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Simple Summary: Using a first-principles approach, we demonstrate how standard-of-care therapies
for bone metastatic prostate cancer (BMPCa) patients can be optimized with the use of routine
measurements to significantly delay the evolution of resistant disease, potentially extending overall
patient survival.

Abstract: Background: Bone metastatic prostate cancer (BMPCa), despite the initial responsiveness to
androgen deprivation therapy (ADT), inevitably becomes resistant. Recent clinical trials with upfront
treatment of ADT combined with chemotherapy or novel hormonal therapies (NHTs) have extended
overall patient survival. These results indicate that there is significant potential for the optimization
of standard-of-care therapies to delay the emergence of progressive metastatic disease. Methods:
Here, we used data extracted from human bone metastatic biopsies pre- and post-abiraterone
acetate/prednisone to generate a mathematical model of bone metastatic prostate cancer that can
unravel the treatment impact on disease progression. Intra-tumor heterogeneity in regard to ADT
and chemotherapy resistance was derived from biopsy data at a cellular level, permitting the model
to track the dynamics of resistant phenotypes in response to treatment from biological first-principles
without relying on data fitting. These cellular data were mathematically correlated with a clinical
proxy for tumor burden, utilizing prostate-specific antigen (PSA) production as an example. Results:
Using this correlation, our model recapitulated the individual patient response to applied treatments
in a separate and independent cohort of patients (n = 24), and was able to estimate the initial
resistance to the ADT of each patient. Combined with an intervention-decision algorithm informed
by patient-specific prediction of initial resistance, we propose to optimize the sequence of treatments
for each patient with the goal of delaying the evolution of resistant disease and limit cancer cell
growth, offering evidence for an improvement against retrospective data. Conclusions: Our results
show how minimal but widely available patient information can be used to model and track the
progression of BMPCa in real time, offering a clinically relevant insight into the patient-specific
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evolutionary dynamics of the disease and suggesting new therapeutic options for intervention. Trial
registration: NCT # 01953640. Funding: Funded by an NCI U01 (NCI) U01CA202958-01 and a Moffitt
Team Science Award. CCL and DB were partly funded by an NCI PSON U01 (U01CA244101). AA
was partly funded by a Department of Defense Prostate Cancer Research Program (W81XWH-15-1-
0184) fellowship. LC was partly funded by a postdoctoral fellowship (PF-13-175-01-CSM) from the
American Cancer Society.

Keywords: computational model; mathematical oncology; androgen therapy resistance; bone
metastatic prostate cancer; personalized treatment

1. Introduction

Approximately 30% of patients that are treated for primary prostate cancer will
develop recurrent disease that presents either as biochemical recurrence (rising prostate-
specific antigen (PSA) levels) or positive scans/biopsies of local or distant metastases [1,2].
The treatment options available to these patients, and those diagnosed with advanced
metastatic prostate cancer, have typically involved initiation of androgen deprivation
therapy (ADT) [3,4]. Although monitoring serum PSA levels remains a widely used indi-
cator of tumor burden and therapy response, a better understanding and quantification
of the unseen cellular evolution is needed [5,6]. First-generation anti-androgens such
as Leuprolide (LHRH agonist) and Goserelin (GnRH agonist) are successful in slowing
disease progression but, over time, resistance emerges despite the depletion of circulating
androgens [7]. Surprisingly, the resistant cells that emerge are still dependent on androgens
but have developed mechanisms to synthesize the hormone via increased activity of the
enzyme CYP17A or the expression of splice variants of the androgen receptor that are
ligand-independent/sensitive to very low androgen levels [8,9]. This has led to the devel-
opment of novel hormonal treatments (NHTs), CYP17A inhibitors (abiraterone acetate),
and highly specific androgen receptor antagonists (enzalutamide, apalutamide, darolu-
tamide) [3,10–12]. Despite their success, the onset of castrate-resistant prostate cancer
(CRPC) remains inevitable [13]. NHTs and chemotherapy (docetaxel/cabazitaxel) are
effective in CRPC patients, but associated morbidities can limit dose and duration [14].
The upfront combination of ADT with chemotherapy or with NHTs is superior to ADT
alone in extending the overall survival of patients diagnosed with recurrent hormone-
sensitive metastatic prostate cancer [15–18]. More recently, the upfront intensification of
therapy with the addition of abiraterone to ADT in the LATITUDE clinical trial showed
improvement in overall survival [17]. This indicates that there is significant room to opti-
mize the choice of standard-of-care therapies that are administered in hormone-sensitive
and castrate-resistant prostate cancer states. However, doing so via clinical trials can be
costly, time-consuming, and often does not take into account inter-patient heterogeneity.
To redress this, computational and mathematical models derived from patient data that
faithfully capture the biology of the disease can aid not only in predicting but also teasing
out and quantifying the response to therapy, and ultimately, disease progression [19–21].

