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Whereas modern brain imaging often demands holding body positions incongruent

with everyday life, posture governs both neural activity and cognitive performance.

Humans commonly perform while upright; yet, many neuroimaging methodologies

require participants to remain motionless and adhere to non-ecological comportments

within a confined space. This inconsistency between ecological postures and imaging

constraints undermines the transferability and generalizability of many a neuroimaging

assay. Here we highlight the influence of posture on brain function and behavior.

Specifically, we challenge the tacit assumption that brain processes and cognitive

performance are comparable across a spectrum of positions. We provide an integrative

synthesis regarding the increasingly prominent influence of imaging postures on

autonomic function, mental capacity, sensory thresholds, and neural activity. Arguing

that neuroimagers and cognitive scientists could benefit from considering the influence

posture wields on both general functioning and brain activity, we examine existing

imaging technologies and the potential of portable and versatile imaging devices (e.g.,

functional near infrared spectroscopy). Finally, we discuss ways that accounting for

posture may help unveil the complex brain processes of everyday cognition.
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INTRODUCTION

From psychiatry and cognitive science to education and marketing, many experts draw on
discoveries from human brain imaging to inform their practice. However, few consumers of
neuroimaging findings fully appreciate the methodological and environmental variables that these
techniques often impose. For example, in a typical functional magnetic resonance imaging (fMRI)
experiment, participants lie motionless in a body-sized bore while piercing screeches, thumps,
and hums thunder around their head for up to an hour. In a customary electroencephalography
(EEG) experiment, participants sit upright, alone, in a small, silent, and often dimly lit room, while
staring at and responding to a computer screen for extended periods of time. Of the many glaring
discrepancies between such imaging environments and everyday life, this review focuses on the
role of body posture. We summarize important findings from research examining the relationship
between posture and brain data, highlight the mechanisms underlying these postural influences,
and discuss experimental techniques that can help overcome postural caveats in human brain
research.

Neuroimagers seldom draw on research suggesting that environmental variables impact human
cognition. Meanwhile, an entire field of research, entitled “embodied cognition,” highlights the
intricate relationship among our cognitive capacities, ongoing sensorimotor state, and surrounding
environment (Thompson and Varela, 2001; Wilson, 2002; Thompson, 2005; Di Paolo and
Thompson, 2014). Relevant postural findings highlight that slouching increases measures of
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helplessness and stress (Riskind and Gotay, 1982) and expansive
postures increase testosterone, decrease cortisol, and amplify
feelings of power and risk-tolerance (Carney et al., 2010). Static
imaging environments further diminish cognitive loads related
to balance, moving visual fields, and social interaction (Hari and
Kujala, 2009). Considering these factors, some scientists demand
a new neuroscientific model—the “embodied brain”—to better
account for the ongoing interactions between brain, body, and
environment (Kiverstein and Miller, 2015).

IMAGING METHODS AND IMAGING
POSTURES

Popular functional neuroimaging modalities collect
electromagnetic or hemodynamic brain data (Table 1). EEG
and magnetoencephalography (MEG) record electric and
magnetic signals from pyramidal neurons; fMRI measures
deoxygenated blood concentrations that correlate with neural
activity; and functional near infrared spectroscopy (fNIRS)
measures oxygenated and deoxygenated blood flow. EEG and
MEG come with spatial precision of about 1 cm, yet millisecond
temporal resolution; fMRI provides millimetric spatial resolution
but temporal precision of ∼1 s; fNIRS excels in neither temporal
nor spatial resolution and comes with a high signal-to-noise
ratio compared to fMRI (Cui et al., 2011). MEG outperforms
EEG in terms of signal-to-noise ratio when accessing deeper
brain regions (Goldenholz et al., 2009). Each imaging modality,
moreover, permits a subset of body positions. Participants can
wear EEG and fNIRS caps throughout a wide range of postures
(see Table 1) and, with proper equipment, can move and
interact with their environment; MEG restricts participants to an
adjustable seat that can adopt any position between an upright
chair and a horizontal bench; and most fMRI options constrain
participants to horizontal positions. Compared to portable
technologies (i.e., EEG and fNIRS), the large and static imaging
devices (i.e., fMRI and MEG) permit fewer posture, yet provide
higher-quality data. These intrinsic differences lend certain
imaging modalities more advantageous for specific applications
and research questions but less so for others (e.g., the postural
constraints of most MRI scanners would make fMRI a good way
to explore the sleeping brain, but less ideal to study the driving
brain).

