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Abstract
Glycerophosphodiesterase 5 (GDE5) selectively hydrolyses glycerophosphocholine to

choline and is highly expressed in type II fiber-rich skeletal muscles. We have previously

generated that a truncated mutant of GDE5 (GDE5dC471) that lacks phosphodiesterase

activity and shown that transgenic mice overexpressing GDE5dC471 in skeletal muscles

show less skeletal muscle mass than control mice. However, the molecular mechanism

and pathophysiological features underlying decreased skeletal muscle mass in

GDE5dC471 mice remain unclear. In this study, we characterized the skeletal muscle dis-

order throughout development and investigated the primary cause of muscle atrophy.

While type I fiber-rich soleus muscle mass was not altered in GDE5dC471 mice, type II

fiber-rich muscle mass was reduced in 8-week-old GDE5dC471 mice. Type II fiber-rich

muscle mass continued to decrease irreversibly in 1-year-old transgenic mice with an

increase in apoptotic cell. Adipose tissue weight and blood triglyceride levels in 8-week-old

and 1-year-old transgenic mice were higher than those in control mice. This study also

demonstrated compensatory mRNA expression of neuromuscular junction (NMJ) compo-

nents, including nicotinic acetylcholine receptors (α1, γ, and ε subunits) and acetylcholines-

terase in type II fiber-rich quadriceps muscles in GDE5dC471 mice. However, we did not

observe morphological changes in NMJs associated with skeletal muscle atrophy in

GDE5dC471 mice. We also found that HSP70 protein levels are significantly increased in

the skeletal muscles of 2-week-old GDE5dC471 mice and in mouse myoblastic C2C12

cells overexpressing GDE5dC471. These findings suggest that GDE5dC471 mouse is a

novel model of early-onset irreversible type II fiber-rich myopathy associated with cellular

stress.

Introduction

The physiological process of aging critically affects an individual's quality of life via gradual
functional, structural, and biochemical changes. Age-related decline in skeletal muscle mass
and functions is defined as sarcopenia, a condition characterized by muscle weakness and fiber
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atrophy [1–3]. Persons with sarcopenia suffer greater incidence of functional disabilities that
lead to loss of independence and are more likely to suffer injuries due to falling [4]. Thus, sar-
copenia is a strong predictor of mortality in aging individuals. Few rodent models exhibit age-
related changes in skeletal muscles spontaneously and, therefore, long-term examination is
required to characterize muscle weakness and fiber atrophy during aging and senescence in
these systems. For example, age-related skeletal muscle pathology develops in about 28 months
in F344/Brown-Norway F1 hybrid rat [5], and a senescence-accelerated SAMP1, SAMP6 or
SAMP8 mouse [6–8]. An animal model with sarcopenia-likemuscle atrophy that develops
more quickly is urgently needed to advance studies of this degenerative condition.

Most skeletal muscles consist of intermixed mitochondria-rich slow-twitch fiber (type I)
and fast-twitch muscle fiber (type II) [9]. It was reported that aging skeletal muscles were more
atrophied in type II muscle fiber than in type I muscle fiber [9–12]. These muscle fibers are
controlled by different motor units during young adulthood and are repeatedly denervated and
reinnervated through adulthood to old age, and in very old age, skeletal muscle atrophy may be
due to increasingly frequent axonal degeneration and/or motor cell death [13], (See review in
[14]). The relationship between skeletal muscle atrophy and decreased neuromuscular trans-
mission has been recently discussed in rodent models and humans [15, 16]. Previous studies
showed that neuromuscular junctions (NMJs) in skeletal muscles of aged rats are denatured
before the onset of muscle atrophy and that NMJs of type II fibers are more prone to denatur-
ation than those of type I fibers [15, 17]. On the other hands, mRNA expression of nicotinic
acetylcholine receptor (nAchR) subunits, which compose a pentameric nAchR and are local-
ized to NMJs, increases with age [18–20]. Similarly, expression of the nAchR subunit was tran-
siently up-regulated during an acute inactivity period in rodent models with sciatic
denervation or spinal cord injuries [22–24]. These observations suggested that the expression
of components localized at the NMJs have compensatory effects on skeletal muscle dysfunc-
tion. Although type II-rich fiber atrophy has been reported in hindlimb suspension, plaster
cast immobilization, or short-term spaceflight induced muscle disuse rodents which are inde-
pendent of denervation [25, 26], the alternation of NMJ functions during type II-rich skeletal
muscle atrophy is little understood. Some mechanisms such as oxidative stress and chronic
inflammation have been proposed for skeletal muscle atrophy [27–29], whereas the pathophys-
iological relationship betweenNMJ functions and decreased physical activity during type II-
rich skeletal muscle atrophy also remains unclear.