The key to the accuracy of mathematical models is the ability to measure tumor
burden either by imaging or by using surrogate measurements [6,22]. While PSA has been
widely used in mathematical models of intermittent and adaptive ADT [13,19,21,23–27],
by focusing instead on the genomic heterogeneity of the underlying disease, it is possible
to overcome many of the hurdles of the biomarker. For this, we generated a clinically
oriented mathematical model of bone metastatic prostate cancer (BMPCa) without the
need of data-fitting by quantifying empirical cellular data from analysis of human bone
metastatic castration-resistant prostate cancer biopsies pre- and post-second-generation
ADT (abiraterone, from Mayo clinic). The model results were mathematically correlated to
a clinical biomarker, for which we used PSA as an example, and validated in a separate
independent cohort of patient clinical records from Moffitt Cancer Center. Using only
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patient PSA values, the model recapitulated historical data on treatment response. Based
on tumor response to treatment, the model was used to estimate the proportion of resistant
sub-populations to first-generation ADT (such as LHRH and GnRH agonists) within each
patient’s metastases. Consequently, resistance-informed algorithms were combined with
the mathematical model to optimize how standard-of-care therapy is delivered to patients
using PSA values as a surrogate for tumor response. Our approach suggests that, using
existing therapeutics and basic clinical patient data with a mathematical understanding
of disease evolution, we can delay the emergence of resistance, extend the efficacy of said
therapies, and thus increase overall patient survival.

2. Methods and Materials
2.1. Immunofluorescent Staining and Analysis

To extract measurements of cellular behavior, it was decided to use cleaved Caspase-
3 as a measure of apoptosis, and phosphorylated Histone-H3 as a proxy for division.
Caspase-3 is known to be activated in apoptotic cells, while Histone H3 is specifically
phosphorylated during both mitosis and meiosis. Both have been widely used as markers
for cell death (both from intrinsic and extrinsic mechanisms) and cell division accordingly.

All patient information was obtained with appropriate IRB approval from the Moffitt
Cancer Center (MCC-17402; n = 24). De-identified prostate cancer bone biopsies from
patients experiencing ADT failure and before starting any new NHT for the castrate-
resistant state (pre- and post-abiraterone acetate with prednisone treatment; n = 10) were
provided by the Mayo Clinic, Rochester, MN. This was a sub cohort of patients enrolled
into a larger biopsy-only trial performed at Mayo Clinic in castrate-resistant prostate cancer
patients, (NCT # 01953640) the details of which have been previously published [28] and in
which all patients provided a written informed consent. We selected patients with serial
and successful biopsies of skeletal metastases for our study, which was not a stated aim of
the larger study. Slides were dewaxed and rehydrated prior to transfer to antigen retrieval
(1X Tris EDTA pH 9.0 in pressure cooker for 5 min followed by 20 min cooling to room
temperature) and then blocked in 10% goat serum in 1X TBS for 1 h at room temperature.
Antibodies (pan-cytokeratin, Sigma-Aldrich #C2562; phospho histone H3 Millipore #06-570;
and cleaved caspase-3, Cell Signaling #9664S and matching IgG controls) were diluted
(1:200) in blocking buffer and incubated overnight at 4 ◦C in a humidified chamber. After
washing, slides were incubated in secondary antibodies (Alexaflour goat anti-rabbit 488,
568 Thermo Fisher Scientific, #A-32723 and #A-11011, respectively) at a 1:1000 dilution
in blocking solution at room temperature under light-proof conditions for 1 h at room
temperature prior to washing and aqueous mounting with Vectashield mounting medium
containing DAPI (Vector Labs, # H-1200). At least three representative photomicrographs
were taken for each sample and experimental condition. For semiquantitative analysis,
regional images were segmented based on the intensity of staining using Definiens Tissue
Studio Software, as we have previously described.

2.2. Model and Assumptions

The code is free to use (Apache License 2.0), written in Processing (processing.org),
and can be downloaded at: github.com/d4r7hur/PSASim. The model was built around the
National Comprehensive Cancer Network guidelines for the treatment of systemic castrate
naïve prostate cancer, which suggest treatment with 1st-generation ADT (such as leuprolide
and goserelin) or 2nd-generation ADT (enzalutamide or bicalutamide) either alone or in
combination with chemotherapy (docetaxel or cabazitaxel) [29]. As the emergence of
resistant disease is a constant in this patient cohort, we assumed that phenotypically, there
are potentially up to 6 types of prostate cancer cell sub-populations that are either (1) naïve
or can evolve to develop resistance to the following therapies: (2) 1st-generation ADT-
resistant (ADT1R), (3) 2nd-generation ADT-resistant (ADT2R), (4) chemotherapy-resistant
(CTR), (5) combination of ADT1R/CTR; or (6) combination of ADT2R/CTR.
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While tumor burden is calculated based solely on quantified cellular proliferation
data (Figure 1a), a mathematical correlation can be made to any clinical biomarker, or
sets thereof. As an example, we used PSA concentration as a clinical readout due to its
wide use and availability. The literature reports that, on average, carcinomatous tissue
contributes 3.5 ng/mL PSA per gram per day (with normal prostatic epithelium and benign
hyperplastic tissue estimated at 0.1 and 0.3 ng/mL/g, respectively) [30]. A typical cell
weighs 3.5 × 10−9 g [31]. As PSA and other factors make up approximately 20% of a
cell’s weight, we estimated that 1 g of BMPCa tissue contains ~385,000,000 cells. Thus,
1 metastatic prostate cancer cell would produce 9.8 × 10−9 ng/mL of PSA over a 24 h
period [32]. It has been further estimated that approximately 1 × 1011 cells make up the
total cellular volume of bone marrow in adult humans [33]. Transforming this number into
the upper-limit scenario where the bone marrow is made up entirely of cancer cells, we
determine that the maximum theoretical carrying capacity (Ccap) for tumor growth is when
the PSA levels reach 1000 ng/mL (~1.08 × 1011 cells) (Figure 1). This value was also used
as a conjectured clinical endpoint. A caveat of this proxy is that, in the late stages of the
disease, less luminal tumor cells might evolve to produce less PSA per cell or even stop
producing it all together. While a quantification of this antigen production differential is
outside of the scope of this research, any other biomarker or set thereof (such as immune
cell response measurements) can be correlated with the model.