Two canonical imaging postures dominate brain research
even though more ecological alternatives exist (see Table 1).
These established positions include sitting upright—common in
EEG, MEG, fNIRS, and most of cognitive and psychological
research; and lying supine—the standard for fMRI. Whereas,
a limited number of imaging experiments stray from these
standardized postures, humans perform many cognitive tasks
while standing and moving, yet few while lying down.
Experiments leveraging non-standard body positions often ask
particular questions which demand these postures. For example,
researchers have participants stand or walk to better understand
balance, gait, and motor disorders such as Parkinson’s disease
(Bakker et al., 2007; Koenraadt et al., 2014; Mahoney et al., 2016),
lie supine titled 6–12◦ head-down past horizontal to simulate a

microgravity environment (e.g., Spironelli and Angrilli, 2011),
or lie prone to investigate gravitational forces on cranial fluids
(Rice et al., 2013). Whereas, the execution of these experiments
fully depends on the use of non-standard imaging postures,
the supine and sitting positions hardly impede researchers from
conducting most neuroimaging experiments. This situation may
encourage neuroimagers to continue employing standardized
imaging postures even when ecological comportments could
better unveil the neural mechanisms of everyday cognition.

POSTURE INFLUENCES COGNITION

Posture alters sensory perception and behavior (Figure 1). For
example, when upright compared to supine: Olfactory thresholds
increase for select odorants (e.g., Lundström et al., 2008), pain
ratings amplify (e.g., Spironelli and Angrilli, 2011; Fardo et al.,
2013), visual awareness improves (e.g., Goodenough et al.,
1981; Marendaz et al., 1993), anticipatory anxiety heightens
(e.g., Lipnicki and Byrne, 2008), approach motivation increases
(Price et al., 2012), and conflicting thoughts decrease (e.g.,
Harmon-Jones et al., 2015). Posture further influences cognitive
performance. Compared to lying supine, sitting upright improves
non-verbal intelligence (e.g., Raven’s Progressive Matrices;
Lundström et al., 2008) and aids in composing mental images,
but impairs the ability to inspect them (Mast et al., 2003).
Standing compromises performance on problems requiring a
burst of insight (e.g., anagrams: Lipnicki and Byrne, 2005) and
improves psychomotor performance (Caldwell et al., 2000, 2003).
Memories, moreover, are easier to retrieve when assuming the
posture associated with the remembered event (Dijkstra et al.,
2007).

The fMRI environment may alter the very phenomena
researchers aim to study. This concern has motivated diverse
research groups to test how posture and cognition interact (e.g.,
Lundström et al., 2008; Harmon-Jones and Peterson, 2009).
Replication experiments, however, remain sparse, likely because
posture receives more attention as a procedural caveat than a
research field in its own right. Beyond posture, neuroimagers
must also address several other procedural and statistical
concerns before obtaining meaningful results (e.g., Eklund et al.,
2016). All in all, these studies highlight the importance of
considering posture across all cognitive and imaging research.

POSTURE INFLUENCES PHYSIOLOGY

Heart rate, respiratory volume, oxygen consumption, core
body temperature, cortisol secretion, and other indicators of
physiological arousal stabilize at higher levels when upright
compared to supine (Figure 1; Cole, 1989; Kräuchi et al.,
1997; Hennig et al., 2000; Badr et al., 2002; Jones and Dean,
2004). These physiological differences may influence the fMRI
derived blood-oxygen-level dependent (BOLD) signal, regardless
of whether or not brain processes actually change (Kastrup
et al., 1999; Di et al., 2013). fMRI measures neuronal activity
indirectly (see Shmuel, 2015); the BOLD signal stems from the
hemodynamic properties of neural populations and remains
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TABLE 1 | Each body posture raises particular considerations in terms of brain imaging modalities and cognitive experiments.

Canonical imaging postures Other everyday postures

Lying supine Sitting upright Standing erect Sitting reclined

EEG X X X X

MEG X X 8 X

fMRI X 8 8 8

fNIRS X X X X

Vigilance Low Medium High Medium/low

Assumed in waking life Rare Common Common Occasional

Associated cognitive tasks Few Many Many Few

Actions possible Few Many Most Few

To conduct fMRI beyond a horizontal body posture requires specialized scanners, which are extremely uncommon. Researchers can conduct EEG and fNIRS in any posture, but must

care for occipital sensors in the supine position. Humans execute most physical and cognitive actions when sitting or standing. To better depict the posture assumed in fMRI, this photo

shows a participant before entering the bore. During scanning, the head and upper body remain inside the bore, which measures about 60 cm in diameter for standard scanners.

highly sensitive to cardiopulmonary variables (Chang and
Glover, 2009; Chang et al., 2009; Di et al., 2013; Weinberger and
Radulescu, 2016). Thus, demonstrating that posture affects the

