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Abstract

Motivation: Rapid development in long-read sequencing and scaffolding technologies is accelerating the production
of reference-quality assemblies for large eukaryotic genomes. However, haplotype divergence in regions of high
heterozygosity often results in assemblers creating two copies rather than one copy of a region, leading to breaks in
contiguity and compromising downstream steps such as gene annotation. Several tools have been developed to re-
solve this problem. However, they either focus only on removing contained duplicate regions, also known as haplo-
tigs, or fail to use all the relevant information and hence make errors.

Results: Here we present a novel tool, purge_dups, that uses sequence similarity and read depth to automatically
identify and remove both haplotigs and heterozygous overlaps. In comparison with current tools, we demonstrate
that purge_dups can reduce heterozygous duplication and increase assembly continuity while maintaining com-
pleteness of the primary assembly. Moreover, purge_dups is fully automatic and can easily be integrated into as-
sembly pipelines.

Availability and implementation: The source code is written in C and is available at https://github.com/dfguan/
purge_dups.

Contact: ydwang@hit.edu.cn or rd109@cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The superior and increasing throughput of long-read sequencing
technologies, such as from Pacific Biosciences (Pacbio) and Oxford
Nanopore Technologies (ONT), is revolutionizing the sequencing of
genomes for new species (Phillippy, 2017). Long-read assemblers,
such as Falcon (Chin et al., 2016) and Canu (Koren et al., 2017),
typically generate haplotype-fused paths of a diploid genome, with
Falcon-unzip (Chin et al., 2016) further able to separate the initial
assembly into primary contigs and haplotigs. However, when there
is high heterozygosity as in many outbred species, for example, most
insects and marine animals, the allelic relationships between haplo-
typic regions can be hard to identify, causing not only haplotigs to
be mislabeled as primary contigs, but also overlaps to be kept among
the primary contigs. The majority of these retained overlaps are be-
tween homologous chromosomes, and the resulting duplication
harms downstream processes, such as scaffolding and gene annota-
tion, leading to incorrect results.

Tools such as purge_haplotigs (Roach et al., 2018) and
HaploMerger2 (Huang et al., 2017) have been designed to resolve
this problem. Purge_haplotigs makes use of both read depth and se-

quence similarity to identify haplotigs. However, it does not identify
heterozygous overlaps, and requires users to specify read-depth cut-

offs manually. HaploMerger2 seeks to identify both haplotigs and
overlaps, but it ignores read depth and relies only on the alignment
of contigs to each other.

Here we describe a novel purging tool, purge_dups, to resolve
the haplotigs and overlaps in a primary assembly, using both se-

quence similarity and read depth. Purge_dups is now being used rou-
tinely in the Vertebrate Genomes Project assembly pipeline.

2 Materials and methods

Given a primary assembly and long-read sequencing data, we apply
the following steps to identify haplotigs and overlaps. A more
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detailed description of the methods is available in the
Supplementary Material.

1. We use minimap2 (Li, 2016) to map long-read sequencing data

onto the assembly and collect read depth at each base position in

the assembly. The software then uses the read-depth histogram

to select a cutoff to separate haploid from diploid coverage

depths, allowing for scenarios where the total assembly is domi-

nated by either haploid or diploid sequence.

2. We segment the input draft assembly into contigs by cutting at

blocks of ‘N’s, and use minimap2 to generate an all by all self-

alignment.

3. We next recognize and remove haplotigs in essentially the same

way as purge_haplotigs, and remove all matches associated with

haplotigs from the self-alignment set.

4. Finally we chain consistent matches in the remainder to find

overlaps, then calculate the average coverage of the matching

intervals for each overlap, and mark an unambiguous overlap as

heterozygous when the average coverage on both contigs is less

than the read-depth cutoff found in step 1, removing the se-

quence corresponding to the matching interval in the shorter

contig.

3 Results and discussion

We evaluated the performance of purge_dups (v1.0.0) on four

Falcon-unzip primary assemblies: Arabidopsis thaliana (At) (Chin
et al., 2016), Anopheles coluzzi (Ac) (Kingan et al., 2019),grape

Vitis vinifera L. cv. Cabernet Sauvignon (Vv) and pinecone soldier-
fish Myripristis murdjan (Mm), and compared our results to those
of purge_haplotigs (v1.0.4), HaploMerger2. The expected genome

sizes and heterozygosities of these genomes calculated by
GenomeScope (Vurture et al., 2017) are given in Supplementary

Table S1, with heterozygosity ranging from 0.6% (Ac) to 1.6%
(Vv).

Fig. 1. K-mer comparison plots for draft and purge_dups Mm assemblies (k¼21).

The horizontal axis represents the copy number of k-mers in short reads from the

same sample, the vertical axis shows the number of distinct k-mers and the colored

lines denote k-mers which occur in the given number of times in the assembly. (a)