We recently generated transgenic mice with selectively inducible skeletal muscle atrophy in
type II-rich gastrocnemius and quadriceps muscles at around 12 weeks [30]. These mice over-
expressed a truncated mutant of glycerophosphodiesterase 5 (GDE5) that lacks phosphodies-
terase activity. mRNA expression analyses of the quadriceps of 12-week-old GDE5dC471 mice
indicated that mRNAs for inflammatory cytokines and cellular defense were up-regulated [30]
and that the skeletal muscle atrophy is independent of the ubiquitin-proteasome system [30,
31]. Interestingly, the expression of several genes linked to NMJs was up-regulated in the skele-
tal muscle of the GDE5ΔC471 mice, thus resembling age-related skeletal muscle atrophy. How-
ever, the molecularmechanisms underlying the decreased skeletal muscle mass and
pathophysiological characteristics as a new animal model for skeletal muscle atrophy remain
unclear.

The aim of this study was to reveal the pathology and underlying cause of type II-rich skele-
tal muscle atrophy in GDE5dC471 mice skeletal muscles by examining cross-sections of myofi-
brils, muscle functions, and neuromuscular junctions through time. This study provides
detailed information on the skeletal muscle pathology of GDE5dC471 mice as a useful animal
model for drug development and evaluation of functional food products that protect against
the onset/progression of type II-rich skeletal muscle atrophy.
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Materials and Methods

Animals

GDE5dC471 transgenic mouse was generated as describedpreviously [30]. In this experiment,
heterozygous male mice harboring the transgene which were backcrossed at least 5 times with
purebred C57BL/6J females (Charles River Japan, Kanagawa, Japan), and their male control lit-
ter mates were used. The presence of GDE5dC471 transgenes in offspring was determined by
polymerase chain reaction (PCR) with the following primers: GDE5dC471, sense, 5'-TTT
GATGTCCACTTTCAAAGGAC-3', and antisense, 5'-CTCCATCCCTGTGTTGGCAAA
TCC-3'. Mice were housed in a room maintained at 24°C with a 12-hr light and dark cycle
(lights on, 8:00 a.m. to 8:00 p.m.), and MF solid chow (Oriental Yeast, Tokyo, Japan) and a bot-
tle tapped deionized water were provided ad libitum. The animal study was approved by the
Hiroshima University Animal Committee (Permit Number: C15-9-2), and the mice were
maintained in accordance with the Hiroshima University Guidelines for the Care and Use of
Laboratory Animals. After 2-, 4-, 8-weeks or 1-year rearing periods, blood samples were col-
lected from mice by venipuncture from the aorta under sodium pentobarbital anesthesia and
were sacrificed, followed by removal of skeletal muscles (gastrocnemius, quadriceps or soleus)
or epididymal and perirenal white adipose tissues.

Histopathology

To measure cross-sectionalmuscle fiber area, samples of the skeletal muscle (gastrocnemius)
of GDE5dC471 mice and age-matched control mice at 4 and 8-week, and 1-year old of age
were fixed in neutral buffered 10% formalin, and processed by staining paraffin-embedded
transverse sections (2 μm) with hematoxylin and eosin (H&E). To detect terminal deoxynu-
cleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) positive nuclear in gastrocne-
mius muscle of 4-week-old (frozen section), 8-week-old and 1-year-old (paraffin section)
GDE5dC471 mice and age-matched control mice were subjected. Frozen section for TUNEL
staining was prepared that the gastrocnemius muscle was harvested, fixed in 4% paraformalde-
hyde for 1 day, then transferred to Holt's hypertonic gum-sucrosemedium (0.88M sucrose
containing 1% gum acacia) for 2Days at 4°C, embedded in optimum cutting temperature com-
pound and immediately frozen in liquid nitrogen-cooled isopentane (Sigma-Adrich Japan,
Tokyo, Japan), then prepared as 6 μm sections using a cryostat. TUNEL staining was per-
formed using ApopTag1 Peroxidase In Situ Apoptosis DetectionKit (Merck Millipore,
Temecula, CA) according to the manufacturer's instructions. 3, 3'-diaminobenzidine (DAB)
was used as peroxidase substrate, and for calculate the ratio of TUNEL positive nuclear to total
myonuclei (%), counterstaining with hematoxylin was also performed. In order to observe
morphology of nicotinic acetylcholine receptor, gastrocnemius muscles of 1-year-old
GDE5dC471 mice and control mice were frozen in liquid nitrogen-cooled isopentane (Sigma-
Adrich Japan, Tokyo, Japan), and longitudinal sections (20 μm) embedded in optimum cutting
temperature compound were stained with fluorescent α-bungarotoxin Alexa Fluor1594
(Molecular Probes, Eugene, OR)