When interpreting the patient’s clinical data, we consider (1) that the initial PSA value
could represent hormone-sensitive recurrent cancer (Stage M0) and, therefore, could be
a homogeneous population of naïve prostate cancer cells (no resistant sub-populations
present). While this is an important first step in determining theoretical initial conditions
that can evolve freely in response to treatments, a heterogeneous population could give
rise to the same PSA. To tackle this, we also simulate different initial populations whose
evolution might recapitulate the data better. We consider that an initial resistance to
1st-generation ADT could be present and simulate key scenarios ranging from an initial
presence of 10% to 100%-resistant populations. In this coarse-grain approach, we will not
consider any other initial resistance to reduce complexity in the analysis of the results. We
assume that (2) the treatments as reported in the patient’s history were applied in duration
and intensity according to the standard-of-care therapy [29], and (3) treatments such as
bisphosphonates, surgery, and radiation were applied as palliative treatments, i.e., these
treatments decrease PSA by debulking the tumor but do not impact tumor heterogeneity
and do not generate resistance (Figure 2) (Figure S2). While our previous work shows that
the effects of bisphosphonates are known to have antitumor effects, the impact they might
have on generating subpopulations of cells is currently unknown [34].
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Figure 1. Parameterization of the mathematical model of recurrent prostate cancer. (a) Serial sec-
tions derived from bone metastatic prostate cancer patients (pre- and post-abiraterone) were 
stained for phospho-histone H3 (arrows, red) and cleaved caspase-3 (arrows, red) as readouts for 
proliferation and apoptosis, respectively, in pan-cytokeratin-positive (green) prostate cancer cells. 
Scale bars represent 100 μm. (b) Experimental and published parameters for prostate cancer 
growth rate per day pre- and post-treatment. Shown in the table are unitless rates of proliferation 
(PRO.), apoptosis (APO.), and the response (if any) to 1st-generation androgen deprivation ther-
apy (ADT1) treatment (salmon), ADT2 treatment (light blue), chemotherapy (CT, light yellow), 
and palliative treatments (BISHP, light grey). Naïve population represents prostate cancer cells 
that are sensitive to all treatments, while subclonal populations have acquired resistance to one or 
more treatments. (c) These data were integrated into a mathematical model as daily logistic 
growth rates. Independent growth curves (i.e., each clone’s growth is individually simulated for 
comparison) are shown in ng/mL of prostate-specific antigen (PSA) (1 metastatic prostate cancer 
cell produces 9.8 × 10−9 ng/mL of PSA over a 24 h period). (d) Evolution of resistance (rectangles) to 
applied treatments (diamonds) show how the different clonal subpopulations emerge. We assume 
that bisphosphonates (BIS), radiotherapy (RT), and surgery (SURG) do not contribute to the devel-
opment of resistance. 

Figure 1. Parameterization of the mathematical model of recurrent prostate cancer. (a) Serial sections derived from bone
metastatic prostate cancer patients (pre- and post-abiraterone) were stained for phospho-histone H3 (arrows, red) and
cleaved caspase-3 (arrows, red) as readouts for proliferation and apoptosis, respectively, in pan-cytokeratin-positive (green)
prostate cancer cells. Scale bars represent 100 µm. (b) Experimental and published parameters for prostate cancer growth
rate per day pre- and post-treatment. Shown in the table are unitless rates of proliferation (PRO.), apoptosis (APO.), and the
response (if any) to 1st-generation androgen deprivation therapy (ADT1) treatment (salmon), ADT2 treatment (light blue),
chemotherapy (CT, light yellow), and palliative treatments (BISHP, light grey). Naïve population represents prostate cancer
cells that are sensitive to all treatments, while subclonal populations have acquired resistance to one or more treatments.
(c) These data were integrated into a mathematical model as daily logistic growth rates. Independent growth curves (i.e.,
each clone’s growth is individually simulated for comparison) are shown in ng/mL of prostate-specific antigen (PSA)
(1 metastatic prostate cancer cell produces 9.8 × 10−9 ng/mL of PSA over a 24 h period). (d) Evolution of resistance
(rectangles) to applied treatments (diamonds) show how the different clonal subpopulations emerge. We assume that
bisphosphonates (BIS), radiotherapy (RT), and surgery (SURG) do not contribute to the development of resistance.
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Figure 2. Mathematical model of growth kinetics for naïve prostate cancer clones and the effect of 
applied therapies on evolution. The simulations are initialized with an initial 10 PSA (1.08 × 109 
cells) made up entirely of naïve cells. (a) Cancer grows in the absence of treatment until reaching 
the maximum carrying capacity (1000 PSA ~ 1.08 × 1011 cells). (b–e) The effects of individual treat-
ments (a continuous application from day 500 for demonstration purposes) on the clonal composi-
tion of the tumor over time. Resistant clones evolve from the initial naïve population and now 
compete for space within the carrying capacity of the tumor. Shading represents treatment. (f–i) 
The sequence of treatment application has profound effects on the evolution of the resistant sub-
clones. Treatment is given in 1000 day intervals just for demonstration purposes. 

