
Making genomics truly equitable
Amy McGuire. For the field of genetics 
and genomics, the first decade of the 
twenty-​first century was a time of rapid 
discovery, transformative technological 
development and plummeting costs. We 
moved from mapping the human genome, 
an international endeavour that took more 
than a decade and cost billions of dollars,  
to sequencing individual genomes for a  
mere fraction of the cost in a relatively  
short time.

During the subsequent decade, the field 
turned towards making sense of the vast 
amount of genomic information being 
generated and situating it in the context 
of one’s environment, lifestyle and other 
non-​genetic factors. Much of the hype 
that characterized the previous decade 
was tempered as we were reminded of the 
exquisite complexity of human biology. 
A vision of medicine driven by genetically 
determined risk predictions was replaced 
with a vision of precision in which genetics, 
environment and lifestyle all converge to 
deliver the right treatment to the right 
patient at the right time1.

As we embark on the third decade of this 
century, we are now faced with the prospect 
of being able not only to more accurately 
predict disease risk and tailor existing 
treatments on the basis of genetic and 
non-​genetic factors but also to potentially 
cure or even eliminate some diseases entirely 
with gene-​editing technologies.

against police brutality towards African 
American citizens4 have strengthened 
the antiracism movement and amplified 
demands for racial equity.

To be part of this movement and effect 
change will require humility. We must 
actively listen and learn from each other, 
especially when it is uncomfortable and our 
own complicity may be implicated. It will 
require solidarity and a recognition that 
we are all connected through our common 
humanity. And it will require courage. It 
may seem like a platitude, but it is true that 
nothing will change unless actual change is 
made. If we continue to do things as they 
have always been done, we will end up where 
we have always been. It is time to step into 
the discomfort and dare to do something 
different.

So what can we do differently to make 
genomics more equitable? I propose three 
areas where we should focus attention to 
address this important question. First, we 
must ensure equitable representation in 
genomic research. Examining 2,511 studies 
involving nearly 35 million samples from 
the GWAS Catalog in 2016, Popejoy and 
Fullerton found that the vast majority (81%) 
come from individuals of European descent, 
with only 5% coming from non-​Asian 
minority populations5. This has created 
an ‘information disparity’ that has an 
impact on the reliability of clinical genomic 
interpretation for under-​represented 
minorities6. The US National Institutes 
of Health (NIH) has invested in efforts 
to increase diversity in genomic research, 
but to be successful these efforts must be 
accompanied by serious attention to earning 
the trust of disadvantaged and historically 
mistreated populations. This will require, at 
a minimum, more meaningful engagement, 
improved transparency, robust systems 
of accountability, and a commitment 
to creating opportunities that promote 
and support a genomics workforce that 
includes scientists and clinicians from 
under-​represented populations.

It is insufficient to achieve diverse 
representation in genomic research; 
however, there must also be equitable access 
to the fruits of that research. An analysis 
of the US Centers for Disease Control and 
Prevention’s 2018 Behavioural Risk Factor 
Surveillance System found that non-​elderly 

These advancements raise many ethical 
and policy issues, including concerns 
about privacy and discrimination, 
the right of access to research findings 
and direct-​to-​consumer genetic testing, and 
informed consent. Significant investment 
has been made to better understand the 
risks and benefits of clinical genomic testing, 
and there has been vigorous debate about 
the ethics of human gene editing, with 
many prominent scientists and bioethicists 
calling for a moratorium on human 
germline editing until it is proven to be safe 
and effective and there is broad societal 
consensus on its appropriate application2.

These are all important issues that we 
need to continue to explore, but as the 
technologies that have been developed 
and tested at warp speed over the past 
two decades begin to be integrated into 
routine clinical care, it is imperative that 
we also confront one of the most difficult 
and fundamental challenges in genomics, 
in medicine and in society — rectifying 
structural inequities and addressing factors 
that privilege some while disadvantaging 
others. The genomics of the future must be 
a genomics for all, regardless of ethnicity, 
geography or ability to pay.

This audacious goal of making genomics 
truly equitable requires multifaceted 
solutions. The disproportionate burden of 
illness and death among racial and ethnic 
minorities associated with the global 
COVID-19 pandemic3 and recent protests 

The road ahead in genetics and 
genomics
Amy L. McGuire, Stacey Gabriel, Sarah A. Tishkoff   , Ambroise Wonkam   , 
Aravinda Chakravarti   , Eileen E. M. Furlong   , Barbara Treutlein   , 
Alexander Meissner   , Howard Y. Chang   , Núria López-​Bigas   , Eran Segal    
and Jin-​Soo Kim   

Abstract | In celebration of the 20th anniversary of Nature Reviews Genetics, we 
asked 12 leading researchers to reflect on the key challenges and opportunities 
faced by the field of genetics and genomics. Keeping their particular research area 
in mind, they take stock of the current state of play and emphasize the work that 
remains to be done over the next few years so that, ultimately, the benefits of 
genetic and genomic research can be felt by everyone.

	  volume 21 | October 2020 | 581

VIewpoInt

NAture RevIeWS | GENETiCS

https://www.ebi.ac.uk/gwas
http://orcid.org/0000-0002-1339-5959
http://orcid.org/0000-0003-1420-9051
http://orcid.org/0000-0002-4264-2285
http://orcid.org/0000-0002-9544-8339
http://orcid.org/0000-0002-3299-5597
http://orcid.org/0000-0001-8646-7469
http://orcid.org/0000-0002-9459-4393
http://orcid.org/0000-0003-4925-8988
http://orcid.org/0000-0002-6859-1164
http://orcid.org/0000-0003-4847-1306
http://crossmark.crossref.org/dialog/?doi=10.1038/s41576-020-0272-6&domain=pdf


The contributors

Amy L. McGuire is the Leon Jaworski Professor of Biomedical Ethics and Director of the Center for Medical Ethics and Health Policy at Baylor College of 
Medicine. She has received numerous teaching awards at Baylor College of Medicine, was recognized by the Texas Executive Women as a Woman on 
the Move in 2016 and was invited to give a TedMed talk titled “There is No Genome for the Human Spirit” in 2014. In 2020, she was elected as a Hastings 
Center Fellow. Her research focuses on ethical and policy issues related to emerging technologies, with a particular focus on genomic research, 
personalized medicine and the clinical integration of novel neurotechnologies.

Stacey Gabriel is the Senior Director of the Genomics Platform at the Broad Institute since 2012 and has led platform development, execution and 
operation since its founding. She is Chair of Institute Scientists and serves on the institute’s executive leadership team. She is widely recognized as a 
leader in genomic technology and project execution. She has led the Broad’s contributions to numerous flagship projects in human genetics, including 
the International HapMap Project, the 1000 Genomes Project, The Cancer Genome Atlas, the National Heart, Lung, and Blood Institute’s Exome 
Sequencing Project and the TOPMed programme. She is Principal Investigator of the Broad’s All of Us (AoU) Genomics Center and serves on the AoU 
Program Steering Committee.

Sarah A. Tishkoff is the David and Lyn Silfen University Associate Professor in Genetics and Biology at the University of Pennsylvania, Philadelphia, USA, 
and holds appointments in the School of Medicine and the School of Arts and Sciences. She is a member of the US National Academy of Sciences and  
a recipient of an NIH Pioneer Award, a David and Lucile Packard Career Award, a Burroughs/Wellcome Fund Career Award and an American Society  
of Human Genetics Curt Stern Award. Her work focuses on genomic variation in Africa, human evolutionary history, the genetic basis of adaptation  
and phenotypic variation in Africa, and the genetic basis of susceptibility to infectious disease in Africa.

Ambroise Wonkam is Professor of Medical Genetics, Director of GeneMAP (Genetic Medicine of African Populations Research Centre) and Deputy 
Dean Research in the Faculty of Health Sciences, University of Cape Town, South Africa. He has successfully led numerous NIH- and Wellcome 
Trust-​funded projects over the past decade to investigate clinical variability in sickle cell disease, hearing impairment genetics and the return of 
individual findings in genetic research in Africa. He won the competitive Clinical Genetics Society International Award for 2014 from the British Society 
of Genetic Medicine. He is president of the African Society of Human Genetics.

Aravinda Chakravarti is Director of the Center for Human Genetics and Genomics, the Muriel G. and George W. Singer Professor of Neuroscience and 
Physiology, and Professor of Medicine at New York University School of Medicine. He is an elected member of the US National Academy of Sciences,  
the US National Academy of Medicine and the Indian National Science Academy. He has been a key participant in the Human Genome Project, the 
International HapMap Project and the 1000 Genomes Project. His research attempts to understand the molecular basis of multifactorial disease. He was 
awarded the 2013 William Allan Award by the American Society of Human Genetics and the 2018 Chen Award by the Human Genome Organization.

Eileen E. M. Furlong is Head of the Genome Biology Department at the European Molecular Biology Laboratory (EMBL) and a member of the EMBL 
Directorate. She is an elected member of the European Molecular Biology Organization (EMBO) and the Academia Europaea, and a European Research 
Council (ERC) advanced investigator. Her group dissects fundamental principles of how the genome is regulated and how it drives cell fate decisions 
during embryonic development, including how developmental enhancers are organized and function within the 3D nucleus. Her work combines 
genetics, (single-​cell) genomics, imaging and computational approaches to understand these processes. Her research has advanced the development 
of genomic methods for use in complex multicellular organisms.

Barbara Treutlein is Associate Professor of Quantitative Developmental Biology in the Department of Biosystems Science and Engineering of ETH 
Zurich in Basel, Switzerland. Her group uses and develops single-​cell genomics approaches in combination with stem cell-​based 2D and 3D culture 
systems to study how human organs develop and regenerate and how cell fate is regulated. For her work, Barbara has received multiple awards, 
including the Friedmund Neumann Prize of the Schering Foundation, the Dr. Susan Lim Award for Outstanding Young Investigator of the International 
Society of Stem Cell Research and the EMBO Young Investigator Award.

Alexander Meissner is a scientific member of the Max Planck Society and currently Managing Director of the Max Planck Institute (MPI) for Molecular 
Genetics in Berlin, Germany. He heads the Department of Genome Regulation and is a visiting scientist in the Department of Stem Cell and 
Regenerative Biology at Harvard University. Before his move to the MPI, he was a tenured professor at Harvard University and a senior associate 
member of the Broad Institute, where he co-​directed the epigenomics programme. In 2018, he was elected as an EMBO member. His laboratory uses 
genomic tools to study developmental and disease biology with a particular focus on epigenetic regulation.

Howard Y. Chang is the Virginia and D. K. Ludwig Professor of Cancer Genomics at Stanford University and an investigator at the Howard Hughes 
Medical Institute. He is a physician–scientist who has focused on deciphering the hidden information in the non-​coding genome. His laboratory is best 
known for studies of long non-​coding RNAs in gene regulation and development of new epigenomic technologies. He is an elected member of the US 
National Academy of Sciences, the US National Academy of Medicine, and the American Academy of Arts and Sciences.