PCR analyses

Semiquantitative and quantitative PCR analyses were performed on total RNA, which was
extracted from dissected quadriceps muscles of 2-, 4-, 8-week and 1-year-old GDE5dC471 and
age-matched control mice, prepared with RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Ger-
many) according to the instructions of the manufacturer. The reverse transcriptase reaction
was carried out with 1 μg of total RNA as a template to synthesize cDNA using RevaTra Ace
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(Toyobo, Osaka, Japan) reverse transcriptase. For semiquantitative PCR analysis, cDNA and
specific primers were added to the GoTaq Master Mix (Promega, Madison, WI) to give a total
reaction volume of 20 μl. The reactions were sampled after 25, 28, and 30 cycles under different
PCR conditions to monitor product accumulation. For quantitative PCR analysis, cDNA and
specific primers were added to THUNDERBIRDTMSYBR 1qPCR Mix (Toyobo) to give a total
reaction volume of 15 μL. PCR reactions were performed using StepOnePlusTM (Applied Bio-
systems, Foster City, CA). The PCR reactions were initiated with denaturation for 10 min at
95°C, followed by amplification with 40 cycles each for 15 s at 95°C, and extended for 1 min at
60°C. The primers used for semiquantitative RT-PCR or realtime PCR analysis were as follows:
Acsm3, sense, 5’-CCTGATCCTATGAGAGTCTTG-3’, and antisense, 5’-GCAGTATCACC
ATTACTCTGTC-3’; Slc27a2, sense, 5’-GCGGCAACCATCAATCATCA-3’, and antisense, 5’-
CGGTGTGTTGCACAGGTACC-3’; nAchRα1, sense, 50-GCCGGACGTCGTTCTCTATA-3 0,
and antisense, 50-GTAGAACACCCAGTGCTTCC-30; nAchRε, sense,50-GCGTGCTCATTTC
TGGCTTG-30, and antisense, 50-CGCGGCAGCAGCTCTAATAA -30; nAchRγ, sense, 50-CA
AAGGCAGCGCAATGGATT-30, and antisense, 50-GTAGTGGGCCATGAGGAAGA-3 0;
Ache, sense, 50-GCTCCTACTTTCTGGTTTAC-30, and antisense, 50-AAAGATGTAGGCAT
AGACCC-30; L19, sense, 50-GGCATAGGGAAGAGGAAGG-30, and antisense, 50-GGATGTG
CTCCATGAGGATGC-3 0; β-actin, sense, 5’-TTGGGTATGGAATCCTGTGGCATC-3’, and
antisense, 5’-CGGACTCATCGTACTCCTGCTTGC-3’. Realtime PCR samples were normal-
ized according to L19 mRNA levels.

Blood Analysis

Six hours before blood collection, food was withdrawn from mice. Serumwas obtained by cen-
trifugation of the whole blood sample at 900 × g for 10 min at 4°C and stored at -20°C for late
use. Serumglucose, triglycerides and total-cholesterol were measured by Hitachi 7180 Bio-
chemistry Automatic Analyzer (Hitachi, Tokyo, Japan).

Rotarod test

Motor coordination in 8-week and 1-year-old GDE5dC471 and control mice was assessed by
KN-75 rotating rod apparatus (Natsume Seisakujo, Tokyo, Japan), which consisted of a plastic
rod (3 cm diameter, 8 cm length) with a gritted surface flanked by 2 large discs. Each mouse
was placed on the rod rotated 15 times per minute, and latency to fall from the rod was
recorded.

DNA Microarray

DNA microarray analysis was performed in accordance with our previous study [30]. Total
RNA derived from the skeletal muscle (quadriceps) of GDE5dC471 and control mice at 2
weeks of age was isolated using RNeasy Lipid Tissue Mini Kit and subjected to cRNA synthesis
for a DNA microarray analysis according to the manufacturer’s instructions (whole mouse
genome 60-mer oligo microarray, Agilent Technologies, Santa Clara, CA). All of the proce-
dures of fluorescence labeling, hybridization, and slide and image processing were carried out
according to the manufacturer’s instructions. Briefly, aliquots of cRNA samples were frag-
mented and hybridized on the whole mouse genome oligo microarray slides at 65°C for 17 h.
The slides were then sequentially washed, dried, and scanned using an Agilent DNA microar-
ray scanner with Sure Scan technology (Agilent Technologies). In this study, the DyeSwap
method was used to eliminate the bias between dyes. Gene expression data were obtained with
Agilent Feature Extraction software, using defaults for all parameters except ratio terms, which
were changed according to the Agilent protocol to fit the direct labeling procedure. Files and
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images, including error values and p values, were exported from Agilent Feature Extraction
software (version 9.5). The microarray data are also deposited in the NCBI GEO data base
(available on the World Wide Web at www.ncbi.nlm.nih.gov/geo) under accession number
GSE80704.

Western blot analysis

Gastrocnemius samples were homogenized in TNE buffer (20mM Tris-HCl, pH 7.5, 0.15 M
NaCl, 1 mM EDTA and 0.5% NP-40) using a Polytron homogenizer. The homogenates were
centrifuged at 12000 rpm for 15 min at 4°C. Protein concentrations of the supernatants were
determined using the BioRad Detergent Compatible (DC) assay kit (BioRad). Tissue lysates
containing 16 μg protein were separated SDS–PAGE using a 10% polyacrylamide gel and
stained with Coomassie Brilliant Blue (CBB) for determination of separated protein concentra-
tion or transferred to Immobilon P filters (Millipore, Bedford, MA). The filters were blocked
for 2 h at room temprature by soaking in 4% nonfat dried milk (Nacalai Tesque, Kyoto, Japan)
in PBS; then they were incubated for 18 h at 4°C with the anti-HSP70 mouse monoclonal anti-
body (Santa Cruz Biotechnology, Santa Cruz, CA) and after incubation in peroxidase labeled
anti-mouse secondary antibody (Sigma-Adrich Japan) for 1 h the proteins were detected using
ECL Western Blotting DetectionReagents (GE healthcare Japan, Tokyo, Japan). The signals
were visualized by exposing the membranes to X-ray films (Fujifilm, Tokyo, Japan).