The units used in the mathematical model are days for time and cell number for 
growth. For each simulated day, a set of equations that use our quantification of the daily 
proliferation of the different kind of cells (Figure 1b) is calculated. Each equation calcu-
lates the cell population growth for the next day ( ௗܶ௬ାଵ) by adding to the current tumor 
cell population ( ௗܶ௬) its own logistic growth. The growth rate described by the logistic 
equation is reduced as the total population of cells (the sum of all cell subpopulations, ௧ܶ௧) approaches the maximum carrying capacity (ܥ ~ 1.08 × 1011 cells). The growth 
rate differences between the cell populations are based on their resistance-specific prolif-
eration () and apoptotic (ܽ) rates calculated as a percentage chance in cell number per 
day for every cell kind (Figure 1b). More generally: 
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This is then calculated for each cancer cell population and their intrinsically different 
growth rates. In the absence of treatments, the different cell kinds are shown growing 
independently (Figure 1c), or in direct competition in (Figure S2). 

The model can accept clinical readouts such as PSA as a starting point for the simu-
lation. Any biomarker can be correlated to the estimated number of cells (tumor burden) 

Figure 2. Mathematical model of growth kinetics for naïve prostate cancer clones and the effect of applied therapies on
evolution. The simulations are initialized with an initial 10 PSA (1.08 × 109 cells) made up entirely of naïve cells. (a)
Cancer grows in the absence of treatment until reaching the maximum carrying capacity (1000 PSA ~ 1.08 × 1011 cells).
(b–e) The effects of individual treatments (a continuous application from day 500 for demonstration purposes) on the
clonal composition of the tumor over time. Resistant clones evolve from the initial naïve population and now compete
for space within the carrying capacity of the tumor. Shading represents treatment. (f–i) The sequence of treatment
application has profound effects on the evolution of the resistant subclones. Treatment is given in 1000 day intervals just for
demonstration purposes.

The units used in the mathematical model are days for time and cell number for
growth. For each simulated day, a set of equations that use our quantification of the daily
proliferation of the different kind of cells (Figure 1b) is calculated. Each equation calculates
the cell population growth for the next day (Tday+1) by adding to the current tumor
cell population (Tday) its own logistic growth. The growth rate described by the logistic
equation is reduced as the total population of cells (the sum of all cell subpopulations, Ttotal)
approaches the maximum carrying capacity (Ccap ~ 1.08 × 1011 cells). The growth rate
differences between the cell populations are based on their resistance-specific proliferation
(p) and apoptotic (a) rates calculated as a percentage chance in cell number per day for
every cell kind (Figure 1b). More generally:

Tday+1 = Tday +

(
1 − Ttotal

Ccap

)
(p − a) ∗ Tday (1)

This is then calculated for each cancer cell population and their intrinsically different
growth rates. In the absence of treatments, the different cell kinds are shown growing
independently (Figure 1c), or in direct competition in (Figure S2).

The model can accept clinical readouts such as PSA as a starting point for the simula-
tion. Any biomarker can be correlated to the estimated number of cells (tumor burden) that
would produce such an amount. For example, if the patient presents a PSA of 10 ng/mL at
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day 1, considering initially that they are all naïve cells, we calculate that the total number of
naïve cancer cells at that time is 10/9.8 × 10−9 = 1.02041 × 109 cells. Our data measured the
daily proliferation (p) and apoptotic (a) rates of naïve cancer cells as 0.0204% and 0.0076%,
respectively (Figure 1b). Therefore, to calculate the total number of naïve cells for day 2,
we add to the total number of naïve cells from day 1 a logistic-modulated net growth of
[1.02041 × 109 cells × (0.0204 − 0.0076) × 0.99] = 1.29306 × 107 new cells. Therefore, we
have gained ~0.1 ng/mL of PSA for a total of ~10.1 ng/mL on day 2, as in this example,
there are no other tumor clones (Figure 2a).

Treatment response was parametrized from the best available literature (Figure 1b).
Chemotherapy rates are based on the effectiveness of the treatment being proportional
to division attempts [35]. Concurrent application of treatments was not considered for
this study, as our aim was to first understand the linear effects of single treatments. A
treatment (Hx) is applied; it has a direct impact only on the cells that are sensitive to it.
This is calculated daily (or only once in the case of surgery and radiation) after calculating
growth, using the rates shown in Figure 1b as:

Tday+1 = Tday −
(

Hx ∗ Tday

)
(2)

To model resistance, we consider that a small proportion of cells that survive treat-
ments have acquired key mutations that enable them to counteract the intervention. It
has been calculated that 0.00005% is the probability of a random mutation on key tumor-
associated genes per cell per day [36], which we have used as the percentage of cells that be-
come resistant every day to treatment. For instance, an initial population of treatment-naïve
cells is sensitive to every treatment. Upon therapy administration, this naïve population
is reduced through apoptosis with the rates described in Figure 1b, with 0.00005% being
able to mutate into a subpopulation resistant to the treatment being applied. Each new
resistant subpopulation acquires new proliferative and apoptotic rates, an evolutionary
tradeoff for the advantage gained. Responses to 1st- and 2nd-generation ADT are based on
our experimental observations and the literature [37,38]. For chemotherapy treatment, we
model resistance as a cost resulting in a growth penalty compared to naïve cells [35].