Núria López-​Bigas is ICREA research Professor at the Institute for Research in Biomedicine and Associate Professor at the University Pompeu Fabra.  
She obtained an ERC Consolidator Grant in 2015 and was elected as an EMBO member in 2016. Her work has been recognized with the prestigious 
Banc de Sabadell Award for Research in Biomedicine, the Catalan National Award for Young Research Talent and the Career Development Award from 
the Human Frontier Science Program. Her research focuses on the identification of cancer driver mutations, genes and pathways across tumour types 
and in understanding the mutational processes that lead to the accumulation of mutations in cancer cells.

Eran Segal is Professor in the Department of Computer Science and Applied Mathematics at the Weizmann Institute of Science, heading a 
multidisciplinary laboratory with extensive experience in machine learning, computational biology and analysis of heterogeneous high-​throughput 
genomic data. His research focuses on the microbiome, nutrition and genetics, and their effect on health and disease and aims to develop personalized 
medicine based on big data from human cohorts. He has published more than 150 publications and received several awards and honours for his work, 
including the Overton and the Michael Bruno awards. He was recently elected as an EMBO member and as a member of the Israel Young Academy.

Jin-​Soo Kim is Director of the Center for Genome Engineering in the Institute for Basic Science in Daejon, South Korea. He has received numerous 
awards, including the 2017 Asan Award in Medicine, the 2017 Yumin Award in Science and the 2019 Research Excellence Award (Federation of Asian 
and Oceanian Biochemists and Molecular Biologists). He was featured as one of ten Science Stars of East Asia in Nature (558, 502–510 (2018)) and has 
been recognized as a highly cited researcher by Clarivate Analytics since 2018. His work focuses on developing tools for genome editing in biomedical 
research.

582 | October 2020 | volume 21	 www.nature.com/nrg

V i e w p o i n t



adults from self-​identified racial or ethnic 
minority groups are significantly less 
likely to see a doctor because of cost than 
non-​elderly white adults7. This finding 
reflects how the structure and financing of 
health care in the United States perpetuates 
inequities and contributes to the larger 
web of social injustice that is at the heart of 
the problem. Even when socio-​economic 
factors are controlled for, racial disparities 
in access to genetic services persist8. 
Large-​scale, sustained research is needed to 
better understand and actively address the 
multitude of factors that contribute to this, 
including issues related to structural racism, 
mistrust, implicit and explicit bias, a lack of 
knowledge of genetic testing, and concerns 
about misuse of genetic information.

Finally, and perhaps most daunting, 
we must strive to achieve more equitable 
outcomes from genomic medicine. 
Many racial and ethnic minorities 
disproportionately experience chronic 
disease and premature death compared 
with white individuals. Disparities also 
exist by gender, sexual orientation, age, 
disability status, socio-​economic status and 
geographical location. Health outcomes 
are heavily influenced by social, economic 
and environmental factors. Thus, although 
providing more equitable access to genomic 
services and ensuring more equitable 
representation in genomic research are 
necessary first steps, they are not enough9. 
Genomics can only be part of the solution  
if it is integrated with broader social, 
economic and political efforts aimed at 
addressing disparities in health outcomes. 
For genomics to be truly equitable, it must 
operate within a just health-​care system and 
a just society.

Genome sequencing at population scale
Stacey Gabriel. Twenty years ago, 
I finished a PhD project that involved 
laboriously sequencing one gene — a rather 
complicated one, RET — in a couple of 
hundred people to catalogue pathogenic 
variants for Hirschsprung disease. This 
work required designing primers on the 
basis of genome sequence data as they were 
gradually released, amplifying the gene exon 
by exon (all 20!), running sequencing gels 
and manually scoring sequence changes.  
The notion of sequencing the whole 

Coupled with clinical data, building 
up population-​scale databases of genomic 
plus clinical information will fuel the 
application of better risk interpretation using 
polygenic risk scores (PRSs)11. More routine 
WGS will shorten the ‘diagnostic odyssey’, 
in which patients suffer through rounds 
of testing and parents are left uncertain 
about future reproductive planning. 
More efficient clinical trials might be built 
using genomic information. With existing 
genomic information on all individuals in 
a health system, trials could be designed 
in a way that selects individuals most likely 
to have an event. This enrichment could 
provide more promising, shorter, smaller 
and cheaper trial design.

These databases must also rapidly be 
built in such a way that is representative 
of the population, representing the actual 
racial and ethnic diversity, not just what 
was available as banked sample collections. 
These are well known to be predominantly 
European-​descent samples and thus 
preclude application of risk prediction tools 
in non-​white individuals and have limited 
the ability to find population-​specific genetic 
associations, such as those that have been 
demonstrated in type 2 diabetes mellitus 
(T2DM)12.

We have to solve important issues — 
data sharing, privacy and getting the data 
to scale. Sharing genomic and clinical 
data is of key importance to drive forward 
discovery and our understanding of 
how to use these data in the health-​care 
setting. To do this well and responsibly, 
trust must be built and maintained 
through adherence to the rights of privacy, 
protection and non-​discrimination. 
Progress is being made through 
the creation of data platforms and the 
development of frameworks for data 
protection and sharing; for example, by the 
work of the Global Alliance for Genomics 
and Health (GA4GH).

Several large biobanks are already being 
established to launch population-​scale 
efforts. The UK Biobank is a vanguard 
programme that contains genotype data, 
questionnaire-​based health and physical 
measurements on 500,000 individuals and 
some linkage to their medical records. 
Other efforts such as the All of Us research 
programme have been launched with 
goals directed at true population-​based 
representation, and biobanks that link 
genomic data to comprehensive medical 
records in specific health-​care systems (for 
example, Geisinger) or in specific countries 
or regions (for example, Estonia and Iceland) 
are also under way.

genome to catalogue sequence changes was 
something to wish for in our wildest dreams.

Thanks to great strides in technology 
and the hard work of geneticists, engineers, 
epidemiologists and clinicians, much progress 
has been made; huge numbers of genomes 
(and exomes) have been sequenced across 
the world. Disease gene-​finding projects 
such as my graduate work are now done 
routinely, rather than one gene at a time, using 
whole-​exome or whole-​genome sequencing 
(WGS) in families and affected individuals, 
enabling the identification of genes and 
causative mutations in thousands of  
Mendelian diseases and some complex 
diseases.

But the real promise of genome 
sequencing lies in true population-​scale 
sequencing, ultimately at the scale of tens 
of millions of individuals, whereby genome 
sequencing of unselected people enables 
the unbiased, comprehensive study of our 
genome and the variation therein. It provides 
a ‘lookup table’ to catalogue disease-​causing 
and benign variants (our ‘allelic series’). 
The genome sequence should become part 
of the electronic health record; it is a stable, 
persistent source of information about a 
person akin to physical measurements such 
as weight or blood pressure, exposures  
such as smoking or alcohol use, and (in many 
ways better than) self-​reported family history.

What can we learn? What needs to 
be solved? Even fairly small numbers of 
genomes aggregated in a consistent and 
searchable form have enabled a new way to 
use and interpret genomic data, just in the 
past couple of years providing a glimpse at 
the future. Efforts such as gnomAD10 are 
a start — this database contains data from 
more than 15,000 genomes and 125,0000 
exomes. With this resource, the frequency 
of genetic variants within populations is 
readily available. A clinician interpreting 
the genome of a patient can ask whether 
a variant has been observed before. The 
data provide a starting point for assessing 
the functional impact of classes of genetic 
variation and the ability to ask questions 
about ‘missing’ genetic variation where there 
is constraint.

we must strive to achieve 
more equitable outcomes from 
genomic medicine

the real promise of genome 
sequencing lies in true 
population-​scale sequencing, 
ultimately at the scale of tens 
of millions of individuals
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observations). While decreases in the 
costs of sample preparation and data 
processing are important, they represent 
a small component of the total cost. 
Roughly 70% of the cost of sequencing 
a human genome is the sequencing 
reagent (flow cell) and the instrument. 
Appreciable cost decrease is made possible 
only by decreasing these marginal costs, 
as was demonstrated in the period from 
2010 to 2014, when flow-​cell densities 
doubled and sequencing cost dropped 
by an order of magnitude (US$100 per 
gigabase to US$10 per gigabase).

2.	 Scale. One component of cost is the fixed 
cost borne by the sequencing centre or 
the sequencing vendor. With high scale, 
centres can become more efficient and 
offset costs such as the costs of personnel, 
equipment and facilities. Scale can also 
result in volume discounting of the 
reagents, although this process is tightly 
controlled and approached cautiously 
depending on overall market dynamics.

3.	 Competition. Innovation and scale can only 
achieve so much. The cost of generating 
the data (the cost per gigabase) dominates 
and thus must come down considerably. 
The current market requires alternative 
options to drive this advance. Presently, 
the market for short-​read sequencing 
is lacking viable, proven competition 
that would force flow-​cell densities and 
machine yield to be increased and put 
pressures on volume discounting. While 
options for long-​read sequencing exist 
and play a role in particular applications, 
such as de novo sequencing and structural 
variant resolution, they are at present far 
from cost competitive and, therefore, do 
not apply pressure to bring down the cost 
of routine WGS.

We need innovation, great economies 
of scale and/or real competition to come to 
play in the marketplace. When it comes 
to sequencing technology, particularly at a 
large scale, we cannot be complacent and 
work around the current barriers to realize 
small gains and one-​off wins. This might 
involve specific types of investment beyond 
just financial ones; adopting and vetting 
new technology requires time, creativity, 
commitment and patience. It is a challenge 
for our community to take on now. In 
5 years’ time, I hope we can look back at 
the era of the US$100 genome and progress 
towards real population-​scale databases that 
fuel discovery, enriching our knowledge 
of the human allelic series and, importantly, 
the routine use of genomic data in the 
health-​care setting.

A global view of human evolution
Sarah Tishkoff. The past 10 years saw 
an exponential increase in SNP array 
and high-​coverage WGS data owing to 
innovations in genomic technologies. 
It is now possible to generate WGS data 
from tens of thousands of individuals 
(for example, GenomeAsia 100K14 and 
NIH TOPMed15). An increase in medical 
biobanks with access to electronic health 
records (for example, the UK Biobank16, 
the Million Veteran Project17 and BioBank 
Japan18) is enabling the mapping of 
hundreds of genetic associations with 
complex traits and diseases, as well as 
phenome-​wide association studies19 to map 
pleiotropic associations of phenotypes with 
genes. The genetic associations identified 
in these and other studies have been used 
to calculate PRSs for predicting complex 
phenotypes and risk of diseases.

