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Background. Differentiated thyroid cancer (DTC) is the most common type of thyroid tumor with a high recurrence rate. Here, we
developed a nomogram to effectively predict postoperative disease-free survival (DFS) in DTC patients. Methods. The mRNA
expressions and clinical data of DTC patients were downloaded from the Cancer Genome Atlas (TCGA) and the Gene
Expression Omnibus (GEO) database. Seventy percent of patients were randomly selected as the training dataset, and thirty
percent of patients were classified into the testing dataset. Multivariate Cox regression analysis was adopted to establish a
nomogram to predict 1-year, 3-year, and 5-year DFS rate of DTC patients. Results. A five-gene signature comprised of TENM1,
FN1, APOD, F12, and BTNL8 genes was established to predict the DFS rate of DTC patients. Results from the concordance
index (C-index), area under curve (AUC), and calibration curve showed that both the training dataset and the testing dataset
exhibited good prediction ability, and they were superior to other traditional models. The risk score and distant metastasis (M)
of the five-gene signature were independent risk factors that affected DTC recurrence. A nomogram that could predict 1-year, 3-
year, and 5-year DFS rate of DTC patients was established with a C-index of 0.801 (95% CI: 0.736, 0.866). Conclusion. Our
study developed a prediction model based on the gene expression and clinical characteristics to predict the DFS rate of DTC
patients, which may be applied to more accurately assess patient prognosis and individualized treatment.

1. Introduction

Differentiated thyroid cancer (DTC) is the most common
tumor in the head and neck area and accounts for approxi-
mately 90% of all cases. DTC is composed of papillary thy-
roid carcinoma (PTC) and follicular thyroid carcinoma
(FTC), which both originate from follicular cells of the thy-
roid [1, 2]. Although the 10-year mortality rate of DTC is
only 1.7%, the postoperative recurrence rate is up to 35%,
and the mortality rate of recurrent patients is 48% [3–5].
The ability to precisely predict individual risk of recurrence
has become an important and effective measure to prevent
the recurrence of DTC. Currently, the commonly used risk
stratification includes the American Joint Committee on
Cancer (AJCC) staging system，the American Thyroid Asso-
ciation (ATA) staging system, and the European Thyroid
Association (ETA) staging system [6–8]. Although these tra-
ditional risk stratification systems are useful for predicting

overall patient outcome, it is difficult to apply them for indi-
vidualized and accurate prediction. Due to the emergence of
molecular tumor profiling, analysis of prognostic-related
genes has significantly progressed, making it possible to accu-
rately predict the prognosis of patients at the molecular level.
In previous studies of cancer prediction analysis, the predic-
tion system integrated gene signature and clinical character-
istics, which provides more accurate and reliable prediction
results in contrast to the traditional staging systems [9–11].

At present, nomogram has been accepted as prognostic
evaluation method based on evidence-based and precision
medicine, and it has been widely used in prognosis analysis
of various tumors [12–14]. In this study, we analyzed the
mRNA expression of cancer and paracancerous tissue of
DTC patients from the Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) databases to screen for
differentially expressed genes (DEGs) related to patient
disease-free survival (DFS). Multivariate Cox regression
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analysis was employed to establish a gene signature, which
was compared with the traditional and other risk stratifica-
tion models. Gene signature indicating high- and low-risk
groups underwent Kaplan-Meier survival correlation curve
analysis and GSEA pathway enrichment analysis. Finally, a
nomogram based on gene signature and clinical characteris-
tics was plotted to predict the 1-, 3-, and 5-year DFS rate of
patients with DTC.

2. Materials and Methods

2.1. Data Source and Screening of Differentially Expressed
Genes. The mRNA expression data (HTSeq counts) of can-
cerous and paracancerous tissue were collected up to March
29, 2020 from the TCGA-THCA (https://cancergenome.nih
.gov/), GSE27155, and GSE53157 datasets (CEL files). To
obtain the mRNA expression from normal tissue and tumors,
data from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/) was downloaded. The edgeR package (version3.26.3)
and limma package (version 3.38.3) in R (version 3.6.0) were
run to eliminate very low-expression genes. The mRNA
expression data obtained from TCGA and GEO was normal-
ized to eliminate errors. Then, log ðfold changeÞ > 1 and
false discovery rate ðFDRÞ < 0:05 were set to screen DEGs in
the cancer and control group. Venn diagrams were employed
to determine the intersection between the three datasets to
obtain DEGs in common. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
of DEGs was conducted by using the DAVID bioinformatic
resources (version 6.8; https://david.abcc.ncifcrf.gov/) with
P < 0:05 as the selection condition. The clinical data of
patients included DFS time, recurrence status, cancer type,
gender, age, tumor AJCC staging, tumor T staging, tumor
N staging, and tumor M staging [15]. All clinical parameters
were based on the AJCC staging system (8th edition) for thy-
roid cancer, [16] and clinical data with missing information
or duplicate samples were excluded.