As the majority of recurrent prostate cancers are sensitive to 1st- or 2nd-generation
ADT, we assume the initial phenotypic clonal composition of the BMPCa to be either
ADT-naïve, or partially ADT1R-resistant. To estimate the initial heterogeneity of the tumor,
11 simulations with different initial resistance ratios are generated: 100% naïve; a mixed
ratio of naïve and ADT1R populations in 10% increments (90% Naïve: 10% ADT1R, 80%
Naïve: 20% ADT1R, etc.); or 100% ADT1R. We measure the Euclidean distance between the
predicted growth curves and the patient PSA history to select the scenario that is closer to
the data, shedding light on the initial heterogeneity at the time of presentation. The resistant
types other than ADT1R are not considered for determining the initial heterogeneity, but
can subsequently emerge when therapies are applied (Figure 2).

2.3. Resistance-Informed Intervention-Decision Algorithm

Once the initial heterogeneity has been estimated from the simulations, we aim to
exploit this knowledge to design a patient-specific application of the current standard
of care. We created an intervention-decision algorithm that utilizes the information on
the theoretical heterogeneity of each patient at presentation and chooses a sequence of
treatments for each case. Each treatment is applied for 28 days (3 weeks on, 1 week holiday).
Key cases for the algorithm to choose from were designed in close collaboration with
clinicians, making sure the suggested sequence does not conflict with that of the current
standard of care. The algorithm is as follows: If the number of cells in the simulation
exceed 1.02 × 108 cells (1 ng/mL of PSA) and no treatment is currently being applied, the
algorithm selects the single treatment that would impact the largest sub-population of cells
(Figure 1d shows the susceptibility of the populations to treatments). The algorithm can
select from these 4 clinically plausible cases: (Case 1) If naïve is the largest population, the
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model will select ADT1. (Case 2) If ADT1R is the largest population, the model applies
ADT2. (Case 3) If it is resistant to all ADTs, then CT will be applied. (Case 4) If the largest
clone has become resistant to both ADTs and CT, palliative care (bisphosphonates) will be
applied. At the end of each treatment cycle (28 days), the algorithm starts over.

2.4. Model Validation and Limitations

Based on sensitivity and resistance to 1st- and/or 2nd-generation ADT and/or chemother-
apy, we deduced the existence of 6 possible populations (naïve, ADT1R, ADT2R, CTR,
ADT1R/CTR, ADT2R/CTR, described in Model and Assumptions). The growth rates for
these populations distilled from the literature or experiment were then integrated into logis-
tic equations driving the mathematical model (Figure 1b). We simulated the growth of each
population individually seeded into the model in isolation (plots presented together for
illustrative purposes) and in treatment-free conditions (Figure 1c). Each clone was found
to grow exponentially until they reach the carrying capacity of the system, 1000 ng/mL
of PSA or the equivalent of 1011 cells (Figure 1c). If the clones are initially found together,
sharing the same carrying capacity, cells compete for resources with the naïve population
having the advantage in proliferation (Figure S2a). Depending on the standard-of-care
treatment applied to the system, one of five populations can arise provided the treatment is
given in a sustained and continued fashion (Figure 1d). Treatment of the naïve population
with ADT1 gives rise to the emergence of an ADT1R population, and treatment of the
ADT1R population with ADT2 or CT gives rise to an ADT2R or ADT1R/CTR population,
respectively, as clinically expected (Figure 2).

To validate the expected treatment dynamics under ideal conditions and explore the
limits of the mathematical model, we focus on the case of a tumor initially made up of
100% naïve cells. To set a baseline, we simulate an initial PSA of 10 ng/mL and let the
cells grow until the carrying capacity of the system in the absence of any intervention is
naturally reached (Figure 2a). Applying 1st- or 2nd-generation ADT or chemotherapy
reduces the naïve population but promotes the emergence of populations resistant to each
of those therapies over time (Figure 2b–d). Patients with BMPCa are often administered
bisphosphonates that, in clinical trials, delayed time to pathological fracture but did not
improve the overall survival of patients with CRPC [39]. We therefore modeled the effect
of bisphosphonates on cancer cell growth as purely palliative and that the effect would be
equal across the clonal populations, generating no further resistance. Simulations show
that, in the event of bisphosphonate treatment, the growth of all clones is impacted, but
the naïve prostate cancer cell population continues to grow toward the carrying capacity
of the system (Figure 2e). Finally, we demonstrate how the sequence of treatments has
a profound effect not only on the reduction in the total number of cells, but also on the
emergence of resistant phenotypes (Figure 2f–i). This experiment was also performed
using a tumor with a heterogeneous population, showing how initial conditions affect the
response to treatment (Figure S2). Having shown the confidence and limitations of this
theoretical model, parametrized by experimental data and best available literature, we
sought to recapitulate the clinical histories and tease out the effects of treatments in real
patients from a completely independent cohort.