Yet despite these advances, as of 2019, 
nearly 80% of individuals in genome-​ 
wide association studies (GWAS) were of 
European ancestries, ~10% were of East 
Asian ancestries, ~2% were of African 
ancestries, ~1.5% were of Hispanic ancestries 
and less than 1% were of other ancestries20. 
There is also a strong European bias in 
genomic reference databases, such as 
gnomAD and GTEx. These biases limit 
our knowledge of genetic risk factors for 
disease in ethnically diverse populations 
and could exacerbate health inequities20. 
Furthermore, PRSs that were estimated 
using European data do not accurately 
predict phenotypes and disease risk in 
non-​European populations, performing 
worst in individuals with African ancestry21. 
The lack of transportability of PRSs across 
ethnic groups is likely due to differences 
in patterns of linkage disequilibrium and 
haplotype structure (resulting in different 
SNPs tagging causal variants), differences 
in allele frequencies, gene × gene effects and 
gene × environment effects. It is also possible 
that the genetic architecture of complex traits 
and diseases may differ across ethnic groups 
owing to different demographic histories and 
adaptation to diverse environments.

Although there have been initiatives 
to increase inclusion of ethnically diverse 
populations in human genomics research 
(for example, the NIH TOPMed15 and 
H3Africa consortia), Indigenous populations 
remain under-​represented. Great care must 
be taken to ensure that genomic research 
of minority and Indigenous populations 
is conducted in an ethical manner. This 
involves establishing partnerships with local 
research scientists, being sensitive to local 
customs and cultural concerns, obtaining 

A big piece of this puzzle is generating 
comprehensive genome sequence data in 
these programmes and far beyond. For this 
aim, large-​scale, affordable sequencing 
is key. No problem, right? Is sequencing not 
always getting cheaper? The problem is that 
this assumption is no longer true. We have 
got to where we are today because for a 
long time, from 2008 to 2013, sequencing 
costs dropped exponentially. However, in 
recent years, the sequencing cost curve has 
flattened, as is apparent in publicly reported 
cost estimates provided by the US National 
Human Genome Research Institute13. 
The cost per megabase of sequence data 
has remained largely unchanged since 
around 2016, hovering around a list price 
of US$0.01 per megabase, which translates 
to a US$1,000 genome. Gone are the 
days of our field touting the impressive 
decrease of cost in comparison with Moore’s 
law, and this development is worrying.

Some discounting does happen at 
considerable volume, and whole genomes 
can be priced in the range of US$500 to 
US$700. However, large projects (more than 
500,000 samples) sequenced at these prices 
are few and far between, and are generally 
dependent on pharmaceutical or biotech 
funding, which can bring with it restrictions 
on data sharing. It is my belief that a fivefold 
to sevenfold reduction in total costs is 
needed to unlock more sequencing at the 
population scale and, ultimately, for genome 
sequencing to be more widely applied in 
the health-​care setting. At US$100 per 
genome, the cost represents less than 1% of 
the annual average health-​care expenditure 
per person in the United States, and a 
genome sequence is a one-​time investment 
that can be referenced again and again 
over the entire lifespan of a person. Getting 
that cost curve down will be important to 
inspire health-​care systems to adopt genome 
sequencing routinely.

I see three main drivers that will get us to 
US$100 per genome: innovation, scale and 
competition.
1.	 Innovation. Generating sequence data 

requires multiple components, and there 
are multiple areas ripe for innovation. 
Sample preparation can be improved 
through more efficient methods 
that decrease the labour required, or 
miniaturization can decrease the cost of 
the reagents used in library preparation. 
Developments to decrease data processing 
costs are also ripe for innovation. 
Recently, we showed that processing 
using optimized computing power 
lowered the time and cost of creating a 
sequence file by ~50% (S.G., unpublished 
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both community and individual consent, 
and returning results to communities that 
participated when possible. In addition, 
there should be training and capacity 
building so that genomic research can be 
conducted locally, where feasible.

A particular area of focus in the future 
should be developing tools and resources 
that make genomic data and analyses 
accessible in low- and middle-​income 
countries. We have to ensure that all people 
benefit from the genomics revolution 
and advances in precision medicine and 
gene editing. Thus, several of the biggest 
challenges in the next decade will be (1) 
to increase inclusion of ethnically diverse 
populations in human genomics research; 
(2) the generation of more diverse reference 
genomes using methods that generate 
long sequencing reads, and haplotype 
phasing, to account for the large amount of 
structural variation that likely exists within 
and between populations; (3) the training 
of a more diverse community of genomic 
research scientists; and (4) the development 
of better methods for accurately predicting 
phenotypes and genetic risk across ethnically 
diverse populations and for distinguishing 
gene × environment effects.

The inclusion of ethnically diverse 
populations, including Indigenous 
populations, is also critical for 
reconstructing human evolutionary history 
and understanding the genetic basis of 
adaptation to diverse environments and 
diets. While there have been a number of 
success stories for identifying genes of large 
effect that play a role in local adaptation 
(for example, lactose tolerance and sickle 
cell disease (SCD) associated with malaria 
resistance), identifying signatures of 
polygenic selection has been considerably 
more challenging22. Genomic signatures of 
polygenic adaptation are based on the ability 
to detect subtle shifts in allele frequencies at 
hundreds or thousands of loci with minor 
effect on the phenotype of a complex trait 
and to determine whether that shift is a 
result of demography or natural selection. 
A more daunting challenge arises from the 
same issues of portability of PRSs described 
earlier — variants associated with a 
complex trait may not tag well across ethnic 
groups and/or the genetic architecture of 
a trait may differ in different populations. 
Furthermore, it has recently been shown 
that uncorrected population stratification 
can result in a false signal of polygenic 
selection23. For example, several studies 
have identified signatures of polygenic 
adaptation for height across European 
populations (selection for increased height 

in northern Europeans and for decreased 
height in southern Europeans). However, it 
was recently shown that these results were 
influenced by population structure that 
could not be easily corrected using standard 
approaches, particularly for SNPs below 
genome-​wide levels of significance23. When 
this analysis was repeated with variants 
identified in a more homogenous set of 
individuals of European ancestry from the 
UK Biobank, these signatures of polygenic 
adaptation were erased23. Thus, methods 
for detecting polygenic adaptation that are 
less biased by population structure and by 
population ascertainment bias will need to 
be developed in the future. These studies 
will also benefit from inclusion of more 
ethnically diverse populations in GWAS and 
identification of better tag SNPs as described 
earlier. A challenge of inclusion of minority 
populations in GWAS is that sample 
sizes are often small relative to majority 
populations. However, the high levels of 
genetic diversity and extremes of phenotypic 
diversity observed in some populations, 
particularly those from Africa, make 
them particularly informative for GWAS. 
For example, a GWAS of skin pigmentation 
in fewer than 1,600 Africans was informative 
for identifying novel genetic variants that 
affect skin colour, including a previously 
uncharacterized gene, MFSD12 (ref.24). 
Thus, genomic studies in the future must 
make inclusion of minority populations 
a priority.

A challenge in both GWAS and selection 
scans has been the identification of causal 
genetic variants that directly have an impact 
on variable traits. Most of these variants 
are in non-​coding regions of the genome. 
The development of high-​throughput 
approaches, such as massively parallel 
luciferase expression assays to identify gene 
regulatory regions and high-​throughput 
CRISPR screens in vitro and in vivo to 
identify functional variants influencing 
the trait of interest, will be useful25. There 
is also a need to better understand cell 
type-​specific variation and gene regulation 
at the single-​cell level, including response to 
stimuli such as immune, pharmacological 
and nutrient challenges, in ethnically 
diverse populations. However, these 
approaches are still limited by the need 
to have informative cell lines. This can 
be particularly challenging to obtain for 
Indigenous populations living in remote 
regions. Improvements in the differentiation 
of induced pluripotent stem cells (iPS cells) 
into assorted cell types and into organoids 
will be important for facilitating functional 
genomic studies. Establishment of iPS cells 

and organoids from diverse non-​human 
primate species will also be informative for 
comparative genomic studies to identify the 
evolution of human-​specific traits such as 
brain development and cognition. However, 
iPS cell-​derived cells may not accurately 
reflect the impact of mutations acting on 
developmental phenotypes, which will 
require development of more efficient 
in vivo approaches in model organisms.

Perhaps the biggest revolution in 
the study of recent human evolutionary 
history has been the development of 
methods that make it feasible to sequence 
and/or obtain targeted genotypes from 
ancient DNA samples. The generation of 
high-​coverage reference genomes for archaic 
hominid species such as Neanderthals 
and Denisovans, located in Eurasia, 
has made it feasible to identify archaic 
introgressed segments within the genomes 
of non-​Africans. Some of these regions 
have been shown to play a role in adaptive 
traits such as adaptation to high altitude 
and immune response26. Furthermore, 
there has been an explosion of studies of 
ancient genetic variation in Europeans 
within the past 30,000 years that has 
demonstrated a much more complex model 
of the peopling of Europe, and the recent 
evolution of adaptive traits, than previously 
known from the archaeological record or 
from studies of modern populations27. The 
biggest challenge has been the inability 
to get high-​quality ancient DNA from 
regions with a tropical climate, such as 
Africa and Asia. While there has been 
success in analysing DNA samples as old 
as 15,000 years in Africa, which has been 
informative for tracing recent migration 
and admixture events28, the lack of a 
more ancient African reference genome 
makes it very challenging to detect archaic 
introgression, which currently relies on 
statistical modelling approaches. Thus, the 
biggest challenge in the next 10 years will 
be the successful sequencing of ancient 
DNA more than 20,000 years old from all 
regions of the world, so that we may have a 
better understanding of the complex web of 
population histories from across the globe.

African genomics — the next frontier
Ambroise Wonkam. To fully meet the 
potential of global genetic medicine, 
research into African genomic variation is a 
scientific imperative, with equitable access 
being a major challenge to be addressed. 
Studying African genomic variation 
represents the next frontier of genetic 
medicine for three major reasons: ancestry, 
ecology and equity.
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On the basis of a ‘pan-​genome’ generated 
from 910 individuals of African descent, at 
least 300 million DNA variants (10%) are 
not found in the current human reference 
genome29, and 2–19% of the genome of 
ancestral Africans derives from poorly 
investigated archaic populations that 
diverged before the split of Neanderthals  
and modern humans30. Neanderthal genome  
contributions make up ~2% of the 
genome in present-​day Europeans and are 
enriched for variations in genes involved in 
dermatological phenotypes, neuropsychiatric 
disorders and immunological functions31. 
Once technical challenges in sequencing 
poor-​quality DNA have been overcome 
and approaches to investigate the 
genomic contribution of African archaic 
populations have been refined, it is likely 
that associations between variants in ancient 
African DNA and human traits or diseases 
will be found, providing insights that can 
benefit modern-​day humans.