Statistical analysis

To determine significant differences in pathophysiology, parametric comparisons between
GDE5dC471 mice and age-matched control mice were carried out the two-tail unpaired t-test.
Time-course data was analyzed with a two-way ANOVA followed by the two-tail unpaired t-
test for evaluation the statistical significance betweenGDE5dC471 mice and age-matched con-
trol mice at 4 and 8-week, and 1-year old of age. Statistical analysis was executed with Prism 7
version 7.01 software (GraphPad Software, Inc.). p values of< 0.05 (two sided) were consid-
ered statistically significant.

Supporting materials and methods were described in S1 File.

Results

Pathophysiological alterations of type II fiber-rich muscles in

GDE5dC471 mice through time

We examinedmorphological alterations in type II fiber-richmuscle tissues of juvenile (4-week-
old), young (8-week-old), and middle-aged (1-year-old) heterozygous GDE5dC471 mice and age-
matched control mice. In 8-week-old and 1-year-old GDE5dC471 mice, gastrocnemius and quad-
ricepsmuscles were smaller than those of age-matched control mice (Table 1). Muscle weights did
not differ significantly between 4-week-oldGDE5dC471 mice and control mice. To quantify mus-
cle shrinkage, we measured the cross-sectional areas of gastrocnemiusmuscles from GDE5dC471
and control mice (Fig 1A). Smaller fibers were more frequent in 8-week-old and 1-year-old
GDE5dC471 mice (Fig 1A and 1B). Although the mean fiber cross-sectional area of 4-week-old
GDE5dC471 mice was slightly smaller than in age-matched control mice, that of 8-week-old or
1-year-old GDE5dC471 mice was time-dependently reduced by 42.3% or 44.2% from control
mice, respectively (Fig 1C). These results suggest that type II fiber-richmuscle atrophy had already
developed in young (8-week-old), and was irreversibly observed through middle age. As noted
also, centrally located myonuclei were evident in the type II fibers of 8-week-old and 1-year-old
GDE5dC471 mice (Fig 1A and S1 Fig) and the number of TUNEL positive cells is time-
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dependently increased in the type II fibers of 8-week-old and 1-year-old GDE5dC471 mice (Fig 2).
To examine the relationship between skeletal muscle atrophy and metabolic features, we measured
white adipose tissue weight, and serumglucose, triglyceride and total cholesterol levels of
GDE5dC471 mice (8-week-old and 1-year-old) and of age-matched control mice. Although there
was no difference in serumglucose and total cholesterol levels between these mice, white adipose
tissue weight and serum triglyceride levels in GDE5dC471 mice were higher than in control mice
(Table 2). In order to investigate the skeletal muscle metabolism,we analyzed mRNA expression
of α-glycerophosphate dehydrogenase (αGPD), which is an important enzyme for glycolysis, and
of genes linked to mitochondria functions such as citrate synthase (Cs) and peroxisome prolifera-
tor-activated receptor (PPAR)-γ co-activator-1α (PGC1α) in skeletal muscles of GDE5dC471
mice. Although mRNA expression of mitochondrialmarkers, Cs and PGC1α, was not altered in
muscles of GDE5dC471 mice, αGPD mRNA was significantly down-regulated in muscles of
1-year-old GDE5dC471 mice (S2A and S2B Fig). The decreased glucosemetabolismmay be
involved in the metabolic complications such as increased adipose tissue weight and serum triglyc-
eride level in GDE5dC471 mice. Furthermore, we analyzed type I (slow-twitch) and type II (fast-
twitch) fibermRNA expression in GDE5dC471 mice and could not observe fast- to slow-twitch
fiber transformation in the gastrocnemiusmuscle of 1-year-old GDE5dC471 mice (S3 Fig).

To investigate whether GDE5dC471-related muscle atrophy affects passive motion, we per-
formed a rotarod test using GDE5dC471 mice and age-matched control mice. GDE5dC471 mice
demonstrated worse motor performance on the rotarod than control mice in all trials (Fig 3).
Next, mice were transferred to cages with a runningwheel and monitored for the number of
wheel revolutions made for 3 days. The voluntary motor activity was not different between
GDE5dC471 mice and control mice (S4 Fig). Because type I fibers are more responsible for the
voluntary motor activity than type II fibers [32], these data were consistent with the result show-
ing that soleus muscle weight was not different betweenGDE5dC471 and wild-typemice
(Table 1). Taken together, these observations suggest that GDE5dC471 mice show not only mor-
phological alteration of type II fibermuscles but also decreasedmotor coordination ability and
that the reduction of type II fiber-richmuscle tissue mass may affect their physical performance.