3. Results
3.1. Defining the Impact of ADT on Prostate Cancer Growth Rates

Previous studies have examined the effects of 1st-generation ADT and chemotherapy
on the growth of prostate cancer [35,37,38]. Novel to this work, the growth rates of prostate
cancer cells in bone subsequent to treatment with 2nd-generation ADT were determined.
We examined the proliferative and apoptotic indices in serial human BMPCa biopsies pre-
and post-abiraterone treatment (Figure 1a and Figure S1). Our extracted data demonstrate
that the proliferation index of pan-cytokeratin-positive prostate cancer epithelial cells in
the pre-treatment group was 2.42%, while in the post-treatment group, it was reduced
to 1.09% using phospho-histone-H3 as a readout (Figure 1b). Cleaved caspase-3 staining
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revealed an apoptotic index of 1.68% in the pre-treatment group, while the post-treatment
index was 0.02%. This parametric description of the data is consistent with previous
studies examining the effects of 1st-generation ADT on prostate cancer growth in human
specimens and in preclinical animal models (Figure 1b) [37,38].

3.2. Modeling Individual Patient Responses to Standard-of-Care Therapy

We used the mathematical model to recapitulate the response of individual patients
to standard-of-care treatment from an independent Moffitt Cancer Center cohort (n = 24).
Following our methodology, we used each patient’s medical record information (Figure 3a)
to initialize and simulate their actual treatment regimen (days under treatment) in the
mathematical model. We then explored different initial heterogeneity scenarios of the
tumor over time, and their response to the treatment regime (Figure 3c), decomposing
the clinical PSA into the individual contributions from the different cell subpopulations, a
unique aspect of this modeling approach. Comparing the model outputs with the clinical
PSA data points over time, we observed that the simulation initialized with 100% naïve
cells recapitulated the course of Patient 1’s disease best (Figure 3b). The simulation revealed
that the application of 1st-generation ADT (ADT1) probably led to the quick emergence of
the ADT1R population, accounting for the rise in PSA despite the continuous application
of treatment. Surgery to debulk the tumor and chemotherapy significantly impacted
the disease burden at day 1183, but by day 1335, the patient was recorded as deceased.
To investigate the role that resistance has on the evolution of the disease, we show that
simulating an initial population of 100% ADT1R (no naïve cells) under the same treatment
regime would not recapitulate the clinical outcome (Figure 3d,e). The model therefore
suggests that the majority of the patient’s disease was initially sensitive to ADT1 treatment,
but quickly developed complete resistance.
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Figure 3. Tracking individual patient response to treatment. (a,b) Patient 1’s treatment information consisting of the time
intervals for the application of 1st-generation androgen deprivation therapy (ADT1), radiotherapy (RT), chemotherapy (CT),
and surgery (SURG) was obtained (a) and applied to a simulation seeded with 100% naïve prostate cancer cells (b). Red dots
indicate the patient’s PSA values over time. Dotted lines indicate the total tumor burden simulated by the mathematical
model. (c) Analysis of cancer cell evolution in silico over time. (d,e) Altering the initial assumption of resistance naivety, a
simulation that starts with 100% AR1-resistant cells fails to recapture the data (note the increase of an order of magnitude in
the theoretical level of PSA, compared to data). This analysis suggests that the patient presented with an initial population
of 100% naïve and 0% AR1 resistance. Resistance likely emerged after treatment was applied.

We used the same methodology to model the remaining 23 patients (Figures S3–S25).
As expected, not all individual patient simulations that start with the assumption of a 100%
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naïve population of cancer cells recapitulated the course of their disease. For example,
simulations for Patient 2 show that 100% naivety has no correlation between theoretical
tumor burden and real PSA readings over time in response to the patient’s treatment
regimen (Figure 4a,b). If this had been the case, the application of 1st-generation ADT
(ADT1) would have eliminated the naïve cancer cell population (Figure 4c). This indicates
that the patient may have presented with cancer already resistant to ADT1. By simulating
the different scenarios for initial conditions, we found that considering that the patient
presented with disease that was 100% ADT1-resistant (ADT1R) remarkably captures the
patient’s response. With this seemingly simple change in the initial conditions, the tumor
burden simulation now closely aligned with the PSA values recorded from the patient over
time (Figure 4d), and allows for a deeper understanding of the impact of the treatment
regime. Assessing the theoretical tumor heterogeneity shows the dominance of the ADT1R

population throughout the patient’s treatment course with the exception of the applied
surgery at day 187 (post-presentation) that resulted in the significant reduction in the
ADT1R population burden (Figure 4e). Retrospectively, the simulation (based on the first
2–3 PSA readings) suggests that the patient’s cancer was already predominantly ADT1R,
not responding to the treatment applied. In a clinical setting, this kind of time-sensitive
information could be leveraged in a similar fashion to make informed decisions on the
treatment to use.
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Figure 4. Assessing dominant cancer cell population at the time of presentation using the mathematical model. (a,b) Patient
2’s treatment information was obtained (a) and applied to a simulation seeded with 100% naïve prostate cancer cells (b). Red
dots indicate the patient’s PSA values over time. Dotted line indicates the total tumor burden simulated by the mathematical
model. (c) Analysis of cancer cell evolution over time in response to applied therapy. (d) Reinitialization of Patient 3’s
simulation with 100% ADT1R. (e) Analysis of cancer cell evolution in silico over time subsequent to initialization with 100%
ADT1R population. These data suggest that the patient presented with an initial population of 100% AR1 resistance.