As a consequence of the 300,000–500,000 
years of genomic history of modern humans 
in Africa, ancestral African populations are 
the most genetically diverse in the world. 
By contrast, there is an extreme genetic 
bottleneck, resulting in much less variation, 
in all non-​African populations who evolved 
from the thousands of humans who migrated 
out of Africa approximately 70,000 years 
ago. Current PRSs, which aim to predict 
the risk for an individual of a specific 
disease on the basis of the genetic variants 
that individual harbours, exhibit a bias 
regarding usability and transferability across 
populations, as most PRSs do not account 
for multiple alleles that are either limited 
or of high frequency among Africans. 
A GWAS on the genetic susceptibility to 
T2DM identified a previously unreported 
African-​specific significant locus, while 
showing transferability of 32 established 
T2DM loci32. In addition, nonsense 
mutations found commonly among 
Africans in PCSK9, which are rare in 
Europeans33, are associated with a 40% 
reduction in plasma levels of low-​density 
lipoprotein, supporting PCSK9 as a target 
for dyslipidaemia therapeutics. In the largest 
GWAS meta-​analysis for 34 complex traits, 
conducted in 14,345 Africans, several loci 
had limited transferability among cohorts34, 
further illustrating that genomic variation 
is highest among Africans compared with 
other populations. As a consequence, linkage 
disequilibrium is lower in Africans, which 
improves fine mapping and identification 
of causative variants. Indeed, while only 
2.4% of participants in large GWAS are 
African individuals, they account for 7% 

of all associations35. Moreover, whole-​exome 
sequencing of nearly 1,000 African study 
participants of Xhosa ancestry with 
schizophrenia found very rare damaging 
mutations in multiple genes36, a finding that 
could be replicated in a Swedish cohort of 
5,000 individuals. In comparison, results 
for the Xhosa cohort yielded larger effect 
sizes, which shows that for the same number 
of cases and controls, the greater genetic 
variation in African populations provides 
more power to detect genotype–phenotype 
relationships. Therefore, millions of 
African genomes must be sequenced, with 
genotyping and analysis tools optimized for 
their interrogation.

Greater availability of African genomes 
will improve our understanding of genomic 
variation and complex trait associations 
in all populations but will also support 
research into common monogenic diseases. 
The discovery of a single African origin 
of the SCD mutation, about 5,000–7,000 
years ago, not only suggested recent 
migration and admixture events between 
Africans and Mediterranean and/or Middle 
Eastern populations but also enhanced 
our understanding of genetic variation 
in general as well as its potential impact 
on haemoglobinopathies37. For example, 
variants in the HBB-​like gene cluster linked 
with high levels of fetal haemoglobin have 
been associated with less severe SCD; because 
the level of fetal haemoglobin is under 
genetic control, it is amenable to therapeutic 
manipulation by gene editing38. Moreover, 
knowledge of an individual’s genetic variants 
can have an impact on secondary prevention 
of and treatment strategies for SCD. For 
example, variants in APOL1 and HMOX1 
and co-​inheritance of α-​thalassaemia are 
associated with kidney dysfunctions39; stroke 
in SCD is associated with targeted genetic 
variants used in a Bayesian model; and 
overall SCD mortality has been associated 
with circulating transcriptomic profiles. 
It is estimated that 75% of the 305,800 
babies with SCD born each year are born in 
Africa; SCD in Africa will serve as a model 
for understanding the impact of genetic 
variation on common monogenic traits 
and help to illustrate the multiple layers 
of genomic medicine implementation.

Exploring African genomic diversity 
will also increase discovery of novel 
variants and genes for rare monogenic 
conditions. Indeed, allelic and locus 
heterogeneity display important differences 
in African individuals compared with other 
populations; for example, mutations in GJB2 
account for nearly 50% of cases of congenital 
non-​syndromic hearing impairment among 

Eurasians but are nearly non-​existent in 
Africans, and there is evidence that novel 
variants in hearing impairment-​associated 
genes are more likely to be found in 
Africans than in populations of European 
or Asian ancestries40. Higher fertility rate, 
consanguinity practices and regional 
genetic bottlenecks will improve novel gene 
discovery for monogenic diseases in Africa, 
as well as disease–gene pair curation, and 
will address existing challenges surrounding 
database biases and inference of variant 
deleteriousness, which have led to the 
misclassification of variants.

Differential population genomic 
variant frequencies are shaped by natural 
evolutionary selection as an adaptation 
to environmental pressures. The African 
continent follows a North–South axis, 
which is associated with variable climates 
and biodiversity, both motors of natural 
selection. This specific African ecology has 
shaped genetic variation accordingly, which 
can have a detrimental or positive impact on 
health. Obvious examples are variants that 
cause SCD but confer resistance to malaria37, 
APOL1 variants that are protective against 
trypanosomes (the parasites that cause 
sleeping sickness)41 and variants of OSBPL10 
and RXRA that protect against dengue 
fever42. Unfortunately, APOL1 variants 
also increase susceptibility to chronic 
kidney disease in populations of African 
ancestry39,41. A better understanding of the 
functional impact of genetic variants specific 
to African populations, particularly those 
that have been selected under environmental 
pressure, and the way they interact with 
each other is needed and will have a positive 
impact on genetic medicine practice. 
Moreover, immunogenetic studies among 
Africans will further our understanding of 
natural selection and responses to emerging 
infectious diseases, such as COVID-19.

The scientific imperative of genomic 
research of African populations is expected 
to enhance genetic medicine knowledge and 
practice in Africa but will face the challenges 
of overburdened and under-​resourced public 
health-​care systems, and often absent ethical, 
legal and social implication frameworks43, 

Greater availability of African 
genomes will improve our 
understanding of genomic 
variation and complex  
trait associations in all 
populations
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requiring international collaboration to be 
managed. Developing an African genomics 
workforce will be necessary to meet the 
major need for research across the lifespan 
for cohorts of millions of individuals with 
complex or monogenic diseases. Such 
endeavours can thrive on the foundation 
of recently established initiatives such as 
H3Africa. Indeed, equitable access for 
Africans is essential if African genomics is 
to reach its full potential as the next frontier 
of global genetic medicine.

Decoding multifactorial phenotypes
Aravinda Chakravarti. We live in a time 
of great technological progress in genomics 
and computing. And we live in a time when 
‘genetics’ is a household word, with a public 
increasingly adept at understanding its 
relevance to their own lives. Not surprisingly, 
the study of genetics is being reinvented, 
rediscovered and reshaped, and we are 
beginning to understand the science of 
human heredity at a resolution that was 
impossible before.

The most significant genetics puzzle 
today, in my view, is the dissection of ‘family 
resemblance’ of complex phenotypes, both 
for intellectual (raison d'être of genetics) and 
practical (disease diagnosis and therapy) 
reasons. We have long known that family 
resemblance arises from shared alleles, 
declining as genetic relationship wanes, 
but the precise molecular components 
and composition of this resemblance are 
still poorly understood. At the turn of 
the twentieth century, the components 
were a matter of bitter and acrimonious 
debate44 between the ‘Mendelians’ and the 
‘Biometricians’, until the opposing views 
were reconciled by Ronald Fisher’s 1918 
analysis45 that complex inheritance could 
be explained through segregation of many 
genes, each individually Mendelian. In 1920, 
its publication delayed by World War I, 
this notion was elegantly demonstrated by 
the experimental studies of Altenburg and 
Muller using truncate wing, an “inconstant 
and modifiable character”46 in Drosophila.

Fisher’s model assumed an infinite 
number of genes additively contributing 
to a trait, with common genetic variation 
at each component locus comprising two 

alleles that differ only slightly in their genetic 
effects45; these genetic assumptions were 
quite contrary to what was then known44. 
Throughout the past century, this view 
matured, as segregation analyses of human 
phenotypes taught us that — beyond the 
effects of some major genes — most trait 
variation was polygenic, modulated by 
family-​specific and random environmental 
factors47. Today, we have empirical 
evidence from GWAS, which use dense 
maps of genetic variants on hundreds of 
thousands of individuals measured for 
many traits and diseases, that the genetic 
architecture of most multifactorial traits 
is from common sequence variants with 
small allelic differences at thousands of sites 
across the genome48. This replacement of a 
pan-​Mendelian view with a pan-​polygenic 
view of traits is one of the most important 
contributions of genomics to genetics. 
Unfortunately, this mapping success has 
not clarified the number of genes involved, 
the identity of those genes or how those 
genes specify the phenotype. Indeed, some 
have concluded that many of the mapped 
GWAS loci are unrelated to the core biology 
of each phenotype49. Thus, for a deeper 
understanding, we need radically different 
approaches to understand complex trait 
biology in contrast to merely expanding 
GWAS in larger and larger samples.

Yet, the most significant biology to 
emerge from GWAS is that most of the likely 
trait-​causing variants fall outside coding 
sequences, in regulatory elements, most 
frequently enhancers50,51. This important 
finding has uncovered four new genetic 
puzzles. First, the non-​coding regulatory 
machinery is vast; how much of this 
regulation is compromised, and how does 
it affect phenotypes? Second, regulatory 
changes affect RNA expression at many genes 
and protein expression at others; how does a 
cell ‘read’ these numerous changes as specific 
signals? Third, how is this coordinated 
expression response translated into cellular 
responses affecting phenotypes? Fourth, 
if specific environmental factors affect the 
same phenotype, which components do 
they dysregulate? In my opinion, we need to 
answer these questions for specific traits and 
diseases to truly understand their polygenic 
biology. Finally, these explanations must also 
answer the question of why some traits are 
decidedly Mendelian whereas others are not.

The questions of tomorrow will need 
to focus on four areas: the biology of 
enhancers and the transcription factors 
that bind them51; the effect of genetic 
variation in enhancers50; gene regulatory 
networks (GRNs) that regulate expression 

of multiple genes52; and how GRN changes 
lead to specific cellular responses53. Despite 
many advances, the number of enhancers 
regulating expression of a specific gene 
remains unknown. How many enhancers 
are cell type specific versus ubiquitous? 
How many are constitutive rather than 
stage specific? And do they act additively 
or synergistically in gene expression? 
Additionally, which cognate transcription 
factors bind these enhancers, with what 
dynamics and how are they regulated54? 
These details of a gene’s ‘enhancer code’ are 
critical for assessing its relative effect on a 
trait. Next, how does enhancer sequence 
variation affect a gene’s activity? Does 
such variation affect transcription factor 
binding only or its interaction with the 
promoter? Is the enhancer variant’s effect 
evident in all cellular states or only some? 
Is variation in only one enhancer sufficient 
to alter gene expression, or are multiple 
changes in multiple elements necessary?