NMJ-related mRNA expression and nAchR morphology in GDE5dC471

mice

In various murine models of skeletal muscle atrophy including age-associated myopathy, sev-
eral genes related to NMJs were up-regulated in skeletal muscles [18–24, 33], suggesting that

Table 1. Time course alterations of body weight and skeletal muscle weight in GDE5dC471 mice and age-matched control mice.

Mice Body weight (g) Skeletal muscles (mg)

Quadriceps Gastrocnemius Soleus

4-week-old WT (n = 4, 3$) 15.3±0.4 77.7±4.2 77.8±5.5 3.5±0.4

4-week-old Tg (n = 4, 3$) 15.0±0.3 72.5±4.7 70.7±0.9 3.8±0.4

8-week-old WT (n = 3) 21.8±0.2 161.8±8.3 144.0±9.5 5.3±0.4

8-week-old Tg (n = 3) 21.7±0.5 101.3±3.0* 99.0±9.0* 4.7±0.6

1-year-old WT (n = 7) 33.3±0.9 205.0±9.6 181.0±3.6 8.7±1.1

1-year-old Tg (n = 10) 31.8±1.2 132.2±5.0** 122.5±4.4** 10.2±0.7

WT: control mice, Tg: GDE5dC471 mice
$: soleus muscle. Data represent means±SE

*: p<0.05

**: p <0.01 (unpaired t-test, versus age-matched WT)

doi:10.1371/journal.pone.0163299.t001
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the compensatory expression of NMJ components contributes to muscle contraction and has
preventive effects on skeletal muscle dysfunction. To evaluate whether the decreased skeletal
muscle mass in GDE5dC471 mice affects the expression of NMJ components, we measured
mRNA expression of several nAchR subunits and acetylcholine esterase (Ache) in gastrocne-
mius muscles of 4-week, 8-week and 1-year-old GDE5dC471 mice. Ache, nAchRα1 and
nAchRε were up-regulated in GDE5dC471 mice relative to age-matched control mice (Fig
4A). As noted also, nAchRγ expression was equivalent between 4-week-old GDE5dC471 and
control mice (Fig 4A). Next, we examined morphological alterations of nAchR localized at the
myotube surface of the longitudinal section of gastrocnemius muscles in 1-year-old
GDE5dC471 mice and in age-matched control mice using α-bungarotoxin staining. We found
no differences in morphology betweenGDE5dC471 and control mice (Fig 4B).

Primary alternation of gene expression in GDE5dC471 mice skeletal

muscle

In our previous study, mRNA expression analyses of the quadriceps of 12-week-old GDE5dC
471 mice indicated that mRNAs for inflammatory cytokines and cellular stress (glutathione
s-transferases) were up-regulated [30]. To further explore the mechanism of skeletal muscle
atrophy development in GDE5dC471 mice, we examined 70 KD heat shock protein (HSP70)
expression in type II fiber-rich skeletal muscle of 2-week-old and 4-week-old GDE5dC471
mice. HSP70 protein expression was markedly increased in 2-week-old GDE5dC471 mice
compared with age-matched control mice (Fig 5), suggesting that this stress response plays an
important role during early stages of skeletal muscle atrophy development due to GDE5dC471
overexpression. Thus, we expected that in vivo skeletal muscle factors that sensitively respond
to GDE5dC471 expression can be identified in 2-week-old GDE5dC471 mice and performed
DNA microarray analysis (whole-mouse-genomemicroarray) using RNA samples from type II
fiber-rich skeletal muscle (quadriceps) of 2-week-old GDE5dC471 and control mice to isolate
genes that are differentially expressed in response to GDE5dC471 overexpression. Ninety-six
genes were up-regulated and 148 genes were down-regulated in 2-week-old GDE5dC471 mice
relative to age-matched control mice (p<0.05) (Fig 6A and 6B). We then compared the tran-
scriptomes of 2-week-old and 12-week-old GDE5dC471 mice to age-matched control mice
and identified 18 genes and 35 genes that were significantly up-regulated and down-regulated,
respectively, in both 2-week-old and 12-week-old GDE5dC471 mice (Fig 6A and 6B). Heat
shock proteins (HSPs) including Hspa1a, Hspa8, Hspa4l, and Hsp110 were actually up-regu-
lated along with other stress response markers, such as Fkbp5, Arrdc2, Gadd45g, Mt1 [34, 35],
and Sesn2 (Table 3). Sesn2 is a genotoxic stress marker [36] and the gene product Sestrin 2 is
considered to inhibit mTOR signaling that negatively regulates autophagy [37, 38], suggesting
that increased Sesn2 expression facilitates clearance to protect against abnormal protein accu-
mulation. Moreover, acyl-CoA synthetase (Acsm3) and a free-fatty acid transporter (Slc27a2)
were down-regulated in 2-week-old (Table 3). We also compared mRNA expression of those
in gastrocnemius muscles of 2-week-old GDE5dC471 mice with age-matched control mice.