2.2. Establishment and Validation Analysis of Gene Signature.
Samples with the normalized mRNA expression data and
integrated clinical data were included in the overall analysis.
A total of 70% of the total number of samples were randomly
selected as the training dataset [17], and the remaining 30%
of samples served as the testing dataset [18] using the caret
package (version 6.0-84). Data from the training dataset were
analyzed by univariate Cox regression through the survival
package (version 2.44-1.1), and the DEGs related to DFS
were screened out using P < 0:05. In addition, the glmnet
package (version 2.0-18) was adopted to perform Lasso
regression analysis. Data was randomly simulated 1,000-fold,
then crossvalidated to select DEGs with the best predictive
ability. The screened DEGs were analyzed by stepwise multi-
variate Cox regression analysis through the survival package
in R. Risk score and C-index of the training dataset were cal-
culated, and a gene signature was constructed by combining
the regression coefficient and mRNA expression. The gene
signature was applied to the TCGA, GSE27155, and
GSE53157 datasets to evaluate its ability of distinguishing
between cancer and normal tissue by AUC. The DEGs of

the gene signature were used for the analysis of pairing differ-
ences of the gene expression in cancerous versus paracancer-
ous tissue. The 1-year, 3-year, and 5-year receiver operating
characteristic (ROC) curves of patients in the training dataset
were plotted via the risk ROC package (version 1.0.3). Then,
the gene signature model formula of the training dataset was
incorporated into the data of the testing and entire dataset to
achieve the ROC curve and AUC values of the data model,
respectively. Subsequently, the AUC value was used as a mea-
sure to compare the performance of our model with that of
other models including the five-gene signature model of
Wu et al. [11], AJCC stage model, ATA model, and ETA
model. The comparison between the five-gene signature
model of Wu et al. and our model was performed using
TCGA-THCA HTSeq count dataset.

2.3. Risk Grouping Analysis of Gene Signature. In the training
dataset, the best cutoff point for the risk score was identified
using the X-tile software (version 3.6.1) in order to divide the
data into high-risk and low-risk groups [19]. Kaplan-Meier
survival curves of high- and low-risk groups were created
and plotted using the R survival package. In addition, a risk
curve, a risk scatter chart, and a risk heat map were created
to visualize the data of high- and low- risk groups. Then,
the best cutoff point of the risk score in the training dataset
was validated using the data of the testing and entire dataset.
The Kaplan-Meier survival curve was plotted to verify the
discriminative performance of the cutoff point. The high-
and low- risk groups in the entire dataset were included in
the gene set enrichment analysis (GSEA) (version 4.0.2 for
windows), and the gene annotation set c2.cp.kegg.v7.0.sym-
bols.gmt served as a reference. To obtain the differences in
biological function and pathways between high- and low-
risk groups, the results were filtered and analyzed at P <
0:05 and FDR < 0:25 [20].

2.4. Establishment and Evaluation Analysis of Predictive
Nomogram. Clinical data and risk score values of patients
in the entire dataset were extracted and included in the sub-
sequent analysis. A univariate and multivariate Cox regres-
sion analysis using the R survival package was employed to
screen for independent risk factors that affected the recur-
rence of DTC patients. Using the rms package (version 5.1-
3.1), a nomogram was plotted, which contained all indepen-
dent risk factors and related clinical data. In addition, a cali-
bration curve was established to evaluate the predictive
ability of the nomogram.