3.3. Design of Resistance-Informed Patient Treatment Strategy to Extend Overall Survival

A major advantage to this mathematical modeling approach is that standard-of-care
treatments can be optimized with little clinical data to delay the emergence of resistant
disease. Following our established methodology for Patient 3, we initially considered that
the prostate cancer was composed of 100% Naïve cells, 100% ADT1R cells, or a blend of
treatment-naïve and ADT1R-resistant clones (Figure 5a). Simulating adjustments of 10%
in the ratio for each initial population, we found that a blend of 90:10% Naïve:ADT1R

populations provided simulations that closely matched the patient’s PSA values and their
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response to applied therapies (Figure 5a,b). Analysis of cancer evolution in this patient
showed that the naïve population quickly gave way (within 50 days) to the growth of the
ADT1R population during treatment with ADT1. Subsequent treatment of the patient with
radiotherapy and application of ADT2 successfully reduced ADT1R numbers. However,
from day 600 onward, there was an emergence of ADT2R cells that continued until the
endpoint (Figure 5c). Knowing a priori the initial resistance to ADT1 treatment can then be
utilized to optimize how standard-of-care therapy could be delivered.
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Figure 5. Determining tumor heterogeneity at the time of presentation. (a) Patient 3’s treatment information was obtained
(inset) and applied to the mathematical model seeded with varying ratios of naïve:ADT1R prostate cancer cells. Naïve:
ADT1R (80:10, green) was identified as the most accurate representation. (b) The mathematical model was initialized with
an 80:10 (Naïve: ADT1R) population and the tumor burden was compared to recorded PSA values over time (red dots). (c)
Analysis of cancer cell evolution over time in response to applied therapy. (d,e) Personalized treatment regimen developed
for Patient 3 (d) and the impact on cancer cell evolution over time. (e) Periods of treatment are represented by shaded bars.

After successfully recapitulating the patient’s PSA data, we applied a Resistance-
Informed Intervention-Decision Algorithm (described in Materials and Methods), informed
by the knowledge of Patient 3’s estimated initial resistance (90:10% Naïve: ADT1R). For
Patient 3, the optimal treatment sequence designed suggests that early ADT1 cycles work
best, followed by a transition to ADT2 at day 261 post-patient presentation. Alternate
cycles of ADT1 and ADT2, combined with periods of no treatment so as to allow for the
rebound of naïve populations, keep the tumor in check until day 1800. Alternate cycles
between CT and bisphosphonates prolong patient survival until day 2200 when the PSA
levels reach those at which the patient was recorded as being deceased (Figure 5e,f). Taken
together, the optimized treatment regimen designed by the mathematical model extended
the theoretical overall survival of the patient from 1523 days to over 2240, an almost 2 year
increase. We used this methodology to simulate and assess all the patients in our inde-
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pendent Moffitt cohort (n = 24), obtain their theoretical initial heterogeneity, and further
calculate a personalized treatment strategy for each (Figures S3–S25).

4. Discussion

Based on recent clinical trial results, there is clearly room for optimizing the effec-
tiveness of standard-of-care therapies used for the treatment of BMPCa. Here, we have
shown that a mathematical model, integrating experimental parameters and clinical data,
can forecast the course of a patient’s disease. Importantly, it also uniquely provides new
insight as to the underlying heterogeneity of the recurrent cancer at the time of presen-
tation. The evolution of the cancer in the context of applied ADT or chemotherapies can
also be tracked and analyzed. Finally, using the information of the initial resistance in a
treatment design algorithm, we also provide a methodology on how treatment regimens
could be improved and personalized for each patient so as to limit the emergence of
ADT/chemotherapy-resistant disease, thereby extending overall survival. The theoret-
ical gains observed for every patient are feasible in light of recent clinical observations
with evolutionary-enlightened treatments for castrate-resistant prostate cancer [21,40].
Moving forward, we expect that acquiring the initial (2–3) PSA measurements pre- and
post-treatment would allow the mathematical model to predict-patient specific outcomes.
For example, a patient would present with rising PSA levels indicative of recurrent disease
and be prescribed ADT1. The response of PSA (2–3 measurements) subsequent to the
first cycle would allow for model calibration to predict the underlying heterogeneity and
time to the emergence of resistant disease. An optimized sequence of treatments could
then be proposed for each patient at that juncture and provide a useful guide for the
medical oncologist.

We modeled one-month cycles to ensure clinical feasibility, but it is plausible that
patients who have adverse reactions (to chemotherapy, for example) may not be able to
complete the proposed cycle. In this scenario, additional constraints could be imposed
in collaboration with medical oncologists to restrict the application of chemotherapy.
While the predicted overall survival may be less than the unconstrained algorithm, the
model should be able to maximize the efficacy of applied therapy and improve overall
patient survival. Notably, the model did not consider the possibility of combining thera-
pies, as modeling collateral sensitivity and toxicity would require available clinical and
pre-clinical [41]. This will be considered in future studies as new information emerges.
Furthermore, this model did not integrate any information on putative genomic drivers
in hormone-sensitive and castrate-resistant states that have been associated with poor
prognosis [42]. While falling outside of the scope of this project, such information would be
useful to capture the variability of drug–host interactions and help modulate not only the
duration but the intensity of the standard of care to offer the patient a better quality of life.

