovered (10.7 ± 1.6 µg g−1 FWT) Hamlin leaves was
significantly (p < 0.0001) higher than covered leaves (0.78 ± 0.27 µg g−1 FWT) upon foliar
application (Table 1). None of the adjuvant treatments achieved higher streptomycin con-
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tent in uncovered leaves than the streptomycin in water treatment (data not shown). In
the same manner, none of the adjuvant treatments reached higher streptomycin content
in covered leaves than those treated with aqueous streptomycin solution (Figure 2B). The
level of streptomycin in covered and uncovered leaves upon treatment with aqueous strep-
tomycin solution was not significantly different from those treated with water (Figure 2B).
As in Study 1, trunk injection did not increase the streptomycin level over the adjuvant
treatments (Figure 2B). In addition, no treatment achieved a mean greater than 1.92 µg
streptomycin g−1 FW in covered leaves (Figure 2B), which is the minimum in plant effective
concentration required for the inhibition of ‘Ca. L. asiaticus’ [30]. No significant decrease
in ‘Ca. L. asiaticus’ titer was observed after trunk injection or the foliar application of
streptomycin in this study.

3. Discussion

Our results showed that the addition of adjuvants to the foliar solution of streptomycin
or oxytetracycline did not increase their systemic uptake by citrus leaves. In agreement
with our current results, our previous results also demonstrated that mixing adjuvants with
oxytetracycline solution did not improve its uptake by citrus leaves upon foliar applica-
tion [24]. None of the foliar treatments used in this study resulted in concentrations that
approached the minimum inhibitory concentrations of oxytetracycline or streptomycin as
determined by [17,30]. Consistent with the chemical analysis results, the ‘Ca. L. asiaticus’
titer did not show any significant decline after any foliar treatment. Likewise, no significant
decrease in the ‘Ca. L. asiaticus’ titer was observed in previous studies after foliar applica-
tion of oxytetracycline, even in the presence of adjuvants [24]. These results indicated that
foliar application, which is the only currently approved application method, is unlikely to
reduce ‘Ca. L. asiaticus’ in citrus trees.

The uptake of sprayed agrochemical by plants depends on several factors including
the selected adjuvant, plant species, and the type of chemical [31]. For example, the uptake
of a copper fungicide was significantly enhanced through the isolated abaxial citrus leaf
cuticle after the addition of the silicone-based L-77 surfactant [32]. However, no effect was
observed on the uptake of copper through the isolated adaxial leaf cuticle, which lacks
stomata. On the other hand, urea and petroleum oil adjuvants did not affect the uptake
of copper by citrus leaves [32]. These results suggested that the abaxial leaf surface was
more permeable than the adaxial leaf surface, which was possibly due to differences in
the presence of stomata. In addition, the previous results also suggested that adjuvants
may have minimal effects on the uptake of foliar-applied agrochemicals in the field because
most of the applied material settles on the top surface of the leaves [24].

The citrus leaf cuticle provides a major barrier to the influx of foliarly applied com-
pounds. In our previous work, we studied the cuticle structure of citrus leaves using
transmission electron microscopy [24]. Our investigation showed that the top surface of
the citrus leaf was covered with a thick (0.5–1.8 µm), uniform, and compact cuticle with
no stomata. Early studies also showed that citrus leaf cuticle was thick and has very low
permeability to water and hence resists the intake of liquids [33–35]. To check whether
citrus cuticle was the main obstacle for the uptake of oxytetracycline by citrus leaves, we
punctured the citrus leaf cuticle using laser light [24]. The levels of ‘Ca. L. asiaticus’ titer
were significantly reduced in laser-perforated leaves after foliar application of oxytetra-
cycline, whereas it was not affected in intact leaves [24]. The previous results suggested
that only trace amounts of oxytetracycline were taken by intact citrus leaves due to the
presence of the thick cuticle, which acts as a barrier. In the same manner, low levels of
the fluorescent-labeled vancomycin and penicillin were taken up by intact citrus leaves,
whereas laser perforation of the citrus cuticle significantly enhanced their uptake [36]. Laser
perforation of the citrus cuticle also enhanced the uptake of other compounds including
lysine, trehalose, and adenosine triphosphate (ATP) by citrus leaves [36]. The impact of
perforation of the cuticle on the uptake of foliar-applied chemicals demonstrates the degree
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to which cuticular resistance limits the intake of chemicals to the mesophyll before they
can reach the plant vascular system.