2.5. Statistical Analysis. Statistical analysis was performed
based on R (version 3.6.0), where categorical variables were
analyzed by χ2 test or Fisher’s exact test. Continuous vari-
ables were analyzed by t-test, and multiple groups of contin-
uous variables were analyzed by one-way ANOVA with
Bonferroni posthoc test. The difference in prognosis between
high- and low-risk groups was analyzed by the log-rank test.
Of each relevant factor, the hazard ratio (HR) and 95% con-
fidence interval (CI) were calculated. Unless otherwise spec-
ified, P < 0:05 was considered statistically significant.
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3. Results

3.1. Data Source and DEG Screening Analysis. The main flow
of this study is presented in Figure 1. Table 1 shows the char-
acteristics of the three datasets containing the accession
numbers of datasets, sample size, and platforms. When ana-
lyzing DEGs of the three datasets in common, 169 DEGs
were obtained, including 105 upregulated genes and 64
downregulated genes (Figures 2(a) and 2(b)). GO analysis
demonstrated that changes in biological processes of DEGs
were mainly enriched in interactions between extracellular
matrix (ECM), angiogenesis, BMP signaling pathway, trans-
forming growth factor-beta receptor signaling pathway, and

the regulation of the MAPK cascade (Figure 2(c)). Further-
more, enrichment analysis on the KEGG pathway showed
that the DEGs were mainly concentrated in cancer pathways
and the P53 signaling pathway (Figure 2(d)). Among the rel-
evant clinical data of DTC patients, a total of 433 samples
with complete clinical information were selected for analysis.

3.2. Establishment and Validation of the Five-Gene Signature.
The entire dataset of the TCGA dataset was randomly
divided into 305 cases in the training dataset and 128 cases
in the testing dataset. Table 2 shows the clinical baseline fea-
tures of DTC patients in the training and testing datasets. In
the training dataset, based on the univariate Cox analysis of

GSE27155
Datasets

GSE53157
Datasets

TCGA-THCA
Datasets

Differential expression analysis
(|logFC|>1; FDR<0.05)

169 reliable DGEs (105 upregulated/64 downregulated)

DGEs bioinformatics analysis
(KEGG, GO and PPI)

433 cancer samples with complete clinical information in
TCGA-THCA datasets

Random choice method

30% (128 cancer samples)
Testing dataset

70% (305 cancer samples)
Training dataset

AJCC, ATA, ETA, and other
prognostic models

Comparison of the five-gene
signature with other models

Univariate cox and Lasso penalized
regression analysis

Validation of the five-gene
signature in testing dataset

11 DFS related DGEs, (5 upregulated/ 6 downregulated)

Multivariate cox regression analysis

Establishment of a five-gene signature

Univariate and multivariate
cox regression analysis

Independent predictors of DTC
recurrence

Prediction nomogram of DTC recurrence

Figure 1: Flowchart of establishing the gene signature and prognostic nomogram of DTC patients.

Table 1: Details of the datasets used for screening differentially expressed genes.

Datasets Platform Sample size (tumor/control)

GSE27155 Affymetrix Human Genome U133A Array Tumor:64/control:4

GSE53157 Affymetrix Human Genome U133 Plus 2.0 Array Tumor:11/control:3

TCGA-THCA Illumina RNA Sequencing Tumor:509/control:58
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Figure 2: Continued.
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DEGs and patient DFS data, it was found that a total of 14
DEGs were associated with DFS, including 8 upregulated
genes and 6 downregulated genes (P < 0:05). For further
screening through Lasso regression analysis, 11 genes were
selected to perform the fitting between the mRNA and DFS
data (Figures 2(e) and 2(f)). The regression coefficient and
5 DEGs obtained through multivariate Cox regression analy-
sis and the expression of the five genes were included in the
construction of the model formula to achieve the following

risk score formula:

risk score = 3:12E − 05 × expression value of TENM1ð Þ
+ 3:67E − 07 × expression value of FN1ð Þ
− 5:08E − 04 × expression value of APODð Þ
+ 3:86E − 03 × expression value of F12ð Þ
− 4:76E − 02 × expression value of BTNL8ð Þ:
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Figure 2: Screening of differentially expressed genes and bioinformatic analysis. (a, b) Venn diagrams show the intersection between genes
differentially expressed of the three data sources. (c, d) The dot plot of the enriched biological function and KEGG pathways of the DEGs. (e, f)
Lasso regression analysis of the prognostic DEGs.
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In the training dataset, the C-index of the five-gene signa-
ture is 0.750 (95% CI: 0.664-0.836), and the 1-year, 3-year,
and 5-year AUC were 0.686, 0.708, and 0.659, respectively.
Comparison between the five-gene signature model of this

study and other models shows that our model has a good pre-
dictive power within training, testing, and entire dataset
(Figures 3(a)–3(c)). The ability of the five-gene signature to
distinguish between cancer and normal tissue is satisfying,

Table 2: Clinical baseline features of DTC patients in the training and testing datasets.