The idea of using PSA levels to extend the usefulness of applied ADTs is not without
precedent. Several studies have examined the effect of applying ADT intermittently or have
used PSA levels to apply ADT in an adaptive manner [21,43–45]. In the latter approach,
several clinical trials are also underway (NCT03674814, NCT03418324, NCT03246347,
NCT0336072, for example). A caveat is the heavy reliance on PSA information derived
from the patient to guide the models. While it is widely available and there is good reason
to believe that PSA for monitoring the therapy response is useful in most cases, PSA is
only one of the 200+ androgen response elements (AREs) that could be used as a proxy
for tumor burden. Indeed, although correlating well with tumor burden, there is no study
that has shown that PSA levels in themself can predict treatment failure. As such, there
may be better predictive biomarkers that predict responses. Research is currently being
done on the elucidation of microenvironmental and immune biomarkers that could be
routinely extracted and analyzed with Artificial Intelligence (AI) methodologies for better
diagnosis [46]. In our data, we observed that, although the trend in terms of correlation
to tumor growth and response to treatment was similar, PSA levels amongst the patient
cohort examined (n = 24) varied greatly. Using PSA as a readout for tumor growth can



Cancers 2021, 13, 677 13 of 16

also be risky as there is evidence that in some patients, PSA levels are not reflective of
the tumor burden. Here, the decrease in PSA levels is used only as a proxy to transform
patient data for use with our biologically derived model. As the framework is derived from
in-house accurate cellular measurements and accepted biological parameters, any other
clinical biomarker or sets thereof can therefore be linked to the model to guide therapy
decision-making.

PSA has been widely used as a correlative for tumor burden. However, many new
less-intrusive markers are being developed. The mathematical model captures different
cell population dynamics and is not dependent on PSA. As the clinical data measure PSA,
a conversion is made so that a comparison between model prediction and data can be
established. As other biomarkers emerge, and as clinicians start making use of them, our
workflow will be able to take advantage of those developments and replace/complement
PSA with more accurate proxies. We envision that more routinely extracted biomarkers
that correlate through AI techniques to tumor burden (such as a mix of immune cell
population, free PSA, and other novel markers) will incentivize patients to follow up
with their progression tracking. Furthermore, we hope that a demonstrative version of
this model could be used to help patients understand their individual disease and the
importance of tracking their progression.

While the focus of this work is to investigate the resistance of treatments due to
therapeutic pressure, work is yet to be done on integrating other known population risks.
Factors such as age, smoking, race, diet, geographical location, and overall wellbeing play
a key role in cancer progression and treatment response. As we are able to pin down
the biological rules that drive cancer evolution through treatments, it will be possible to
incorporate this important information and study its role on treatment, prognosis, and
quality of life.

5. Conclusions

In this work, we have distilled and quantified basic cellular parameters previously
not reported in the literature to increase our understanding of the basic biology underpin-
ning resistance. Leveraging this, and in close collaboration between clinical oncologists,
experimental biologists, and mathematical modelers, we generated a general mathematical
framework to study the onset of resistance to key standard-of-care therapies in the context
of tumor evolution in BMPCa. Once this model was validated with an independent cohort
of patient histories, we were able to estimate details about heterogeneity upon presentation
for each patient. We used the model to track the dynamics of resistant phenotypes in
response to treatment. A key aspect is that we worked from biological first-principles with-
out resorting to data fitting, thus bridging cellular biology and clinical studies. Finally, we
propose to use this approach to design new patient-specific treatment sequences to delay
the onset of resistance. The core idea is that even basic and imperfect clinical information
can be leveraged mathematically to help decide when to apply or withdraw ADT so as
to not completely ablate the treatment-naïve population, delay resistance by exploiting
intra-tumor competition, and extend ADT effectiveness. In this case, we have used PSA
as a proxy for tumor burden due to its wide availability even if, as a biomarker, it is an
imperfect one. Our approach can incorporate any other such biomarker or combination of
them. The model presented herein represents a significant advance in that it tackles the
question of heterogeneity and the evolution of resistance in BMPCa.

The model assesses clonal resistance and enables the application of novel algorithms
to prevent the emergence of resistant disease, thereby extending the longevity of effective
standard-of-care therapeutics. Future work will focus on modeling the relationship between
additional markers described in the literature, such as immune cell response in place of
PSA, thus improving the ability of the mathematical model to predict patient outcomes [47].
Our resistance-informed treatment design for each patient demonstrates how single-agent
therapies can be applied in a cyclical manner within the guidelines of the current standard
of care. In conclusion, we have shown that integrating basic molecular and cellular data into
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a bottom-up, patient-specific mathematical model can be used to recapitulate, understand,
and potentially improve clinical outcomes for prostate cancer patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/4/677/s1, Figure S1: Representative IgG controls for phosphohistone H3 (pHH3, red, a)
and cleaved caspase-3 (CC3, red, b), Figure S2: Evolution of equally distributed naïve and resistant
phenotypes to applied treatments, Figures S3–S25: De-identified patient simulations and patient-
specific treatment optimization.
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