Our current results showed that trunk injection results in higher levels of oxytetracy-
cline compared to the foliar application, which is in accordance with previous studies [24].
Our results also indicated that only trace amounts of oxytetracycline reach the vascular sys-
tem of citrus plants after foliar application. Higher levels of oxytetracycline were detected
in the xylem compared to the phloem after root drench and stem application [20]. This
result indicated that the xylem was the primary route for the transportation of oxytetracy-
cline. To test this hypothesis, we investigated the translocation of oxytetracycline in girdled
citrus seedlings and trees after root drench and trunk injection, respectively [21]. The
detection of oxytetracycline in the phloem and xylem tissues beyond the girdle confirmed
that oxytetracycline was mainly translocated via the xylem [21]. In addition, the presence of
oxytetracycline in the phloem tissues above the girdle indicated that it was first transported
in the xylem and then moved to the phloem. In agreement with our previous findings, a
bidirectional movement between the xylem and the phloem has been reported for several
compounds [37]. Our previous results suggested that trunk injection of oxytetracycline
was efficient for the delivery of oxytetracycline since it is mainly translocated in the xylem.

Although high levels of streptomycin were detected in uncovered citrus leaves that
were directly treated with the foliar application, only small amounts were detected in
covered leaves. Likewise, only trace amounts were detected in Hamlin citrus leaves after
trunk injection of streptomycin. On the other hand, high levels of oxytetracycline were
detected in citrus leaves after trunk injection. This result is similar to our previous results,
which showed that the concentration of oxytetracycline in the roots of citrus seedlings was
less than that of streptomycin after root drenching, indicating the greater translocation
of oxytetracycline to the canopy [20]. On the other hand, the levels of oxytetracycline in
the canopy were also higher than streptomycin after stem delivery and root drenching,
indicating a greater translocation of oxytetracycline than of streptomycin [20]. High levels
of streptomycin were also found in lower parts of tomato plants and peach seedlings upon
root drench [38,39]. The previous results suggested that streptomycin may be adsorbed or
bound to the xylem and other root tissues of citrus trees. The decrease in the concentration
of streptomycin solution after the addition of crushed peach leaves also indicated that
streptomycin binds to plant leaves [38]. The presence of high levels of streptomycin in
uncovered leaves compared to covered leaves after foliar application also indicated that
streptomycin was bound to citrus leaf tissues. In addition, the low level of streptomycin ob-
served in citrus leaves after trunk injection also indicated that streptomycin was attached to
the xylem of citrus trees. It is believed that the two guanido groups (positively charged) in
streptomycin make it bind tightly to the xylem surface, which carries a negative charge [38].
The binding of streptomycin to plant tissues could decrease its translocation in plants.
Although the mechanism is distinct, this result is also consistent with the model proposed
by Kleier [28] for phloem-specific translocation, suggesting that increasing the polarity of
xenobiotics decreased the likelihood that the compound would cross the cell membrane.
Previous results showed that saturation of incubated tissues with streptomycin was re-
quired before it moves to other tissues [39]. The results indicated that higher concentrations
of streptomycin may result in better translocation of streptomycin.