Clinical features
Training dataset

305
Testing dataset

128
n % n %

Cancer type, n (%)

PTC 247 80.98 104 81.25

FTC 58 19.02 24 18.75

Age, n (%)

≤55 223 73.11 88 68.75

>55 82 26.89 40 31.25

Gender, n (%)

Male 79 25.90 39 30.47

Female 226 74.10 89 69.53

Disease-free survival (year) (mean ± SD) 3:48 ± 2:84 2:85 ± 2:51
Recurrence, n (%)

Yes 31 10.16 13 10.16

No 274 89.84 115 89.84

Tumor size, n (%)

≤2 cm 100 32.79 28 21.88

>2 cm 205 67.21 100 78.12

N, n (%)

N0 153 50.16 70 54.69

N1 39 12.79 16 12.50

N1a 65 21.31 20 15.63

N1b 48 15.74 22 17.18

M, n (%)

M0 182 59.67 79 61.72

M1 5 1.64 2 1.56

MX 118 38.69 47 36.72

Anatomic site, n (%)

Bilateral 55 18.03 28 21.88

Isthmus 13 4.26 6 4.69

Unilateral 237 77.71 94 73.43

Stage, n (%)

Stage I 177 58.03 70 54.69

Stage II 28 9.18 14 10.94

Stage III 68 22.30 27 21.09

Stage IV 32 10.49 17 13.28

ATA risk stratification, n (%)

High risk 14 4.59 8 6.25

Intermediate risk 184 60.33 67 52.34

Low risk 107 35.08 53 41.41

ETA risk stratification, n (%)

High risk 198 64.92 75 58.59

Low risk 100 32.79 48 37.50

Very low risk 7 2.29 5 3.91
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Figure 3: Continued.
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since the AUC of the TCGA, GSE27155, and GSE53157 data-
sets are 0.935, 0.889, and 0.987, respectively (Figure 3(d)).
The data show that the mRNA expression levels of TENM1,
FN1, and F12 are positively correlated with the risk score,
while the expression levels of APOD and BTNL8 are nega-
tively correlated with the risk score. Moreover, the expression
levels of FN1, F12, APOD, and BTNL8 shows significant dif-
ferences in the high- and low-risk groups of DTC recurrence
(P < 0:05) (Figure 3(e)). In addition, according to the pairing
differences between cancerous and paracancerous tissue
genes in 58 DTC patients, the expression of each gene is sig-
nificantly different in cancer tissue (Figure 3(f)). We found
that TENM1, FN1, and F12 are highly expressed in tumor tis-
sue, while APOD and BTNL8 have a lower expression in
tumor tissue. The relationship between the expression of
the five genes and clinicopathological characteristics of
DTC patients are shown in supplementary figures [21].

3.3. Risk Grouping Analysis on the Five-Gene Signature. The
risk score was divided into high- and low-risk groups by
applying the X-tile software (cutoff value = 0:73). Kaplan-
Meier survival curves of the high- and low-risk group of the
training dataset, the testing dataset, and the entire dataset

were plotted (Figure 4(a)). All groups have a significant dif-
ference in DFS between the high- and low-risk groups
(P < 0:001). The risk curves, risk scatter plots, and risk distri-
bution heat maps of these three datasets are presented in
Figures 4(b)–4(d). GSEA enrichment analysis shows that
the P53 signaling pathway, VEGF signaling pathway, thyroid
cancer, cell cycle, and DNA replication were more active in
the high-risk group when compared to that in the low-risk
group (P < 0:01, FDR < 0:25) (Figure 4(e)).