Additional critical questions include 
which genes are involved in the core 
pathway underlying a trait, and how do we 
identify them49? Elegant work has shown 
how genes are regulated within integrated 
modular GRNs, whereby one gene’s 
product is required in a subsequent step by 
another gene, with feedback interactions52. 
These GRNs comprise elements from the 
genome, transcriptome and proteome, with 
rate-​limiting steps that require regulation. 
As our work on Hirschsprung disease has 
shown50,53, a GRN is composed of core genes, 
is the logic diagram of regulation of a major 
rate-​limiting cellular step, is enriched in 
coding and enhancer disease variants with 
disease susceptibility scaling with increasing 
number of variants, and with disease 
resulting from effects on its rate-​limiting 
gene product53. That is, the GRN integrates 
the expression of multiple genes. Finally, we 
need to understand how GRN changes alter 
cell properties and behaviour. I speculate 
that rate-​limiting steps in GRNs are major 
regulators of broad cell properties, be they 
differentiation, migration, proliferation or 
apoptosis, the cellular integrator of GRN 
variation. Thus, genetic variation across the 
genome affects enhancers dysregulating 
many genes, but only when they dysregulate 
GRNs through rate-​limiting steps do they 
affect cell and tissue biology55. This offers the 
promise of a mechanistic understanding of 
human polygenic disease.

The way forward for complex trait 
biology, including disease, is to shift our 
approach from reverse to forward genetics, 
using genome-​wide approaches to cell 
type-​specific gene perturbation. I believe 

for a deeper understanding, 
we need radically different 
approaches to understand 
complex trait biology
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we can construct cell-​type GRNs en masse, 
inclusive of their enhancers, transcription 
factors and feedback or feedforward 
interactions, to then assay functionally 
defined variation in phenotypes. But, 
even this approach will be insufficient. 
We need to test our success by solving 
at least a few complex traits completely 
and demonstrating their veracity using a 
synthetic biology approach to recapitulate 
the phenotype in a model system; similarly 
to the field of chemistry, analysis has to be 
followed by de novo synthesis. Our genomic 
technologies are getting up to the task to 
enable this advance; as geneticists, are we?

Enhancers and embryonic development
Eileen Furlong. The work of my group sits 
at the interface of genome regulation and 
animal development, and there have been 
many exciting advances in both during the 
past decade. Developmental biology studies 
fundamental processes such as tissue and 
organ development and how complexity 
emerges through the combined action 
of cell communication, movement and 
mechanical forces. After the discovery that 
differentiated cells could be reprogrammed 
to a naive embryonic stem cell-​like state, 
the past decade has witnessed an explosion 
in in vitro cellular reprogramming and 
differentiation studies. Organoids are a 
very exciting extension of this. The extent 
to which these fairly simple systems can 
self-organize and generate complexity56 
is one of the unexpected surprises of the 
past 5–10 years. The buzz around stem 
cells has also renewed interest in cellular 
plasticity in vivo and has uncovered an 
unexpected degree of transdifferentiation 
and dedifferentiation57. In the mouse heart, 
for example, cardiomyocytes dedifferentiate 
and proliferate to regenerate heart tissue 
when damaged within the first week 
after birth58.

Our understanding of the molecular 
changes that accompany differentiation 
has hugely advanced owing to the jump 
in scale, resolution and sensitivity of 
next-​generation sequencing technologies 
over the past decade. This has led to a flood 
of studies in embryonic stem cells, iPS cells 
and embryos that revealed new concepts 
underlying genome regulation by measuring 
transcript diversity, transcription factor 
occupancy, chromatin accessibility and 
conformation, and chromatin, DNA and 
RNA modifications. The future challenge 
will be to connect this information to the 
physical characteristics of cells and how they 
form complex tissues. New technologies 
that solve many challenges of working with 

embryos will help, including CRISPR to 
engineer genomes, optogenetics to perturb 
proteins, lattice light-​sheet and selective 
plane illumination microscopy to image 
processes in vivo, and low-​input methods 
to overcome issues with scarce material. 
Particularly exciting to me are recent 
advances in single-​cell genomics, which, 
although they are in their early days, will 
dramatically change the way we study 
embryogenesis. Many new insights have 
already emerged, including the discovery of 
unknown cell types and new developmental 
trajectories for well-​established cell types. 
Even the concept of ‘cell identity’ has come 
into question.

Cell identities are largely driven by 
transcription factors, which act through 
cis-​regulatory elements called ‘enhancers.’ 
One of the most exciting unsolved mysteries, 
in my opinion, is how enhancers relay 
information to their target genes. The 
textbook view of enhancers is of elements 
with exclusive function that regulate a 
specific target gene through direct promoter 
interactions, which occur sequentially if 
multiple enhancers are involved. However, 
emerging concepts in the past decade 
question many of these ‘dogmas’. Some 
enhancers have dual functions, whereas 
others may even regulate two genes. 
Enhancer–promoter communication is 
now viewed in the light of spatial genome 
organization, including topologically 
associating domains (TADs) and 
membraneless nuclear microcompartments 
(that is, hubs or condensates)59. Being 
present within the same TAD likely increases 
the frequency of enhancer–promoter 
interactions, but how a specific enhancer 
finds its correct promoter within a TAD, or 
when TADs are rearranged60,61, remains a 
mystery. Hubs or condensates are dynamic 
microcompartments62 that contain high 
local concentrations of proteins, including 
transcription factors and the transcriptional 
machinery. One potential implication of 
condensates is that enhancers may not 
need to ‘directly’ touch a gene’s promoter 
to regulate transcription — rather, it may 
be sufficient to come in close proximity 
within the same condensate. Presumably, 
once proteins reach a critical concentration, 
transcription will be initiated. While this 
model fits a lot of emerging data, there 
are still many open questions. What is the 
required distance between an enhancer and 
a promoter to trigger transcription? Does 
this distance differ for different enhancers63 
depending on their transcription factor–
DNA affinities? Do different chromatin 
environments64 influence the process? At 

some loci, mutation of a single transcription 
factor-​binding site in a single enhancer can 
have dramatic effects on gene expression 
and development. It is difficult to reconcile 
such cases with a shared condensate model, 
as other proteins bound to the enhancers 
and promoter should still phase separate. 
By contrast, there are many examples 
where mutation of a single transcription 
factor-​binding site, or even an entire 
enhancer, has minimal impact on the 
expression of a gene. These observations 
suggest that there may be different types of 
loci, with requirements for different types 
of chromatin topologies and local nuclear 
environments, which will be important to 
tease apart in the coming years.

The genetic dissection of model loci 
in the 1990s and the first decade of the 
twenty-​first century led to much of our 
understanding of how genes are regulated. 
The power of genomics in the past few 
decades has captured regulatory information 
for all genes genome-​wide, providing more 
unbiased views of regulatory signatures, 
leading to new models of gene regulation. 
What is missing is empirical testing at a large 
scale. A major challenge is to move to more 
systematic in vivo functional dissection in 
organisms. CRISPR-​based pooled screens 
have advanced the interrogation of genomic 
regions in cell culture systems. However, 
scaling functional assays in embryos remains 
a huge challenge. The task is enormous 
— even long-​standing model organisms, 
such as Drosophila and mice, lack knockout 
strains for all protein-​coding genes, and the 
number of regulatory elements is at least 
an order of magnitude higher. There has 
been little progress in developing scalable 
methods to quantify the contribution of a 
transcription factor’s input to an enhancer’s 
activity, and gene expression, in embryos. 
More systematic unbiased data will uncover 
more generalizable regulatory principles, 
increase our predictive abilities of gene 
regulation and developmental programmes, 
and enhance our understanding of the 
impact of genetic variation.

Perhaps the most promising and exciting 
prospects in the coming years are to use 
single-​cell genomics, imaging and the 
integration of the two to dissect the amazing 

A major challenge is to move 
to more systematic in vivo 
functional dissection in 
organisms
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complexity of embryonic development. 
Single-​cell genomics can reveal information 
about developmental transitions in a way 
that was unfeasible before. When combined 
with temporal information, such data can 
reconstruct developmental trajectories65,66 
and identify the regulatory regions and 
transcription factors likely responsible for 
each transition67. The scale and unbiased 
nature of the data, profiling tens to hundreds 
of thousands of cells, provides much 
richer information than anyone envisaged 
just 5 years ago, bringing a new level of 
inference and causal modelling. The ability 
to measure single-​cell parameters in situ 
(called ‘spatial omics’) will be transformative 
in the context of developing embryos to 
reveal the functional impact of spatial 
gradients, inductive signals and cell–cell 
interactions, and to move to digital 4D 
embryos. Combining these approaches 
with genetic perturbations holds promise 
to decode developmental programmes as 
they unfold. Will this bring us to a predictive 
understanding of the regulatory networks 
driving embryonic development during 
the next decade? ‘Simple’ model organisms 
are a fantastic test case to determine the 
types and scale of data required and to 
develop the computational framework 
to build predictive networks. The systematic 
functional dissection of gene regulation 
and true integration of single-​cell genomics 
with single-​cell imaging will bring many 
exciting advances in our understanding 
of the programmes driving embryonic 
development in the coming years.

Spatial multi-​omics in single cells
Barbara Treutlein. Incredibly, the first 
single-​cell transcriptome was sequenced just 
over a decade ago68! Since this milestone, 
transcriptomes of millions of cells have 
been sequenced and analysed from diverse 
organisms, tissues and other cellular 
biosystems, and these maps of cell states 
are revolutionizing the life sciences. The 
technologies and associated computational 
methods have matured and been 
democratized to such an extent that nearly 
all laboratories can apply the approach to 
their particular system or question.

Of course, the transcriptome is not 
enough, and protocols have already 
been developed to measure chromatin 
accessibility, histone modifications, 
protein abundances, cell lineages and 
other features linked to genome activity in 
single cells69. Currently, many studies use 
dissociation-​based single-​cell genomics 
methods, where the spatial context is 
disrupted to facilitate the capture of single 

cells for downstream processing. Methods 
are improving to measure genomic features 
in situ70, as well as to computationally map 
features to spatial contexts71,72. The stage is 
set for the next phase of single-​cell genomics, 
where spatial registration of multimodal 
genome activity across molecular, cellular 
and tissue or ecosystem scales will enable 
virtual reconstructions with extraordinary 
resolution and predictive capacity. These 
virtual maps will rely on multi-​omic 
profiling of healthy and perturbed tissues 
and organisms, which presents major 
challenges and opportunities for innovation.

Cell throughput remains a challenge, and 
it is unclear what role dissociation-​based 
single-​cell sequencing protocols will play 
in the future. These protocols are fairly 
easy to implement, and laboratories around 
the world can execute projects with tens of 
thousands of cells analysed per experiment. 
However, there are scenarios in which 
measuring millions of cells per experiment 
would be desired, such as in perturbation 
screens. Combinatorial barcoding methods 
push cell-​throughput boundaries73; however, 
it is unclear how to scale full transcriptome 
sequencing economically to millions of 
cells using current sequencing technologies. 
‘Compressed sensing’ modalities — 
whereby a limited, selected and/or random 
number of features are measured per cell, 
and high-​dimensional feature levels are 
recovered through inference or similarity to 
a known reference — provide an interesting 
possibility to increasing cell throughput74.