Fig 1. Time-course morphological alterations of type II fiber-rich muscles in GDE5dC471 mice. A, Representative

photographs of H&E staining in cross sections of gastrocnemius muscle, Left; 4-week-old GDE5dC471 mice (Tg) and age-

matched control mice (Wild), center; 8-week-old, and right; 1-year-old. Central nuclei (arrow) appeared only in 1-year-old

GDE5dC471 mice. B, Time-course alterations of fiber areas of gastrocnemius muscle of 4-week-old GDE5dC471 mice (Tg) and

age-matched control mice (Wild). To visualize frequency of distribution of each myofibril, histogram images were analyzed. Both

8-week-old and 1-year-old Tg showed a leftward shift, indicating an evident increase in the percentage of small areas compared

with age-matched Wild. C, Mean fiber areas of gastrocnemius muscle of 4-week-old GDE5dC471 mice (Tg) and age-matched

control mice (Wild). 4-week-old: n = 4, 8-week-old: n = 3, and 1-year-old: n = 7 (Wild) and n = 10 (Tg). Data represent mean ± SD.

*p<0.05, **p<0.01.

doi:10.1371/journal.pone.0163299.g001
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Fig 2. Time-course alterations of TUNEL staining positive nuclear in type II fiber-rich muscles of GDE5dC471 mice. A,

Representative photographs of TUNEL staining in transverse sections of gastrocnemius muscle. Hematoxylin counter staining was

performed after the TUNEL staining to clarify the TUNEL-positive nuclei under nuclear staining, Left; 4-week-old GDE5dC471 mice

(Tg) and age-matched control mice (Wild), center; 8-week-old, and right; 1-year-old. Arrows indicated TUNEL-positive nuclear. B,
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Acsm3 and Slc7a2 were down-regulated in GDE5dC471 mice relative to age-matched control
mice, indicative of decreased fatty acid utilization [39, 40] in skeletal muscles of GDE5dC471
mice (Fig 7). Finally, we transfected GDE5dC471 into mouse myoblastic C2C12 myoblasts and
examined HSP70 expression in these cells. HSP70 protein expression was actually increased in
C2C12 myoblasts and myotubes overexpressing GDE5dC471 (S5 Fig), suggesting that
GDE5dC471 is possibly involved in the cellular stress in the skeletal muscles in vivo in a direct
manner during early stages of skeletal muscle development.

Discussion

In this study, transgenic mice overexpressing GDE5dC471 in skeletal muscles showed reduced
type II-rich skeletal muscle mass and consistently smaller cross-sectional areas of type II-rich
fibers from at least 8 weeks of age. In addition, decreases in passive motor function and
increased adipose tissue weight were observed in 8-week-old and 1-year-old GDE5dC471
mice. On the other hand, type I-rich soleus muscle mass of GDE5dC471 transgenic mice was
similar to that of age-matched control mice from juvenile to middle-aged. The type II fiber-
specific atrophy that is characteristic of GDE5dC471 mice may be because endogenous GDE5
is highly expressed in type II-rich skeletal muscle [30]. Alternatively, since we used human
skeletal muscle α-actin to specifically overexpress GDE5dC471 in skeletal muscle [30], the
GDE5dC471 gene may be preferentially expressed in type II skeletal muscle.

Previous studies have indicated a close relationship between skeletal muscle atrophy and the
degeneration of NMJs that are located at pre- and post-synapses [15–17]. In skeletal muscle,
nAchRs are formed as pentameric subunits of (α1)2βδ (γ: fetal period) or (α1)2βδ (ε: mature
period), and are located in post-synaptic membrane [21, 41–43]. mRNA expression of each
subunit changes throughout development, for example, the nAchRε subunit was constantly
expressed from youth to old age in the hindlimb muscles of FBNF1 rats, while the nAchRα and
nAchRγ subunits were up-regulated with age [44]. On the other hand, all nAchR subunits were
transiently up-regulated in the gastrocnemius muscles of surgically denervated rats, but mRNA
levels returned to normal after spontaneous reinnervation [23], whereas mRNA expression of
nAchRα1, γ, and ε subunits is increased in the diaphragm of Duchenne muscular dystrophy
model mice in response to the destabilization of NMJs via congenital defects in dystrophin [33,
45]. Taken together, nAchR subunit up-regulation observed in skeletal atrophy models repre-
sents a compensatory response to decreased neuromuscular transmission by denervation of
muscle or degeneration of NMJs.

Time-course increase in the ratio of TUNEL staining positive nuclear per total myonuclei in gastrocnemius muscles of GDE5dC471

mice and age-matched control mice. 4-week-old: n = 4, 8-week and 1-year-old: n = 5. Data represent mean ± SD. *p<0.05, **p<0.01.

doi:10.1371/journal.pone.0163299.g002

Table 2. Obesity-related parameters in 8-week-old and 1-year-old of GDE5dC471 mice, and age-

matched control mice.