BOLD signal falls short of confirming a change in neural activity;
cardiopulmonary variables remain yoked to body position and
also weigh heavily on BOLD activity.
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Beyond BOLD, posture governs blood flow around the
brain (Gisolf et al., 2004). A few experiments employ a
stance-adjustable positron emission tomography (PET) gantry
and report greater blood flow to both visual and cerebellar
cortices when standing erect compared to lying supine (Ouchi
et al., 1999, 2001). Using fNIRS, researchers document decreases
in both oxygenated and deoxygenated cortical hemoglobin
volume when participants move from lying supine to sitting
upright (Edlow et al., 2010; Ozgoren et al., 2012). Due to a
paucity of upright MRI scanners capable of functional sequences,
researchers have yet to replicate postural fNIRS experiments with
fMRI. Because fNIRS and fMRI measure similar signals (Cui
et al., 2011), we can only presume that postural discrepancies
would also influence fMRI data.

Beyond cardiovascular measures, posture exerts a quantifiable
and direct impact on neural activity. A few EEG experiments
demonstrate that, compared to lying horizontally, lying head-
up on an incline between 30–45◦ (Cole, 1989; Vaitl and Gruppe,
1992) and sitting upright (Chang et al., 2011; Spironelli et al.,
2016) increase high-frequency neural activity, associated with
alertness and sensory processing, and dampen down low-
frequency oscillations associated with relaxed or drowsy states.
More recent studies leverage high-density EEG systems and
reveal greater high-frequency power across the cortex in more
upright postures (Thibault et al., 2014) as well as an 80%
increase in occipital gamma power when supine compared to
prone (Rice et al., 2013). Posture further alters event related
potentials (ERPs) in response to standard visual paradigms
(Rice et al., 2013), painful stimuli (Spironelli and Angrilli,
2011; Fardo et al., 2013), and emotional processing (Price
et al., 2012; Messerotti Benvenuti et al., 2013). In contrast
to these findings, a recent sensor-level MEG study revealed
greater high-frequency power over common language areas only,
rather than the entire cortex, when sitting upright compared
to when supine or reclined (Thibault et al., 2015). Sensor-
level MEG results, however, may represent only the strongest
postural effects and source-level analyses of such data may
reveal more widespread changes reminiscent of previous EEG
findings (Lifshitz et al., under review). Whereas, the majority
of these studies employ healthy young adults, posture may
exert a particularly strong influence on brain function in the
elderly and specific patient groups (e.g., cardiovascular disease or
tramautic brain injury: Ouchi et al., 2005; Thompson et al., 2005).
In this regard, converging evidence from cognitive, medical,
and neuroscientific research supports the “embodied brain”
hypothesis and underscores the importance of postural variables
in modern imaging experiments.

UNDERLYING MECHANISMS BY WHICH
POSTURE OPERATES

At least two physiological and one cognitive mechanism
contribute to the influence of posture on brain data: (1) changes
in noradrenalin output, (2) altered CSF thickness, and (3) a
preparatory cognitive state based on the subset of interactions
possible with the environment.

(1) The supine position hampers cortical excitability (Lipnicki,
2009; Spironelli et al., 2016). When lying horizontally,
compared to upright, gravitational loads redistribute and
stimulate arterial and cardiopulmonary baroreceptors, and
in turn, lead to a reduction in sympathetic nervous system
activity (Mohrman and Heller, 2003). This process appears
to impede noradrenergic release from neurons in the locus
coeruleus (Murase et al., 1994; Berridge and Waterhouse,
2003) and drives downstream cortical inhibition (Rau and
Elbert, 2001). A cleverly designed experiment supports this
theory (Cole, 1989). The researcher applied leg pressure via
anti-shock trousers (normally used to treat severe blood
loss) to maintain levels of baroreceptor activity between
lying horizontally and lying head-up on a 40◦ incline.
They found less high-frequency EEG activity only in the
condition with reduced baroreceptor firing (i.e., 40◦ incline
without leg pressure). Further theoretical (Lipnicki, 2009) and
experimental reports (Vaitl and Gruppe, 1992; Schneider et al.,
2008) support the idea that gravity initiates a physiological
cascade that leads to cortical inhibition.