Our current study showed that streptomycin injection did not deliver significant
concentrations to the canopy. In contrast to our results, a recent study showed that the
injection of 2 g of streptomycin significantly reduced the ‘Ca. L. asiaticus’ titer in 3-year-old
citrus trees [30]. However, the mean foliar concentration (1.71 µg g−1) at their peak was
less than the minimum inhibitory concentration of 1.92 µg g−1 determined in the same
study [30]. In the present study, we injected 0.78 g of streptomycin per tree (in a 6-year-old
tree). Hence, the low levels of streptomycin obtained in this study after trunk injection can
be attributed to the large size of citrus trees and low applied dose relative to Li et al. [30],
although the applied dose in the present study is equivalent to the current recommended
application rate per acre for foliar applications.
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4. Material and Methods
4.1. Study 1: Effect of Adjuvants on Delivery of Streptomycin
4.1.1. Plant Material

Five-year-old Hamlin sweet orange (Citrus × sinensis [L. ] Osbeck.) on Swingle
citrumelo (×Citroncirus spp.) rootstock trees was used on June 6, 2020 for the adjuvant
delivery of streptomycin in the study. The location was in Lake Alfred, FL, USA (28.09◦ N,
81.37◦ W, elevation 51 m a.s.l.). Trees were growing in sandy soil, and each tree was
irrigated daily with a half-gallon using a drip irrigation system.

4.1.2. Experimental Design

The experiment was executed in a randomized complete block design with 12 blocks
and 10 treatments. Blocks were arranged linearly within rows, with two blocks per row.
Six rows were used for the experiment. The distance between planted trees within the
row was 2.75 m and that between rows was 6 m (approximately 618 trees per ha). The
experimental unit was one tree, and we left two buffer trees between each treated tree to
avoid cross-contamination.

4.1.3. Treatments

This study included 10 treatments: adjuvants (1) Exit, (2) Keyplex, (3) Grounded,
(4) Cohere, (5) Tactic, (6) Joint Venture, (7) LI 700 or (8) streptomycin trunk injection,
(9) foliar application of streptomycin in water (no adjuvant), and (10) a negative control
that was sprayed with water (no streptomycin). For foliar application, 1.56 g of FireWall
50WP (0.78 g streptomycin; AgroSource, Tequesta, FL, USA) was dissolved in 1.25 L water
and applied to each tree (approximately applied to runoff), using a CO2-pressurized hand
sprayer at approximately 100 psi. For the injection treatment, 1.56 g of FireWall 50WP
was dissolved in 20 mL of water and injected above the graft union as described in our
earlier study [24]. The applied rate (0.78 g streptomycin per tree) was equivalent to the
label-recommended rate of 11 oz acre−1 (771 g ha−1). Adjuvant rates were used at the
maximum labeled rates as described in our previous study [24].

Before foliar application, one shoot of each tree was flagged and labeled for leaf sampling,
and one young leaf of each labeled branch was collected for ‘Ca. L. asiaticus’ pre-sampling
analysis. Before treatment application, one shoot in each tree was covered in a plastic bag,
and the bag was removed after the applied treatment had dried. Two days after application,
3 leaves were collected from uncovered shoots and another 3 leaves were collected from
shoots that were covered with plastic bags. One month after application, one young leaf of
the same labeled branches was collected to measure the detection of ‘Ca. L. asiaticus.’

4.2. Study 2: Comparison of Streptomycin and Oxytetracycline Delivery
4.2.1. Plant Material

Trees from the same planting, although not the same trees, were selected for treatment
on 13 October 2020, to study the adjuvant delivery of streptomycin and oxytetracycline.
Grove care was the same as in Study 1.