Mice WAT (mg) GLU (mg/dL) TG (mg/dL) T-CHO (mg/dL)

8-week-old WT (n = 3) 258±80 269±10 30±2 72±4

8-week-old Tg (n = 3) 329±14.6* 276±7 57±7* 75±3

1-year-old WT (n = 5) 784±73 207±11 20±2 82±2

1-year-old Tg (n = 10) 1005±189 219±12 28±3* 82±5

WT: control mice, Tg: GDE5dC471 mice, WAT: White adipose tissue, GLU: serum glucose, TG: serum

triglyceride, T-CHO: serum total cholesterol. Data represent means±SE

*: p <0.05 (unpaired t-test, versus age-matched WT)

doi:10.1371/journal.pone.0163299.t002
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Fig 3. GDE5dC471 overexpression in skeletal muscle affects passive motion. Passive motion was

examined by the rotarod performance test. Both 8-week-old and 1-year-old GDE5dC471 mice (Tg) revealed

a shortening of duration at the rotating rod compared with age-matched control mice (WT) in all trials

(8-week-old, n = 5; 1-year-old, n = 7). Data represent mean ± SE. * p<0.05.

doi:10.1371/journal.pone.0163299.g003
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In the present study, we found that nAchRα1, γ, and ε subunits were up-regulated in the
gastrocnemius muscles of 8-week-old and 1-year-old GDE5dC471 mice, showing a similar fea-
ture as those in Duchenne muscular dystrophy model mice. However, NMJs were not morpho-
logical altered in GDE5dC471 mice even in 1-year-old mice, suggesting a distinct mechanism
of up-regulation of genes related to NMJs from Duchenne muscular dystrophy model. On the

Fig 4. GDE5dC471 overexpression in skeletal muscle increases neuromuscular junctions-related mRNA expression. A, Total

RNA from gastrocnemius muscle of GDE5dC471 mice (Tg) and age-matched control mice (Wild) (4-week-old, n = 4; 8-week-old, n = 3; and

1-year-old, n = 5) was subjected to quantitative PCR to examine mRNA expression level of genes related to neuromuscular junctions. Data

represent mean ± SE. *p<0.05, **p<0.01. B, Representative photographs of fluorescent α-bungarotoxin staining in transverse sections of

gastrocnemius muscle, Left; 1-year-old of GDE5dC471 mice (Tg), and right; age-matched control mice (Wild). No morphological alteration

of nicotinic acetylcholine receptor (nAchR) was observed between GDE5dC471 and control mice.

doi:10.1371/journal.pone.0163299.g004

Fig 5. HSP70 protein expression in GDE5dC471 mice. Total protein from gastrocnemius muscle of 2-week-old

and 4-week-old GDE5dC471 mice (Tg) and age-matched control mice (Wild) was subjected to SDS-PAGE

followed by Western blotting using anti-GDE5 and anti-HSP70 antibodies. The filter was stained with Coomassie

Brilliant Blue (CBB) as a control of protein loading.

doi:10.1371/journal.pone.0163299.g005
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other hands, various types of cellular stress (e.g., oxidative stress and chronic inflammation)
are supposed to be primary causes of skeletal muscle atrophy [27, 28]. In our previous study,
genes associated with inflammatory cytokines and cellular defenses, such as interleukin 1-β or
glutathione s-transferases, were up-regulated in the quadriceps muscles of 12-week-old
GDE5dC471 mice [30]. Hence, we examined the possibility that skeletal muscle atrophy in
GDE5dC471 mice is mainly induced by cellular stress signaling. Expression of the molecular
chaperone HSP70 is modulated by a variety of stress, such as heat shock, inflammation, or hyp-
oxic state, and to intracellular accumulation of abnormal proteins [46, 47]. We found a dra-
matic increase in HSP70 protein expression in the gastrocnemiusmuscles of 2-week-old
GDE5dC471 mice without a reduction in skeletal muscle mass. Moreover, C2C12 myoblasts
and myotubes overexpressing GDE5dC471 showed high expression of HSP70 protein,

Fig 6. Two transcriptomes of quadriceps muscle in 2-week-old and 12-week-old of GDE5dC471 mice. The venn diagram

shows genes that are altered in the quadriceps muscle of 2-week-old and 12-week-old GDE5dC471 mice. A, Of a total 96 genes up-

regulated in quadriceps muscle of 2-week-old GDE5dC471 mice (p<0.05), the expression of 18 genes were also increased in that of

12-week-old. On the contrary (B), the expression of 35 genes were also down-regulated in quadriceps muscle of 12-week-old

GDE5dC471 mice.

doi:10.1371/journal.pone.0163299.g006
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suggesting that GDE5dC471 protein overexpressed in these cells is recognized as an abnormal
protein. In fact, both HSP70 family genes (Hspa1a and Hspa8) and an HSP40 family member
(Hapa4l) were up-regulated in the quadriceps muscles of 2-week-old GDE5dC471 mice possi-
bly as a reaction against abnormal protein aggregation [48], because HSP40 reportedly func-
tions as the co-chaperone for HSP70 and HSP110 (Hsp110), which are synergistically
functional when both HSP40 and HSP70 promote large-scale protein disaggregation [49, 50].