Most single-​cell transcriptome protocols 
are currently limited to priming the 
polyadenylation track present on all cellular 
mRNAs; however, this approach leads to 
biased sampling of highly expressed mRNAs. 
Clever innovations for random or targeted 
RNA enrichment could be a way to build 
up composite representations of cell states. 
Image-​based in situ sequencing methods 
provide a means for increasing the number of 
cells measured per experiment, as millions 
of cells can be imaged without a substantial 
increase in financial cost, although imaging 
time is a limiting factor. There remains a lot 
of room for experimental and computational 
optimizations to measure the transcriptome, 
random barcodes, DNA conformations and 
protein abundances from the micrometre 
scale to the centimetre scale spatially, and it 
will be interesting to see how methods for 
spatial registration advance over the next 
5 years.

Currently, most high-​throughput 
measurements are performed on cell 
suspensions or on intact tissues using one 
modality. That said, studies are emerging 

that measure several features from the same 
cell; for example, mRNA and chromatin 
accessibility75 or mRNA and lineage76. 
To build virtual maps, independent 
measurements from different cells can 
be integrated with use of data integration 
tools77, although it can be difficult to align 
cell states across modalities in particular 
in developing systems. Therefore, the 
ultimate goal is to directly measure as many 
features as possible (for example, RNA, 
lineage, chromatin, proteins and DNA 
methylation) in the same cell78, ideally with 
spatial resolution. Furthermore, combining 
genetic and pharmacological perturbation 
screens with single-​cell multi-​omic measures 
will be informative to understand cell state 
landscapes and underlying regulatory 
networks for each cell type. The CRISPR–
Cas field continues to develop creative tools 
for precise single-​locus editing and other 
manipulations79, and incorporation of these 
toolkits with single-​cell sequencing readouts 
will certainly bring new mechanistic insight.

Life forms are inherently dynamic, 
and each cell has a story to tell. Static 
measurements do not provide sufficient 
insight into the mechanisms that give 
rise to each cell state observed in a tissue. 
Computational approaches to stitch 
together independent measurements across 
time can be used to reconstruct potential 
histories; however, these are indirect 
inferences. Long-​term live imaging in 2D 
cultures using confocal microscopy and 
in 3D tissues using light-​sheet microscopy 
provides morphology, behaviour, location 
and, in some cases, molecular information 
on the history of a cell. Indeed, such 
long-​term imaging experiments revealed that  
cell fates or states can be predicted from cell  
behaviour across many generations80. 
Cell tracking combined with end point 
single-​cell genomics experiments can help 
to understand how cell states came to be; 
however, these experiments lack molecular 
resolution of the intermediates. There are 
strategies using CRISPR–Cas systems to 
capture highly prevalent RNAs inside cells 
at given times and insert these RNAs into 
DNA for storage and subsequent readout81. 
Together with live tracking and end-​point 
single-​cell genomics, such methods could 
provide unprecedented insight into cell 
histories.

My vision is that the emerging 
technologies described above can be 
applied to human 2D cell culture and 3D 
organoid biosystems to understand human 
development and disease mechanisms. 
My team and others are working to build 
virtual human organs that are based on 
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high-​throughput, multimodal single-​cell 
genomics data. Organoid counterparts 
provide opportunities to perturb the system 
and understand lineage histories. Together, 
the next generation of single-​cell genomics 
methods and human organoid technologies 
will provide unprecedented opportunities to 
develop new therapies for human disease.

Unravelling the layers of the epigenome
Alexander Meissner. Around 1975, the 
idea that 5-​methylcytosine could provide 
a mechanism to control gene expression 
gained traction, despite little knowledge of 
its genomic distribution or the associated 
enzymes82. With similarly limited genomic 
information or knowledge of the players 
involved, the histone code hypothesis 
was put forward in 2000 to explain how 
multiple different covalent modifications 
of chromatin may be coordinated to direct 
specific regulatory functions83. Tremendous 
progress has been made since, and the list 
of core epigenetic regulators that have been 
discovered and characterized seems largely 
complete84.

DNA sequencing has continued to 
dominate the past decade and contributed 
to an exponential growth of genome-​wide 
maps of all layers of regulation. In the 
early days, individual CpG sites could be 
measured by restriction enzymes, whereas 
now we have generated probably well over a 
trillion cytosine methylation measurements. 
An equally astonishing number of 
genome-​wide data sets have been collected 
for transcriptomes, histone modifications, 
transcription factor occupancy and 
DNA accessibility. Furthermore, the 
number of single-​cell transcriptome and 
epigenome data sets continues to grow 
at an unprecedented pace.

On the basis of this overabundance of 
data across many normal and diseased 
cell states, for instance, we now clearly 
understand the non-​random distribution of 
cytosine methylation across many different 
organisms. These maps have helped to refine 
our understanding of its relationship to 
gene expression, including the realization 
that only a few promoters are normally 
controlled via this modification, whereas 

gene bodies are actively targeted, and most 
dynamic changes occur at distal regulatory 
sites. Similar insights exist for many core 
histone modifications, and, in general, 
we have an improved appreciation of the 
epigenetic writers, readers and erasers 
involved. Over the past decade, we have seen 
substantially integrated and multilayered 
epigenomic analyses that provide a fairly 
comprehensive picture of epigenomic 
landscapes, including their dynamics across 
development and disease.

Additional innovation is now needed 
around data access and sharing. As noted, 
there is certainly no shortage of data, but to 
enable individual researchers to generate 
and verify hypotheses quickly improved 
tools are required to access and browse 
these data. Over the past decade, large 
coordinated projects such as ENCODE, 
the Roadmap Epigenomics Project and 
Blueprint Epigenome have initiated such 
efforts, but it remains a reality that data are 
not at everyone’s fingertips quite yet.

Moreover, despite decades of steady 
and recently accelerated progress, many 
important questions remain regarding the 
molecular coordination and developmental 
functions of these epigenetic modifications. 
For instance, cytosine methylation at gene 
bodies has been preserved for more than a 
billion years of evolution and yet its precise 
function is still under investigation. How and 
why did genomic methylation switch to a 
global mechanism in vertebrates compared 
with the selected methylation observed in 
invertebrates? What is the precise function 
of this modification in each of its regulatory 
contexts, and how are its ubiquitously acting 
enzymes recruited to specific sites in the 
genome? The latter is particularly timely 
given recent observations that enhancers, but 
also some repetitive elements, show ongoing 
recruitment of both de novo methylation 
and demethylation activity. Moreover, 
extraembryonic tissues show redirected 
activity that shares notable similarities with 
the long observed altered DNA methylation 
landscape found across most cancer types85. 
Lastly, it is abundantly clear that DNA 
methylation is essential for mammalian 
development; but despite us knowing this 
for nearly three decades, it is not clear how 
and why developing knockout embryos die. 
The specific developmental requirements are 
also largely true for many histone-​modifying 
enzymes; however, it remains incompletely 
understood how exactly these modifications 
interact to support gene regulation.

A decade ago it seemed likely that 
we would answer questions such as these 
using newly gained sequencing power as 

a potent tool for generating hypotheses. 
However, for the most part, epigenomic 
analyses have expanded a highly valuable, 
but still largely descriptive, understanding 
of numerous epigenetic layers. So one may 
ask, what is different now and why should 
we expect to answer these questions in the 
coming years?

Technological innovation has always 
played a key role in biology, and some 
broadly applicable, recent breakthroughs 
will enable us to drive progress in the 
coming years. These include the transfer of 
the bacterial innate immunity CRISPR–Cas 
system as a universal genome-​targeting 
tool86 as well as for base editing, epigenome 
editing and various genome manipulations. 
Similarly, new fast-​acting endogenous 
protein degradation systems have been 
developed that further enhance our ability to 
probe for precise function87. The past decade 
also saw major improvements in imaging 
technologies as well as cell and molecular 
biology, moving from the 2D space into the 
3D space with both organoid cell culture 
models88 and chromosome conformation 
capture approaches for exploring nuclear 
organization89.

Another major shift included the 
reappreciation that membraneless 
organelles are a widespread mechanism 
of cellular organization90. In particular, 
there have been many advances in our 
understanding of how condensates form 
and function, including for transcriptional 
regulation. Together with known properties 
of modified histones on DNA and the 
fact that many epigenetic regulators also 
contain intrinsically disordered regions, it 
is reasonable to assume that these physical 
properties will have a major impact on our 
understanding of chromatin. Importantly, 
changes in topology have been linked to 
disease91, and similar connections have been 
reported recently for condensates92. This 
will likely be an exciting area to follow in the 
coming years.

Lastly, our research continues to be more 
and more reliant on multidisciplinary skills, 
with mathematics, physics, chemistry and 
computer science playing an ever-​more 
central role in biology, which will require 

the next generation of single- 
cell genomics methods and 
human organoid technologies 
will provide unprecedented 
opportunities

there have been many 
advances in our understanding 
of how condensates form 
and function, including for 
transcriptional regulation
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some rethinking in training and institutional 
organization to accomplish our goals. Going 
forward, we will need more functional 
integration, which in part due to the 
aforementioned selected discoveries is 
now very tractable. In particular, more 
refined perturbation of gene activity, which 
for many chromatin regulators should be 
separated into catalytic and regulatory 
functions, together with readouts at multiple 
levels of resolution will bring us closer to the 
insights needed. We recently exemplified 
this with a pipeline that explores epigenetic 
regulator mutant phenotypes at single-​cell 
resolution93. From these studies, we may 
be able to understand how epigenetic 
regulators interact with the environment 
to influence or protect the organismal 
phenotype, connecting detailed molecular 
genetics to classical theories of epigenetic 
phenomena.

As we approach the 100-year anniversary 
of the detection of 5-methylcytosine in 
DNA94, it seems we can hope to declare at 
least for some layers of the epigenome that 
we fully understand the rules under which 
they operate. This may enable the exploration 
of more precise therapeutic interventions, for 
instance by redirecting chromatin modifiers 
rather than blocking their universal catalytic 
activities, which are shared between normal 
and diseased states. Of course, looking back 
at predictions made just 10 years ago95, one 
should expect many additional unforeseen 
advances that are just as difficult to predict 
now as they were back then.

Long non-​coding RNAs: a time to build
Howard Chang. Long non-​coding RNAs 
(lncRNAs) are the dominant transcriptional 
output of many eukaryotic genomes. 
Although studies over the past decade have 
revealed diverse mechanisms and disease 
implications for many lncRNAs, the vast 
majority of lncRNAs remain mysterious.  
The fundamental challenge is that we 
lack the knowledge to systematically 
transform lncRNA sequence into function. 
Progress in the next decade may come from 
a paradigm shift from ‘reading’ to ‘writing’ 
lncRNAs.

Gene regulation was once thought to be 
the exclusive province of proteins. Intense 
efforts for disease diagnosis and treatment 
focused almost entirely on protein-​coding 
genes and their products, ignoring the vast 
majority of the genome. Even at the time 
of the completion of the Human Genome 
Project, only a handful of functional 
lncRNAs were known that silenced the 
expression of neighbouring genes. Thus, 
it was widely believed that the genome 

contained mostly ‘junk’, which sometimes 
made RNA as transcriptional noise.