(2) Slight shifts in CSF thickness can drastically alter EEG data
(Ramon et al., 2004, 2006; Wendel et al., 2008) and, to a lesser
extent, MEG data (Vorwerk et al., 2014). Strong evidence
for this interaction comes from a unique two-part multi-
postureMRI and EEG study (Rice et al., 2013). The researchers
found that when supine compared to prone, gravity draws
the brain downwards, thins out the highly conductive CSF
in occipital regions by 30%, brings the brain slightly closer
to posterior scalp electrodes, and in turn, amplifies high-
frequency occipital EEG power by an average of 80% (Rice
et al., 2013).While this study provides a wealth of information,
the scarcity of erect MRI scanners likely precluded an upright
condition. And yet, a complementary low-field (0.5 T) MRI
study scanned participants in the seated and supine positions
and found that gravity draws fluids downward into the spinal
canal when upright, decreases intracranial CSF and cerebral
blood flow, and amplifies intracranial compliance (Alperin
et al., 2005). Measures of CSF thickness in circumscribed
cortical regions, however, were not reported. Thus, the
quantitative differences in CSF thickness between supine
and upright postures remains largely elusive. The finding
that CSF not only distorts electromagnetic brain signals, but
also varies in thickness among postures, raises particular
concern regarding the standard practice of using anatomical
MRI data acquired in the supine posture to construct head
models for EEG and MEG analyses. Whereas, postural CSF
discrepancies may correlate well with brain imaging data, a
clear story hardly emerges relating CSF thickness to behavioral
observations. This insight suggests that factors beyond CSF
likely contribute to the influence of posture on human
functioning.

(3) A preparatory cognitive state, set to act on the subset
of possible interactions between the current position of a
participant and their surrounding environment, may partially
account for the influence of posture on brain activity. For
example, when lying down, the brain may be poorly prepared
for locomotion (de Lange et al., 2006), to observe a moving
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FIGURE 1 | Posture modulates physiology and cognition: Select experimental findings.

visual field (Kano, 1991), or to socially and physically interact
with our environment (Hari and Kujala, 2009). Motor plans
depend on ongoing limb configuration (de Lange et al.,
2006), the excitability of motor cortex increases in free-
standing compared to supported postures (Tokuno et al.,
2009), and when sitting, compared to supine, people react
more quickly to moving visual fields (Kano, 1991) and are
more likely to perceive themselves as moving when exposed
to a moving visual field (Guterman et al., 2012). Moreover,
the supine posture decreases social behaviors (Harmon-Jones
and Peterson, 2009; Price et al., 2012) and hardly invites
typical social interactions known to modulate brain activity,
such as eye contact (Ferri et al., 2014). These posture-
dependent cognitive states may manifest in both resting-state
brain oscillations (Chang et al., 2011; Thibault et al., 2014;
Spironelli et al., 2016) and neural responses to stimuli (i.e.,
ERPs: Spironelli and Angrilli, 2011; Price et al., 2012; Fardo
et al., 2013). The causality of interactions between cognition
and brain activity may always remain elusive; cognitive states

propel physiological change (i.e., top-down processes) and
physiological parameters also weigh on cognitive states (i.e.,
bottom-up effects).

Taken together, physiological cascades, cranial fluids, and
cognitive set all exert varying influences on brain imaging
data across postures. Whereas, noradrenergic output and
cognitive processing may directly influence cortical activity
measured at the neuronal level, CSF shunts the transmission
of electromagnetic activity from neurons to sensors and exerts
little influence on neuronal activity itself. Adopting experimental
designs that evaluate and integrate these three mechanisms can
only help to better understand ecological human functioning.

CORRECTING AND ACCOUNTING FOR
THE EFFECTS OF POSTURE

Two paths emerge to overcome postural caveats in neuroimaging.
First, we can rework standard experimental designs to minimize
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the influence of posture on brain activity; and second, we
can embrace new imaging technologies conducive to everyday
human behavior.

Accounting for the three aforementioned postural
mechanisms would require a combination of innovative
experimental designs, computational expertise, and a new
body of research to draw upon. For example, to maintain
cortical excitability in the supine posture, researchers could
entertain the possibility of applying pressure to the body via
anti-shock trousers to maintain baroreceptor firing (Cole, 1989),
pharmacologically sustaining noradrenalin levels, or providing
periodic stimulation via conversation or sensory input to sustain
participant alertness. Overcoming variation in CSF thickness
may require anatomical brain scans from each participant plus
compensatory algorithms to calculate the standard redistribution
of CSF as a function of posture. Such algorithms do not yet
exist and would demand further head modeling research that
taps into a database of posture-induced CSF perturbations
across individuals (e.g., see Rice et al., 2013). Novel research on
posture and cognition, moreover, could help future experimental
designs minimize variations in cognitive state among postures.
For example, research already demonstrates that poor sleep
impedes working memory when supine compared to sitting
(Muehlhan et al., 2014) and hampers psychomotor performance
when sitting compared to standing (Caldwell et al., 2003). These
findings suggest that weeding out sleep-deprived participants
from supine imaging experiments could help researchers collect
brain data that better reflect upright human functioning.
Neuroimagers could further benefit from extending similar
screening procedures to participants with mood and hormonal
disturbances in response to MRI environments (Muehlhan et al.,
2011) and mental performance problems in response to scanner
noise (Pripfl et al., 2006). With diligence, neuroimagers can
improve current research paradigms to account for a number of
these postural discrepancies.