The purple line shows 209.1 million two-copy k-mers accumulating in the haploid

and diploid areas, which correspond to duplicated haplotigs or overlaps in the pri-

mary assembly. (b) Only 7.6 million two-copy k-mers remain after purging with

purge_dups

Table 1. BUSCO scores and assembly metrics

BUSCO scores (%) Assembly size (Mb) Num. Contigs

C C(S) C(D) F M

At-orig 98.1 91.9 6.2 0.3 1.6 140 172

At-PH 97.7 96.0 1.7 0.6 1.7 123 109

At-PD 97.8 96.7 1.1 0.6 1.6 121 96

At-HM 96.8 95.6 1.2 0.6 2.6 122 117

At-HMm 96.8 95.7 1.1 0.6 2.6 121 102

Ac-orig 98.7 94.7 4.0 0.6 0.7 266 372

Ac-PH 98.8 96.9 1.9 0.5 0.7 253 224

Ac-PD 98.9 98.6 0.3 0.6 0.5 246 192

Ac-HM 98.5 98.2 0.3 0.6 0.9 245 223

Ac-HMm 98.6 98.4 0.2 0.6 0.8 246 212

Vv-orig 92.2 79.8 12.4 1.5 6.3 591 718

Vv-PH 92.1 88.1 4.0 1.6 6.3 457 259

Vv-PD 91.9 89.9 2.0 1.9 6.2 452 324

Vv-HM NA NA NA NA NA NA NA

Vv-HMm 91.8 89.9 1.9 1.8 6.4 458 383

Mm-orig 95.8 79.0 16.8 2.0 2.2 1250 1290

Mm-PH 94.5 89.1 5.4 2.4 3.1 888 517

Mm-PD 94.4 90.9 3.5 2.7 2.9 838 563

Mm-HM 94.6 91.3 3.3 2.5 2.9 850 600

Mm-HMm 94.7 91.6 3.1 2.6 2.7 845 443

Mm-origS 95.3 70.7 24.6 2.2 2.5 1252 764

Mm-PHS 94.7 87.5 7.2 2.5 2.8 891 221

Mm-PDS 94.8 91.2 3.6 2.7 2.5 840 222

Mm-HMS 94.9 91.3 3.6 2.5 2.6 852 343

Mm-HMmS 94.8 91.6 3.2 2.5 2.7 848 365

C, complete genes; C(S), complete single-copy genes; C(D), complete duplicate genes; F, fragmented genes; M, missing genes; orig, Falcon-unzip; PH, purge_ha-

plotigs; PD, purge_dups; HM, HaploMerger2; HMm, HaploMerger2 with masking; PHS, PDS, HMS, HMmS: purge_haplotigs (respectively purge_dups,

HaploMerger2 with and without repeat masking) after scaffolding and polishing. Values in bold indicate the best score of each type in each section. The

HaploMerger2 run without masking on Vv did not complete.
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K-mer comparison analysis (Mapleson et al., 2017) shows that
purge_dups removes 96.4% of duplicated haploid-unique k-mers in
the Falcon-unzip assembly of Mm (Fig. 1). Comparable figures for
HaploMerger2 and purge_haplotigs are 95.7% and 81.2% respect-
ively (Supplementary Fig. S1) and for At are 88.4%, 87.3% and
80.7% respectively (Supplementary Fig. S2). Supplementary Figures
S3 and S4 show examples of regions where purge_dups removes
both contained and overlapping duplication, whereas purge_haplo-
tigs only removes fully contained duplication.

Table 1 presents statistics on assembly and for the four assem-
blies, using Benchmarking Universal Single-Copy Orthologs
(BUSCOs) (Sim~ao et al., 2015) to assess the consequences of purging
for gene set completeness and duplication. Results are given for the
original assemblies, purge_haplotigs, purge_dups and
HaploMerger2 (with and without repeat masking). All purging
methods remove a substantial amount of sequence from the primary
assembly and decrease BUSCO duplication. No single method per-
forms uniformly best across all assemblies and all metrics. However
purge_haplotigs consistently leaves more duplicated sequence and
genes. For all assemblies other than Mm, purge_dups gives the high-
est fraction of single-copy complete genes, and the lowest fraction of
missing genes. Although purge_dups has only a limited ability to ex-
plicitly handle repeats it does not exhibit signs of significant
overpurging.

For Mm, we also had 10X Genomics linked read data, and used
this for scaffolding using Scaff10x (https://github.com/wtsi-hpag/
Scaff10X). Following this with a round of polishing with Arrow
closed a number of gaps, reducing contig number further and
increasing contig N50. For the purge_haplotigs assembly, this
resulted in 221 scaffolds with N50 8.17 Mb, and the final contig
N50 3.48 Mb, whereas scaffolding the purge_dups assembly gener-
ated 222 scaffolds with N50 23.68 Mb, and contig N50 increased
substantially from 2.63 Mb to 11.98 Mb. The nominal contiguity
was even greater for the scaffolded HaploMerger2 masked assembly
with scaffold N50 34.53 Mb, and contig N50 16.39 Mb. However,
when we further assessed the scaffolds with QUAST (Gurevich
et al., 2013), the purge_dups scaffolds had the highest NGA50
(characteristic length of material correctly aligned to the genome) of
16.73 Mb, while HaploMerger2 scaffolds only had 7.86 Mb
NGA50, with 126 scaffold misassemblies compared to 22 for pur-
ge_dups (Supplementary Table S2).

The improvements that purging makes to contiguity following
scaffolding indicate that divergent heterozygous overlaps can be a
significant barrier to scaffolding, and that it is important to remove
them as well as removing contained haplotigs. To our knowledge,
scaffolders that use long-range information, such as Scaff10X with
linked reads or SALSA with Hi-C data, do not handle heterozygous
overlaps. We therefore recommend applying purge_dups directly
after initial assembly, prior to scaffolding. Although HaploMerger2
can also link adjacent contigs using overlap information after purg-
ing, our tests suggest that it makes false joins, perhaps because it
does not use read depth to distinguish haplotypic duplication from
repeat duplication.

In conclusion, purge_dups can significantly improve genome
assemblies by removing overlaps and haplotigs caused by sequence

divergence in heterozygous regions. This both removes false duplica-
tions in primary draft assemblies while retaining completeness and
sequence integrity, and can improve scaffolding. It runs autono-
mously without requiring user specification of cutoff thresholds,
allowing it to be included in an automated assembly pipeline.
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