The human genome is currently 
estimated to encode nearly 60,000 lncRNAs, 
ranging from several hundred to tens of 
thousands of bases, that apparently do not 
function by encoding proteins96. Studies 
over the past decade discovered that many 
lncRNAs act at the interface between 
chromatin modification machinery and 
the genome. Specific lncRNAs can act 
as guides, scaffolds or decoys to control 
the recruitment of specific chromatin 
modification enzymes or transcription 
factors to DNA or their dismissal from 
DNA97. lncRNAs can activate as well as 
silence genes, and these RNAs can target 
neighbouring genes as a function of 
local chromosomal folding (in cis) or at a 
distance throughout the genome (in trans). 
Detailed dissections of individual lncRNAs 
have revealed that lncRNAs are composed 
of modular RNA motifs that enable one 
lncRNA to connect proteins that read, 
write or erase specific chromatin marks. 
These findings have galvanized substantial 
excitement about lncRNAs; laboratories 
around the world are now investigating the 
roles of lncRNAs in diverse systems, ranging 
from control of flowering time in plants to 
mutations in human genetic disorders.

Nonetheless, the notable progress  
to date can be viewed as anecdotal — 
each lncRNA is its own story. When a new 
lncRNA sequence is recognized in a genome 
database or RNA profiling experiment, we 
are still in the dark about what may happen 
to the cell or organism (if anything) when 
the lncRNA is removed. Indeed, efforts to 
‘read’ lncRNAs have been the dominant 
experimental strategy over the past two 
decades. Systematic efforts in the ENCODE, 
FANTOM and emerging cell atlas consortia 
have mapped the transcriptional landscape, 
transcript isoforms and, more recently, 
single-​cell expression profiles of lncRNAs. 
These powerful data are now combined with 
genome-​scale CRISPR-​based methods to 
inactivate tens of thousands of lncRNAs, one 
at a time, to observe possible cell defects98,99. 
However, many challenges remain. Positive 
hits require further exploratory studies to 
define possible mechanisms of action, and 
we lack a principled strategy to combine 
lncRNA knockouts to address genetic 
redundancy and compensation.

A potentially fruitful and complementary 
direction is the pivot from ‘reading’ to 
‘writing’ long RNA scripts. On the basis of 
the systematic dissection of RNA sequences 
and secondary structures in lncRNAs, 
we and others believe that the information 

in lncRNAs resembles that on a billboard 
(in which keywords and catchphrases are 
repeated) rather than a finely honed legal 
document (where every comma counts). 
Small units of RNA shapes are repeated 
within lncRNAs to build up the meaning 
in the lncRNA billboard, but these RNA 
shapes can be rearranged in different orders 
or locations without affecting meaning. 
These insights have allowed scientists to 
recognize lncRNA genes from different 
species that perform the same function even 
though the primary sequences bear little 
similarity100. Moreover, investigators were 
able to strip down lncRNAs to their essential 
‘words’, composed of these key repeating 
shapes and one-​tenth the size of the original 
lncRNA, which still functioned in vivo 
to control chromatin state over a whole 
chromosome100,101. Finally, it is now possible 
to successfully create synthetic lncRNAs. 
By adding RNA shapes to carefully chosen 
RNA templates, investigators are starting to 
create designer lncRNAs that can regulate 
chromatin in vivo100, suffice to partly rescue 
the physiological lncRNA gene knockout102, 
or target RNAs to specific cytotopic 
locations within the cell103,104.

The shift from reading to writing 
lncRNAs will challenge us on the technical 
front, leading to potential transformative 
technologies. Current technologies for 
massively parallel reporter gene assays are 
built on short sequence inserts. A plan 
to build tens of thousands of synthetic 
lncRNAs will require accurate long DNA or 
RNA synthesis. These designer sequences 
will need to be placed into the appropriate 
locations in the genome and controlled to 
have proper developmental expression, 
splicing pattern and RNA chemical 
modifications. Landmark studies using the 
XIST lncRNA, which normally silences 
the second X chromosome in female cells, to 
silence the ectopic chromosome 21 in Down 
syndrome cells highlight the biomedical 
promise of such an approach105.

As the field develops technologies for 
large-​scale creation and testing of synthetic 
lncRNAs, we can rigorously test our 
understanding of the information content 
in the language of RNA sequences and 
shapes. The next decade promises to be 
an exciting time for building non-​coding 
RNAs and to create entirely new tools to 
manipulate gene function for biology and 
medicine.

FAIR genomics to track tumorigenesis
Núria López-​Bigas. Cancer research is 
one of the fields that has probably benefited 
the most from the technological and 
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methodological advances of genomics. 
In the span of less than two decades, the 
field has witnessed an incredible boost 
in the generation of cancer genomic, 
epigenomic and transcriptomic data of 
patients’ tumours, both in bulk and more 
recently at the single-​cell level. My dream 
as a cancer researcher is to have a full 
understanding of the path that cells follow 
towards tumorigenesis. Which events in the 
life of an individual, a tissue and a particular 
cell lead to the malignant transformation 
of some cells? Of course I do not expect 
to have a deterministic answer, as this 
is not a deterministic process. Instead 
we should aim for a quantitative or 
probabilistic understanding of the key 
events that drive tumorigenesis. We have 
solid epidemiological evidence showing 
that smoking increases the probability of 
lung cancer, exposure to the Sun raises 
the probability of developing melanoma 
and some anticancer treatments increase 
the probability of secondary neoplasms. 
But which specific mechanisms at the 
molecular and cellular levels influence 
these increases?

One first clear goal of cancer genomics 
is to catalogue all genes involved in 
tumorigenesis across different tissues. 
Although this is a daunting task, it is actually 
feasible106. By analysing the mutational 
patterns of genes across tumours, one can 
identify those with significant deviations 
from what is expected under neutrality, 
which indicates that these mutations provide 
a selective advantage in tumorigenesis and 
are thus driver mutations. We can imagine a 
future in which through the systematic 
analysis of millions of sequenced tumour 
genomes this catalogue or compendium 
moves closer and closer to completion. 
For this to happen, not only do we need 
genome sequencing to expand — this 
process is already in motion in research, 
clinical settings and the pharmaceutical 
industry — but more importantly the 
resulting data must be made FAIR (findable, 
accessible, interoperable and reusable)107. 
To this end, consortia and initiatives that 
promote, catalyse and facilitate the sharing 
of genomic data, such as the Beyond 1 
Million Genomes consortium, the GA4GH 
or the cBioPortal for Cancer Genomics, 
are necessary.

Of note, cataloguing genes and mutations 
involved in cancer development, albeit a 
very important first step, is still far from the 
final goal of understanding how and under 
which conditions they drive tumorigenesis. 
Framing cancer development as a Darwinian 
evolutionary process helps me to navigate 

the path towards this final objective. As is 
true of any Darwinian process, its two key 
features are variation and selection. Thanks 
to the past 15 years of cancer genomics, 
we now have a much better grasp of the 
origin of somatic genetic variation between 
cells across different tissues. The study 
of the variability in the number, type and 
genomic distribution of mutations across 
tumours provides a window into the life 
history of cells across the somatic tissues 
of an individual108,109. In addition, recent 
studies sequencing the genome of healthy 
cells in different tissues110–112 have shown 
that mutations accumulate in hundreds and 
thousands in our cells in normal conditions 
over time. These studies have also detected 
positive selection in some genes across 
healthy tissues. Hence, positive selection 
is a pervasive process that operates not 
only in tumorigenesis but also in healthy 
tissues, where it is a hallmark of somatic 
development of skin, oesophagus, blood 
and other tissues. Take, for example, clonal 
haematopoiesis: it results from a continuous 
Darwinian evolutionary process in which 
over time (with age) some haematopoietic 
cells harbouring mutations in certain blood 
development genes, such as DNMT3A 
and TET2, outcompete other cells in the 
compartment113,114. This process is part 
of normal haematopoietic development. 
Problems arise only when this process gets 
out of control, leading to leukaemia in the 
case of blood, or a malignant tumour in solid 
tissues. Why is it only in rare cases that this 
ubiquitous interplay between variation and 
selection becomes uncontrollable and results 
in full-​blown tumorigenesis? Which events, 
beside known tumorigenic mutations, drive 
this process?

If we have learnt something in recent 
years, it is that virtually all tumours harbour 
driver mutations115–117, implying that driver 
genomic events are necessary. However, they 
are clearly not sufficient for tumorigenesis 
to occur. So, what are these other triggers 
of the tumorigenic process? What happens 
in the lung cells of a smoker or in the 
haematopoietic cells of a patient treated with 
chemotherapy that increases their chances to 
become malignant? Epigenetic modifications 
and changes in selective constraints, such 
as evolutionary bottlenecks, for example, at 
the time of chemotherapy, may be part of the 
answer.

For the near future, my dream is to see a 
further increase in FAIR cancer genomics 
data to help us disentangle the step-​by-​step 
game of variation and selection in our tissues 
that leads to tumorigenesis and likely other 
ageing-​related diseases.

Integrating genomics into medicine
Eran Segal. The past 20 years in genomics 
have been extraordinary. We developed 
high-​throughput sequencing and learned 
how to use it to efficiently sequence full 
genomes and measure gene expression and 
epigenetic marks at the genome-​wide scale 
and even at the single-​cell level118. Using 
these capabilities, we created unprecedented 
catalogues of novel genomes, functional 
DNA elements and non-​coding RNAs 
from all kingdoms of life119. But — perhaps 
with the exception of cancer120 and gene 
therapy for some monogenic diseases121 — 
genomics has yet to deliver on its promise 
to have an impact on our everyday life. 
For example, drugs and diagnostics are still 
being developed in the traditional way, with 
screening assays to find lead compounds 
for targets typically arising from animal 
studies, without involving genomics in any 
of the steps. Moreover, when the global 
COVID-19 pandemic hit, the genome 
of the spreading severe acute respiratory 
syndrome coronavirus 2 (SARS-​CoV-2) was 
rapidly sequenced, but why some infected 
individuals exhibit severe disease and others 
do not remains unknown.

Indeed, our next challenge is to translate 
the incredible resources and technologies 
developed in genomics into an improved 
understanding of health and disease. This 
improved understanding should transform 
the field of medicine to use genomics in 
its transition to personalized medicine, 
which promises individualized treatment 
by targeting the right medication to the 
right person at the right time on the 
basis of that person’s unique profile. By 
continuing to focus on more and more 
measurements and the creation of more 
atlases and catalogues, we run the danger of 
drowning in ever-​growing amounts of data 
and correlative findings. Walking down this 
path can lead to an endless endeavour, as 
bulk measurements can always be replaced 
with single-​cell ones, or measures at higher 
temporal and spatial resolution, across more 
conditions and wider biological contexts.