Table 3. Effect of GDE5dC471 over expression in type II fiber-rich skeletal muscles (quadriceps).

Gene ID Gene symbol Gene description Fold change P value

Cell defence and stress

response

NM_010220 Fkbp5 FK506 binding protein 5 2.26 0.000

NM_027560 Arrdc2 arrestin domain containing 2 1.96 0.000

NM_011817 Gadd45g growth arrest and DNA-damage-inducible 45 gamma 1.74 0.000

NM_013559 Hsp110 heat shock protein 110 1.85 0.000

NM_010479 Hspa1a heat shock protein 1A 2.47 0.000

NM_011020 Hspa4l heat shock protein 4 like 1.63 0.001

NM_031165 Hspa8 heat shock protein 8 1.75 0.000

AK005714 Hspb9 hypothetical Heat shock hsp20 (alpha crystallin) proteins family containing

protein

2.39 0.000

NM_019946 Mgst1 microsomal glutathione S-transferase 1 0.61 0.001

BC027262 Mt1 metallothionein 1 2.24 0.000

NM_144907 Sesn2 sestrin 2 5.83 0.000

Energy metabolism

NM_009463 Ucp1 uncoupling protein 1 (mitochondrial, proton carrier) 0.16 0.000

Glucose strage and metabolism

NM_177741 Ppp1r3b protein phosphatase 1, regulatory (inhibitor) subunit 3B 0.45 0.000

NM_146118 Slc25a25 solute carrier family 25 (mitochondrial carrier, phosphate carrier), member 25 1.98 0.000

NM_145572 Gys2 glycogen synthase 2 0.57 0.000

Lipid strage and metabolism

NM_007469 Apoc1 apolipoprotein C-I 0.29 0.000

NM_212441 Acsm3 acyl-CoA synthetase medium-chain family member 3 0.24 0.000

NM_008493 Lep Leptin 0.32 0.000

NM_011146 Pparg peroxisome proliferator activated receptor gamma 0.67 0.006

NM_022984 Retn Resistin 0.59 0.000

NM_011978 Slc27a2 solute carrier family 27 (fatty acid transporter), member 2 0.18 0.000

NM_053200 Ces3 carboxylesterase 3 0.26 0.000

Secreted proteins

NM_146125 Itpka inositol 1,4,5-trisphosphate 3-kinase A 0.35 0.000

NM_023125 Kng1 kininogen 1 0.24 0.000

NM_031192 Ren1 renin 1 precursor 1.93 0.003

NM_170727 Scgb3a1 secretoglobin, family 3A, member 1 9.58 0.000

NM_198190 Ntf5 neurotrophin 5 1.40 0.020

Structural proteins

NM_010230 Fmn1 formin 1 8.72 0.000

NM_009597 Accn2 amiloride-sensitive cation channel 2, neuronal 2.04 0.000

AF221104 Kifc5c kinesin-related protein KIFC5C 25.76 0.000

DNA microarray analysis was repeated with the Cy3 and Cy5 dyes reversed (a dye swap), and fold change (Fold) represents the average of mRNA

expression level in 2-week-old of GDE5dC471 transgenic mice relative to age-matched control mice.

doi:10.1371/journal.pone.0163299.t003
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On the other hands, the endoplasmic reticulum stress response also plays an important role as
a defense against abnormal protein aggregation [50]. However, we found no change in the
expression levels of endoplasmic reticulum stress response genes, including ATF6 and IRE1,
and atrogin-1, MuRF1 and Cbl-b those are involved in the ubiquitin proteasome pathway that
degrades abnormal proteins [51].

Although NMJs were not morphological altered in GDE5dC471 mice in 1-year-old mice,
the numbers of centrally located nuclei and apoptotic cells were increased in the type II fibers
of 8-week-old and 1-year-old GDE5dC471 mice. Importantly, increased mRNA expression
of nAchR subunits was observed even in 4-week-old GDE5dC471 mice that did not show
altered skeletal muscle mass. Taken together, these observations suggest that the increased
nAchR subunits expression in the skeletal muscles of GDE5dC471 mice may indicate an
adaptation against cellular stress signaling and/or skeletal muscle fiber degeneration and
regeneration. Thus, GDE5dC471 mice can be applied for basic research on certain human
myopathies that exhibit compensatory expression of NMJs components that are a possible
consequence of increased cellular stress rather than NMJ degradation. The current study
characterized the pathophysiological features of GDE5dC471 mice with type II skeletal mus-
cle atrophy without a neurotransmission disorder and further suggests the possibility that
intracellular abnormal protein accumulation is associated with primary skeletal muscle
pathology.

Fig 7. mRNA expression associated with lipid metabolism in GDE5dC471 mice. Semiquantitative RT-PCR

was performed to determine mRNA levels of Acsm3 and Slc27a2 in quadriceps muscle of 2-week-old GDE5dC471

mice. The level of β-actin transcript was used for normalization.

doi:10.1371/journal.pone.0163299.g007
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