Imaging the human brain increasingly relies on smaller,
lighter, and more mobile hardware. These devices hold the
potential to thrust brain imaging toward investigating everyday
interactive and social cognition. With the use of overhead
gantries, participants undergoing EEG and fNIRS can now move
and interact in a laboratory environment (Gramann et al., 2011;
Mahoney et al., 2016). Recent developments, moreover, permit
individuals to connect EEG electrodes to their smartphone
and record brain activity in everyday contexts (Stopczynski
et al., 2014). Moving while recording EEG, however, comes
with caveats. Muscle activity, eye movement, and head motion
all contaminate the EEG signal, especially in high-frequency
bandwidths (Muthukumaraswamy, 2013). One potential concern
is that researchers who are not careful may mistake these
artifacts for brain oscillations themselves. The fNIRS signal also

remains sensitive to motion artifacts, but responds less to muscle

contamination. These portable devices sacrifice signal quality for
ecological human functioning. The use of these technologies,
however, is not an “either-or” dilemma. In a single experiment,
we can combine data from the more precise and static imaging
modalities with data from ecological yet coarser devices. Similar
to how portable devices revolutionized the field of eye-tracking
(Hayhoe and Ballard, 2005), wearable neuroimaging technologies
hold promise to revolutionize how we study the living human
brain.

CONCLUSION

Across numerous experiments, posture reliably influences brain
data, core physiology, and cognitive performance. This reality
rings alarm bells in a field that rarely considers postural
constraints. Whereas, ecological comportments such as standing
and moving recruit a host of additional brain processes and
represent the base from which we perform our largest diversity of
interactions, few brain imaging studies ask participants to stand
or move. A pillar of neuroimaging, MRI, confines participants to
a supine position seldom assumed during common wakefulness.
This state of affairs brings into question the practice of using
neuroimaging findings to inform our ecological behavior of
everyday life. Bridging the lacuna between imaging context and
ecological posture would further unveil the neural processes
giving rise to the living human brain.

AUTHOR CONTRIBUTIONS

RT reviewed the literature, consulted with experts, and prepared
the initial draft. RT and AR prepared the final draft together. AR
provided comments throughout manuscript preparation.

FUNDING

AR acknowledges funding from the Canada Research Chair
program, Discovery and Discovery Acceleration Supplement
grants from the Natural Sciences and Engineering Research
Council of Canada (NSERC), Canadian Institutes of Health
Research, and the Bial Foundation. RT, also a Bial recipient,
acknowledges an Alexander Graham Bell Canada Graduate
Scholarship from NSERC. The funding sources had no
involvement in reviewing the literature, writing the manuscript,
or deciding to submit the paper for publication.

ACKNOWLEDGMENTS

We thank Lu Zhou for help with graphics and Drs. Xu Cui and
Joseph Baker for providing the photo of fNIRS.

REFERENCES

Alperin, N., Hushek, S. G., Lee, S. H., Sivaramakrishnan, A., and Lichtor, T.

(2005). MRI study of cerebral blood flow and CSF flow dynamics in an upright

posture: the effect of posture on the intracranial compliance and pressure. Acta

Neurochir. Suppl. 95, 177–181. doi: 10.1007/3-211-32318-X_38

Badr, C., Elkins, M. R., and Ellis, E. R. (2002). The effect of body position on

maximal expiratory pressure and flow. Aust. J. Physiother. 48, 95–102. doi:

10.1016/S0004-9514(14)60203-8

Bakker, M., Verstappen, C. C. P., Bloem, B. R., and Toni, I. (2007). Recent advances

in functional neuroimaging of gait. J. Neural Transm. 114, 1323–1331. doi:

10.1007/s00702-007-0783-8

Frontiers in Human Neuroscience | www.frontiersin.org 6 October 2016 | Volume 10 | Article 520

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Thibault and Raz Imaging Posture Veils Neural Signals

Berridge, C. W., and Waterhouse, B. D. (2003). The locus coeruleus-

noradrenergic system: modulation of behavioral state and state-dependent

cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84. doi: 10.1016/S0165-

0173(03)00143-7

Caldwell, J. A., Prazinko, B., and Caldwell, J. L. (2003). Body posture affects

electroencephalographic activity and psychomotor vigilance task performance

in sleep-deprived subjects. Clin. Neurophysiol. 114, 23–31. doi: 10.1016/S1388-

2457(02)00283-3

Caldwell, J. A., Prazinko, B. F., and Hall, K. K. (2000). The effects of body posture

on resting electroencephalographic activity in sleep-deprived subjects. Clin.

Neurophysiol. 111, 464–470. doi: 10.1016/S1388-2457(99)00289-8

Carney, D. R., Cuddy, A. J. C., and Yap, A. J. (2010). Power posing: brief

nonverbal displays affect neuroendocrine levels and risk tolerance. Psychol. Sci.