Instead, we should use genomics to 
tackle big unanswered questions such 
as what causes the variation that we see 
across people in phenotypes, disease 

we now have a much better 
grasp of the origin of somatic 
genetic variation between cells 
across different tissues
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susceptibility and drug responses? What is 
the relative contribution of genetic, 
epigenetic, microbiome and environmental 
factors? How are their effects mediated, 
and what would be the effect of different 
interventions? Ultimately, we should strive 
to use genomics to generate actionable and 
personalized insights that lead to better 
health. We are now at an inflexion point in 
genomics that allows us for the first time to 
apply it to study human biology and realize 
these ambitious aims122.

At the cellular level, we can use iPS cells 
from patients to derive cellular models of 
multiple diseases and prioritize treatments 
based on measuring both their cellular 
and molecular response (for example, gene 
expression and epigenetics) to existing drugs 
and drug combinations. We can even use 
massively parallel assays to separately measure  
the effect of each of tens of thousands of 
rationally designed mutations, including 
patient-​specific mutations, as we have done, 
for example, in testing the effect of all clini-
cally identified mutations in TP53 on cellular 
function123. Measuring the molecular effects 
of directed mutations in genes encoding tran-
scription factors and signalling molecules 
and in other genes can reveal the underlying 
pathways and regulatory networks of the dis-
ease studied and identify putative therapeutic 
targets. The application of such approaches 
to fields that are still poorly understood,  
such as neurodegenerative diseases, can be 
particularly impactful.

But we can be much more ambitious 
and directly profile large cohorts of 
human individuals using diverse ‘omics’ 
assays. As molecular changes typically 
precede clinical disease manifestations, 
longitudinal measurements coupled with 
clinical phenotyping have the potential of 
identifying novel disease diagnostics and 
therapeutic targets. Indeed, biobanks that 
track large samples of hundreds of thousands 
of individuals have recently emerged and are 
proving highly informative124. However, at 
the molecular level their focus has thus far 
been on genetics. Technological advances 
and cost reductions now allow us to obtain 
much deeper person-​specific multi-​omic 
profiles that include transcriptome, 
proteome, methylome, microbiome, 
immune system and metabolome 
measurements. Having these data on 
the same individual and at multiple time 
points can reveal which omic layer is more 
perturbed and informative for each disease 
and identify associations between molecular 
markers and disease.

The challenge in using such observational 
data from human cohorts is to identify 

which of the associations are causal. One 
way to address this is to wisely select the 
nature and type of the associations studied. 
For example, in working with microbiome 
data, we can move from analyses at the 
level of species composition to analyses 
at the level of SNPs in bacterial genes. 
Such associations are more specific and 
more likely to be causal, as in the case of 
a SNP in the dadH bacterial gene, which 
correlated with metabolism of the primary 
medication to treat Parkinson disease 
and the gut microbiota from patients125. 
Another approach is to use longitudinal 
measurements and separation of time to 
emulate target trials from observational 
data126. For example, we can select distinct 
subsets from the cohort that match on 
several known risk factors (for example, 
age or body mass index) but differ on a 
marker of interest (for example, expression 
of a gene or presence of an epigenetic 
mark), and compare future disease onset 
or progression in these two populations. 
Similarly, retrospective analysis of baseline 
multi-​omic measurements from participants 
in randomized clinical trials may identify 
markers that distinguish responders from 
non-​responders and be used for patient 
stratification or for identifying additional 
putative targets.

Ultimately, biomarkers identified from 
observational cohorts need to be tested 
in randomized clinical trials to establish 
causality and assess efficacy. In the case of 
microbial strains extracted from humans, 
we may be able to skip animal testing 
and go directly to human trials. In other 
cases, such as when human genes are 
being manipulated, we will need to start 
with cell culture assays and animal testing 
before performing clinical trials in humans. 
However, in all cases, tested omic targets 
should have already shown associations in 
human individuals, thus making them more 
likely to be relevant and succeed in trials, 
as is the case with drug targets for which 
genetic evidence links them to the disease127.

Beyond these scientific challenges, there 
is the challenge of engaging the public 
and diverse ethnic and socio-​economic 
groups to participate in such large-​scale 
multi-​omic profiling endeavours even 
before we can present them with immediate 
benefits. We can start with incentives in the 
form of informational summary reports 
of the data measured and gradually move 
towards carefully and responsibly conveyed 
actionable insights as we learn more.

Overcoming the aforementioned 
challenges is not an easy task, but with the 
breathtaking advances that genomics has 

undergone in the past two decades, the time 
may be right to tackle them. Success can 
transform genomics from being applied 
mostly in research settings to having it 
become an integral and inseparable part 
of medicine.

CRISPR genome editing enters the clinic
Jin-​Soo Kim. In the past several years, 
genome editing has come of age128, in 
particular because of the repurposing of 
CRISPR systems. Genomic DNA can be 
modified in a targeted manner in vivo or 
in vitro with high efficiency and precision, 
potentially enabling therapeutic genome 
editing for the treatment of both genetic 
and non-​genetic diseases. All three types 
of programmable nucleases developed 
for genome editing, namely zinc-​finger 
nucleases, transcription activator-​like 
effector nucleases and CRISPR nucleases, 
are now under clinical investigation. In the 
next several years, we will be able to learn 
whether these genome-​editing tools will be 
effective and safe enough to treat patients 
with an array of diseases, including HIV 
infection, leukaemia, blood disorders and 
hereditary blindness, heralding a new era 
in medicine.

If the history of the development of novel 
drugs or treatments such as gene therapy 
and monoclonal antibodies is any guide, 
the road to therapeutic genome editing is 
likely to be bumpy but ultimately worth 
travelling. Key questions related to medical 
applications of programmable nucleases 
concern their mode of delivery, specificity, 
on-​target activity and immunogenicity. 
First, in vivo delivery (or direct delivery 
into patients) of genes or mRNAs encoding 
programmable nucleases or preassembled 
Cas9 ribonucleoproteins can be a challenge, 
given the large size of these nucleases. 
Ex vivo (or indirect) delivery is, in general, 
more efficient than in vivo delivery but is 
limited to cells from blood or bone marrow, 
which can be collected with ease, edited 
in vitro and transfused back into patients. 
Ongoing developments of nanoparticles and 
viral vectors are expected to enhance and 
expand in vivo genome editing in tissues or 
organs not readily accessible with current 
delivery systems, such as the brain.

Second, programmable nucleases, 
including CRISPR nucleases, can cause 
unwanted on-​target and off-​target 
mutations, which may contribute to 
oncogenesis. Several cell-​based and cell-​free 
methods have been developed to identify 
genome-​wide CRISPR off-​target sites in 
an unbiased manner129–131. But it remains 
a challenge to validate off-​target activity 
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at sites with low mutation frequencies 
(less than 0.1%) in a population of cells, 
owing to the intrinsic error rates of 
current sequencing technologies. Even at 
on-​target sites, CRISPR–Cas9 can induce 
unexpected outcomes such as large deletions 
of chromosomal segments132. It will be 
important to understand the mechanisms 
behind the unusual on-​target activity and 
to measure and reduce the frequencies of 
such events.

Last but not least, Cas9 and other 
programmable nucleases can be 
immunogenic, potentially causing undesired 
innate and adaptive immune responses. 
In this regard, it makes sense that initial 
clinical trials have focused on ex vivo 
delivery of Cas9 ribonucleoproteins into 
T cells or in vivo gene editing in the eye, 
an immunologically privileged organ. 
Cas9 epitope engineering or novel Cas9 
orthologues derived from non-​pathogenic 
bacteria may avoid some of the immune 
responses, offering therapeutic modalities 
for in vivo genome editing in tissues or 
organs with little or no immune privilege.

Base editing133,134 and prime editing135 
are promising new approaches that may 
overcome some of the limitations of 
nuclease-​mediated genome editing. Base 
editors and prime editors are composed of 
a Cas9 nickase, rather than the wild-​type 
Cas9 nuclease, and a nucleobase deaminase 
and a reverse transcriptase, respectively. 
Because a nickase, unlike a nuclease, 
produces DNA single-​strand breaks or 
nicks, but not double-​strand breaks (DSBs), 
base editors and prime editors are unlikely 
to induce large deletions at on-​target sites 
and chromosomal rearrangements resulting 
from non-​homologous end joining (NHEJ) 
repair of concurrent on-​target and off-​target 
DSBs. Furthermore, when it comes to gene 
correction rather than gene disruption, these 
new types of gene editors are much more 
efficient and ‘cleaner’ than DSB-​producing 
nucleases because they neither require 
donor template DNA nor rely on 
error-​prone NHEJ; in human cells, DSBs 
are preferentially repaired by NHEJ, leading 
to small insertions or deletions (indels), 
rather than by homologous recombination 
involving donor DNA.

Base editors and prime editors are also 
well suited for germline editing and in utero 
editing (that is, gene editing in the fetus), 
which should be done with caution, in full 
consideration of ethical, legal and societal 
issues. In principle, CRISPR–Cas9 can 
be used for the correction of pathogenic 
mutations in human embryos; however, 
donor DNA is seldom used as a repair 

template in human embryos136. Recurrent 
or non-​recurrent de novo mutations are 
responsible for the vast majority of genetic 
diseases. Cell-​free fetal DNA in the maternal 
blood can be used to detect these de novo 
mutations in fetuses, which are absent in 
the parents. Some de novo mutations are 
manifested even before birth, leading to 
miscarriage, disability or early death after 
birth; it is often too late and inefficient  
to attempt gene editing in newborns. These 
mutations could be corrected in utero 
using base editors or prime editors without 
inducing unwanted indels and without relying 
on inefficient homologous recombination. 
Compared with germline editing or 
preimplantation genetic diagnosis, in utero 
editing, if proven safe and effective in the 
future, should be ethically more acceptable 
because it does not involve the creation or 
destruction of human embryos.

As promising and powerful as they are, 
current versions of base editors and prime  
editors can be further optimized and 
improved. For instance, Cas9 evolved in 
microorganisms as a nuclease rather than 
a nickase. Current Cas9 nickases used for 
base editing (D10A SpCas9 variant) and 
prime editing (H840A variant) can be 
engineered to increase their activities and 
specificities. In parallel, deaminase and 
reverse transcriptase moieties in base editors 
and prime editors, respectively, can be  
engineered or replaced with appropriate 
orthologues to increase the efficiency 
and scope of genome editing. It has 
been shown that base editors can cause 
both guide RNA-​dependent and guide 
RNA-​independent DNA or RNA off-​target 
mutations, raising concerns for their 
applications in medicine. Prime editors may 
also cause unwanted on-​target and off-​target 
mutations, which must be carefully studied 
before moving on to therapeutic applications.

Biomedical researchers are now equipped 
with powerful tools for genome editing. 
I expect that these tools will be developed 
further and applied more broadly in both 
research and medicine in the coming years.
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