4.2.2. Experimental Design

The experiment was also executed in a randomized complete block design with
12 blocks and 9 treatments (4 with oxytetracycline, 4 with streptomycin, and one negative
control). The arrangement of blocks in rows and experimental units were the same as in
Study 1. This study included 9 treatments: (1) Joint Venture + oxytetracycline, (2) LI 700
+ oxytetracycline, (3) water + oxytetracycline, (4) Nutrisync Micro Pak + streptomycin,
(5) Joint Venture + streptomycin, (6) LI 700 + streptomycin, and (7) water + streptomycin,
(8) trunk injection of oxytetracycline, (9) trunk injection of streptomycin. The concentrations
of streptomycin used in this study were the same as those used in Study 1. Four grams
of FireLine 17 WP (AgroSource; 0.72 g oxytetracycline) were applied in 1.25 L per tree
(approximately to runoff), including the no-adjuvant control with water as described in
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Study 1. For the injection treatment, 4 g of FireLine 17 WP were dissolved in 20 mL of water
and injected using the same approach as in Study 1. The applied rate (0.72 g oxytetracycline
per tree) was equivalent to the labeled rate of 24 oz acre-1 (1681 g ha−1). Adjuvants were
used at the maximum labeled rates as in [24]. Labeling, sampling, and application were the
same as implemented in Study 1. Leaf sampling for antibiotic quantifications and ‘Ca. L.
asiaticus’ titer estimation was performed as described above in Study 1. In addition, before
treatment application, one shoot in each tree was covered using a plastic bag, which was
removed 24 h after application.

4.2.3. Extraction and Analysis of Oxytetracycline and Streptomycin

The extraction and analysis of streptomycin and oxytetracycline were performed as
described in our previous studies [20,24]. Streptomycin and oxytetracycline ACCEL ELISA
kits were obtained from Plexense, Inc. (Davis, CA, USA) and were used according to
the manufacturer’s instructions [20,24]. The quantitation ranges of the streptomycin and
oxytetracycline kits were 0.150–12.5 ng mL−1 and 1.56–50 ng mL−1, respectively.

4.2.4. ‘Ca. L. asiaticus’ Detection

DNA was extracted using potassium acetate buffer as described in our previous
study [24]. Extracted DNA was adjusted to 100 ng/µL and then used for RT-qPCR amplifi-
cation using a TaqMan Universal PCR master mix (Life Technologies, Carlsbad, CA, USA)
and degenerate genus-specific (rpoB) primer-probe sets [24]. Assays were performed using
an Applied Biosystems QuantStudio 3 Real-Time PCR system (Applied Biosystems, Foster
City, CA, USA). (Ct). The qPCR cycle threshold (Ct) values ≤ 35 were assigned as positive
for ‘Ca. L. asiaticus’ infection, whereas qPCR Ct values > 35 were assigned as negative [24].

4.2.5. Statistical Analysis

Data were analyzed using analysis of variance of mixed linear models, in which block
(replication) was included as a random effect using the lm command in base R. Treatment
was included as a fixed effect, and the sample (covered or uncovered leaf) was included as a
fixed effect nested within the plant. For significant effects, least significant differences were
determined via Bonferroni’s protected LSD, using the lsd.test command in the {agricolae} R
package [40,41].

5. Conclusions

In summary, our results showed that, consistent with our hypotheses, neither oxyte-
tracycline nor streptomycin was successfully delivered by the foliar application even after
mixing these antibiotics with adjuvants (Figure 3A). This conclusion was based on the trace
levels of oxytetracycline and streptomycin that were detected in covered leaves, which indi-
cated the low systemic delivery of these antibiotics after foliar application (Figure 3A). This
conclusion was also supported by the PCR results, which did not show any decrease in ‘Ca.
L. asiaticus’ titer after any foliar application. The high levels of streptomycin in citrus leaves
(uncovered) that were directly exposed to the foliar application indicated that streptomycin
was adsorbed or bound within the leaves. The failure of the foliar application to deliver
oxytetracycline and streptomycin could result from the thick cuticle, which covers the citrus
leaf and acts as a barrier to xenobiotics. On the other hand, our results showed that trunk
injection was an effective delivery method for oxytetracycline (Figure 3B). This conclusion
is supported by the high levels of oxytetracycline and the low levels of ‘Ca. L. asiaticus’
titer found in citrus leaves after trunk injection (Figure 3B). Unfortunately, a low level of
streptomycin was detected in citrus leaves after trunk injection (Figure 3C). In agreement
with the ELISA results, no significant decrease in ‘Ca. L. asiaticus’ titer’ was observed after
trunk injection of streptomycin. This result indicates that injected streptomycin is bound to
the xylem of citrus trees and is not easily moved systemically, even after trunk injection.
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