21, 1363–1368. doi: 10.1177/0956797610383437

Chang, C., Cunningham, J. P., and Glover, G. H. (2009). Influence of heart rate on

the BOLD signal: the cardiac response function. Neuroimage 44, 857–869. doi:

10.1016/j.neuroimage.2008.09.029

Chang, C., and Glover, G. H. (2009). NeuroImage relationship between respiration,

end-tidal CO 2, and BOLD signals in resting-state fMRI. Neuroimage 47,

1381–1393. doi: 10.1016/j.neuroimage.2009.04.048

Chang, L.-J., Lin, J.-F., Lin, C.-F., Wu, K.-T., Wang, Y.-M., and Kuo, C.-D. (2011).

Effect of body position on bilateral EEG alterations and their relationship with

autonomic nervous modulation in normal subjects.Neurosci. Lett. 490, 96–100.

doi: 10.1016/j.neulet.2010.12.034

Cole, R. J. (1989). Postural baroreflex stimuli may affect EEG arousal and sleep in

humans. J. Appl. Physiol. 67, 2369–2375.

Cui, X., Bray, S., Bryant, D.M., Glover, G. H., and Reiss, A. L. (2011). A quantitative

comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 54,

2808–2821. doi: 10.1016/j.neuroimage.2010.10.069

de Lange, F. P., Helmich, R. C., and Toni, I. (2006). Posture influences

motor imagery: an fMRI study. Neuroimage 33, 609–617. doi:

10.1016/j.neuroimage.2006.07.017

Di, X., Kannurpatti, S. S., Rypma, B., and Biswal, B. B. (2013). Calibrating BOLD

fMRI activations with neurovascular and anatomical constraints. Cereb. Cortex

23, 255–263. doi: 10.1093/cercor/bhs001

Dijkstra, K., Kaschak, M. P., and Zwaan, R. A. (2007). Body posture

facilitates retrieval of autobiographical memories. Cognition 102, 139–149. doi:

10.1016/j.cognition.2005.12.009

Di Paolo, E. A., and Thompson, E. (2014). “The enactive approach ezequiel di paolo

and evan thompson forthcoming in lawrence shapiro, Edn,” in The Routledge

Handbook of Embodied Cognition, ed L. Shapiro (New York, NY: Routledge

Press), 68–78.

Edlow, B. L., Kim, M. N., Durduran, T., Zhou, C., Putt, M. E., Yodh, A. G., et al.

(2010). The effects of healthy aging on cerebral hemodynamic responses to

posture change. Physiol. Meas. 31, 477–495. doi: 10.1088/0967-3334/31/4/002

Eklund, A., Nichols, T. E., and Knutsson, H. (2016). Cluster failure: why fMRI

inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad.

Sci.U.S.A. 113, 7900–7905. doi: 10.1073/pnas.1602413113

Fardo, F., Spironelli, C., and Angrilli, A. (2013). Horizontal body position reduces

cortical pain-related processing: evidence from late ERPs. PLoS ONE 8:e81964.

doi: 10.1371/journal.pone.0081964

Ferri, F., Busiello, M., Campione, G. C., De Stefani, E., Innocenti, A., Romani, G.

L., et al. (2014). The eye contact effect in request and emblematic hand gestures.

Eur. J. Neurosci. 39, 841–851. doi: 10.1111/ejn.12428

Gisolf, J., van Lieshout, J. J., van Heusden, K., Pott, F., Stok, W. J., and

Karemaker, J. M. (2004). Human cerebral venous outflow pathway depends

on posture and central venous pressure. J. Physiol. 560, 317–327. doi:

10.1113/jphysiol.2004.070409

Goldenholz, D. M., Ahlfors, S. P., Ha, M. S., Sharon, D., Ishitobi, M., Vaina,

L. M., et al. (2009). Mapping the signal-to-noise-ratios of cortical sources in

magnetoencephalography and electroencephalography. Hum. Brain Mapp. 30,

1077–1086. doi: 10.1002/hbm.20571

Goodenough, D. R., Oltman, P. K., Sigman, E., and Cox, P. W. (1981). The

rod-and-frame illusion in erect and supine observers. Percept. Psychophys. 29,

365–370.

Gramann, K., Gwin, J. T., Ferris, D. P., Oie, K., Jung, T. P., Lin, C. T., et al. (2011).

Cognition in action: imaging brain/body dynamics in mobile humans. Rev.

Neurosci. 22, 593–608. doi: 10.1515/RNS.2011.047

Guterman, P. S., Allison, R. S., Palmisano, S., and Zacher, J. E. (2012). Influence of

head orientation and viewpoint oscillation on linear vection. J. Vestib. Res. 22,

105–116. doi: 10.3233/VES-2012-0448

Hari, R., and Kujala, M. V., (2009). Brain basis of human social interaction :

from concepts to brain imaging. Physiol. Rev. 89, 453–479. doi:

10.1152/physrev.00041.2007

Harmon-Jones, E., and Peterson, C. K. (2009). Supine body position reduces neural

response to anger evocation. Psychol. Sci. 20, 1209–1210. doi: 10.1111/j.1467-

9280.2009.02416.x

Harmon-Jones, E., Price, T. F., and Harmon-Jones, C. (2015). Supine body posture

decreases rationalizations: testing the action-based model of dissonance. J. Exp.

Soc. Psychol. 56, 228–234. doi: 10.1016/j.jesp.2014.10.007

Hayhoe, M., and Ballard, D. (2005). Eye movements in natural behavior. Trends

Cogn. Sci. 9, 188–194. doi: 10.1016/j.tics.2005.02.009

Hennig, J., Friebe, J., Ryl, I., Krämer, B., Böttcher, J., and Netter, P. (2000). Upright

posture influences salivary cortisol. Psychoneuroendocrinology 25, 69–83. doi:

10.1016/S0306-4530(99)00037-2

Jones, A., and Dean, E. (2004). Body position change and its effect

on hemodynamic and metabolic status. Heart Lung 33, 281–290. doi:

10.1016/j.hrtlng.2004.04.004

Kano, C. (1991). An ecological theory of motion sickness and postural instability

an ecological theory of motion sickness and postural instability. Ecol. Psychol.

3, 241–252. doi: 10.1207/s15326969eco0303

Kastrup, A., Krüger, G., Glover, G. H., and Moseley, M. E. (1999). Assessment of

cerebral oxidative metabolism with breath holding and fMRI. Magn. Reson.

Med. 42, 608–611. doi: 10.1002/(SICI)1522-2594(199909)42:3<608::AID-

MRM26>3.0.CO;2-I

Kiverstein, J., and Miller, M. (2015). The embodied brain: towards a

radical embodied cognitive neuroscience. Front. Hum. Neurosci. 9:237. doi:

10.3389/fnhum.2015.00237

Koenraadt, K. L. M., Roelofsen, E. G. J., Duysens, J., and Keijsers, N.

L. W. (2014). Cortical control of normal gait and precision stepping:

an fNIRS study. Neuroimage 85, 415–422. doi: 10.1016/j.neuroimage.2013.

04.070

Kräuchi, K., Cajochen, C., andWirz-Justice, A. (1997). A relationship between heat

loss and sleepiness : effects of postural change and melatonin administration. J.

Appl. Physiol. 83, 134–139.

Lipnicki, D. M. (2009). Baroreceptor activity potentially facilitates

cortical inhibition in zero gravity. Neuroimage 46, 10–11. doi:

10.1016/j.neuroimage.2009.01.039

Lipnicki, D. M., and Byrne, D. G. (2005). Thinking on your back: solving anagrams

faster when supine thanwhen standing. Brain Res. Cogn. Brain Res. 24, 719–722.

doi: 10.1016/j.cogbrainres.2005.03.003

Lipnicki, D. M., and Byrne, D. G. (2008). An effect of posture on anticipatory

anxiety. Int. J. Neurosci. 118, 227–237. doi: 10.1080/00207450701750463

Lundström, J. N., Boyle, J. A., and Jones-Gotman, M. (2008). Body position-

dependent shift in odor percept present only for perithreshold odors. Chem.

Senses 33, 23–33. doi: 10.1093/chemse/bjm059

Mahoney, J. R., Holtzer, R., Izzetoglu, M., Zemon, V., Verghese, J., and Allali, G.

(2016). The role of prefrontal cortex during postural control in Parkinsonian

syndromes a functional near-infrared spectroscopy study. Brain Res. 1633,

126–138. doi: 10.1016/j.brainres.2015.10.053

Marendaz, C., Stivalet, P., Barraclough, L., and Walkowiac, P. (1993). Effect of

gravitational cues on visual search for orientation. J. Exp. Psychol. Hum. Percept.

Perform. 19, 1266–1277. doi: 10.1037/0096-1523.19.6.1266

Mast, F. W., Ganis, G., Christie, S., and Kosslyn, S. M. (2003). Four types of visual

mental imagery processing in upright and tilted observers. Cogn. Brain Res. 17,

238–247. doi: 10.1016/S0926-6410(03)00111-3

Messerotti Benvenuti, S., Bianchin, M., and Angrilli, A. (2013). Posture affects

emotional responses: a head down bed rest and ERP study. Brain Cogn. 82,

313–318. doi: 10.1016/j.bandc.2013.05.006

Mohrman, D. E., and Heller, L. J. (2003). Cardiovascular Physiology. New York,

NY: Lange Medical Books/McGraw-Hill.

Muehlhan, M., Lueken, U., Wittchen, H. U., and Kirschbaum, C. (2011).

The scanner as a stressor: evidence from subjective and neuroendocrine

stress parameters in the time course of a functional magnetic resonance

imaging session. Int. J. Psychophysiol. 79, 118–126. doi: 10.1016/j.ijpsycho.2010.

09.009

Frontiers in Human Neuroscience | www.frontiersin.org 7 October 2016 | Volume 10 | Article 520

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Thibault and Raz Imaging Posture Veils Neural Signals

Muehlhan, M., Marxen, M., Landsiedel, J., Malberg, H., and Zaunseder, S. (2014).

The effect of body posture on cognitive performance: a question of sleep quality.

Front. Hum. Neurosci. 8:171. doi: 10.3389/fnhum.2014.00171

Murase, S., Inui, K., and Nosaka, S. (1994). Baroreceptor inhibition of the

locus coeruleus noradrenergic neurons. Neuroscience 61, 635–643. doi:

10.1016/0306-4522(94)90440-5

Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle

artifacts in MEG/EEG: a review and recommendations. Front. Hum. Neurosci.

7:138. doi: 10.3389/fnhum.2013.00138

Ouchi, Y., Okada, H., Yoshikawa, E., Futatsubashi, M., and Nobezawa, S. (2001).

Absolute changes in regional cerebral blood flow in association with upright

posture in humans: an orthostatic PET study. J. Nucl. Med. 42, 707–712.

Ouchi, Y., Okada, H., Yoshikawa, E., Nobezawa, S., and Futatsubashi, M. (1999).

Brain activation during maintenance of standing postures in humans. Brain

122, 329–338.

Ouchi, Y., Yoshikawa, E., Kanno, T., Futatsubashi, M., Sekine, Y., Okada,

H., et al. (2005). Orthostatic posture affects brain hemodynamics and

metabolism in cerebrovascular disease patients with and without coronary

artery disease: a positron emission tomography study. Neuroimage 24, 70–81.

doi: 10.1016/j.neuroimage.2004.07.044

Ozgoren, M., Tetik, M., Izzetoglu, K., Oniz, A., and Onaral, B. (2012). “Effect of

body position on NIRS based hemodynamic measures from prefrontal cortex,”

in Lecture Notes in Computer Science, eds D. Liu, C. Alippi, D. Zhao, and A.

Hussain (Berlin; Heidelberg: Springer), 138–146.

Price, T. F., Dieckman, L. W., and Harmon-Jones, E. (2012). Embodying

approach motivation: body posture influences startle eyeblink and event-

related potential responses to appetitive stimuli. Biol. Psychol. 90, 211–217. doi:

10.1016/j.biopsycho.2012.04.001

Pripfl, J., Robinson, S., Leodolter, U., Moser, E., and Bauer, H. (2006). EEG reveals

the effect of fMRI scanner noise on noise-sensitive subjects. Neuroimage 31,

332–341. doi: 10.1016/j.neuroimage.2005.11.031

Ramon, C., Schimpf, P., Haueisen, J., Holmes, M., and Ishimaru, A. (2004). Role of

soft bone, CSF and gray matter in EEG simulations. Brain Topogr. 16, 245–248.

doi: 10.1023/B:BRAT.0000032859.68959.76

Ramon, C., Schimpf, P. H., and Haueisen, J. (2006). Influence of head models on

EEG simulations and inverse source localizations. Biomed. Eng. Online 5:10.

doi: 10.1186/1475-925X-5-10

Rau, H., and Elbert, T. (2001). Psychophysiology of arterial baroreceptors and

the etiology of hypertension. Biol. Psychol. 57, 179–201. doi: 10.1016/S0301-

0511(01)00094-1

Rice, J. K., Rorden, C., Little, J. S., and Parra, L. C. (2013). Subject

position affects EEG magnitudes. Neuroimage 64, 476–484. doi:

10.1016/j.neuroimage.2012.09.041

Riskind, J. H., and Gotay, C. C. (1982). Physical posture: could it have regulatory

or feedback effects on motivation and emotion? Motiv. Emot. 6, 273–298. doi:

10.1007/BF00992249

Schneider, S., Brümmer, V., Carnahan, H., Dubrowski, A., Askew, C. D.,

and Strüder, H. K. (2008). What happens to the brain in weightlessness?

A first approach by EEG tomography. Neuroimage 42, 1316–1323. doi:

10.1016/j.neuroimage.2008.06.010

Shmuel, A. (2015). “Locally measured neuronal correlates of functional MRI

signals,” in fMRI: From Nuclear Spins to Brain Functions, eds K. Uludağ, K.
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