3.4. Establishment and Evaluation of a Predictive Nomogram.
Univariate Cox regression analysis was performed on the risk
scores of the five-gene signature combined with clinical char-
acteristics of the entire dataset (Table 3). Our data show that
age (>55 vs. ≤55, P = 0:004), tumor size (>2 cm vs.≤2 cm, P
= 0:008), N stage (N1 vs. N0, P = 0:048), M stage (M1 vs.
M0 and MX, P < 0:001), AJCC stage (stages III and IV vs.
stages I and II, P = 0:001), and risk score (P < 0:001) were
correlated with patient recurrence. In the univariate analysis,
the parameters with P < 0:05 were further incorporated into
the multivariate Cox regression analysis. The multivariate
Cox regression results indicated that risk score and M stage
were independent risk factors for recurrence in DTC patients
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Figure 3: Establishment and validation of the five-gene signature. (a)–(c) ROC curves of the five-gene signature for 1-, 3-, and 5-year DTC
patient recurrence compared with other models in the training, testing, and entire dataset. (d) The ability of the five-gene signature to
distinguish between cancer and normal tissue in the TCGA, GSE27155, and GSE53157 datasets. (e) The difference of FN1, F12, APOD,
and BTNL8 expression levels in the high- and low-risk groups of DTC recurrence patients (P < 0:05). (f) The pairing differences between
cancerous and paracancerous tissue genes in 58 DTC patients.
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Figure 4: Risk grouping analysis for the five-gene signature. (a) Kaplan-Meier disease-free survival curve of high- and low-risk group in the
training, testing, and entire dataset. (b)–(d) The risk curves, risk scatter plots, and risk distribution heat maps of high- and low-risk group of
the training, testing, and entire dataset. (e) GSEA enrichment analysis result map of entire dataset.

Table 3: Univariate Cox regression analysis.

Clinical features Statistics RR (95% CI) P value

Risk score (mean ± SD) −0:396 ± 1:471 2.436 (1.900-3.123) <0.001
Cancer type, n (%)

PTC 351 1

FTC 82 0.713 (0.301-1.687) 0.441

Age, n (%)

≤55 311 1

>55 122 2.394 (1.320-4.341) 0.004

Gender, n (%)

Male 118 1

Female 315 0.772 (0.409-1.456) 0.423

Tumor size, n (%)

≤2 cm 128 1

>2 cm 305 4.046 (1.446-11.317) 0.008

N stage, n (%)

N0 223 1

N1 210 1.856 (1.004-3.431) 0.048

M stage, n (%)

M0 and MX 426 1

M1 7 6.692 (2.375-18.853) <0.001
AJCC stage, n (%)

Stages I and II 289 1

Stages III and IV 144 2.746 (1.515-4.977) 0.001

Anatomic site, n (%)

Unilateral 331 1

Isthmus 19 0.469 (0.064-3.427) 0.455

Bilateral 83 1.258 (0.599-2.641) 0.544
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(P < 0:05) (Table 4). The C-index of the nomogram was
0.797 (95% CI: 0.730-0.864). The 1-year, 3-year, and 5-year
ROC curves of the nomogram model were established
(Figure 5(a)), and the AUC results demonstrated that the
accuracy of the nomogram prediction was superior to other
models (Figure 5(b)). Moreover, calibration curve analysis
was performed on the nomogram model (Figure 5(c)).

4. Discussion

Thyroid cancer is the common endocrine malignancy that
occurs in the head and neck, of which the pathogenesis is
poorly understood [1]. Exposure to radiation, iodine intake,
genetics, and other factors can cause thyroid cancer [1]. Even
after patients have undergone standard surgery, 131I and thy-
roid hormone suppression therapy, 5%-23% of patients still
suffer from metastatic recurrence [22]. A good prediction
model of patient prognosis can effectively identify patients
with high risk of recurrence and foster their individualized
indepth treatment to achieve better therapeutic outcomes.
The combined prediction of various prognostic markers
derived from gene expression profiling can reflect the prog-

nosis of individual patients at the molecular level. Such a gene
signature can be complementary with traditional AJCC,
ATA, and ETA staging prediction systems.

In this study, GO biological process enrichment analysis
and KEGG pathway enrichment analysis were performed
using cancer-related DEGs, which were derived from the
intersection between the TCGA-THCA, GSE27155, and
GSE53157 datasets. The results showed that transforming
growth factor-beta receptor signaling pathway, BMP signal-
ing pathway, regulation of MAPK cascade, and extracellular
matrix organization are significantly enriched in the analysis
of biological processes. Among the extracellular matrix pro-
teins, collagen, fibronectin, and integrin represent the major
components. Some studies indicate that type IV collagenase
and matrix metalloproteinases secreted by thyroid cancer
cells can promote the metastasis of cancer cells by destroying
the extracellular matrix structure, which affects the prognosis
of thyroid cancer [23–25]. Fibronectin and integrin can par-
ticipate in the adhesion process of tumor cells and extracellu-
lar matrix through activation of the Ras/Raf/Mek pathway
and the calmodulin dependent kinase-II (CaMKII) pathway
[26]. Transforming growth factor-beta 1(TGF-β1) and

Table 4: Multivariate Cox regression analysis.

Clinical features
Nonadjusted Adjust I Adjust II

RR (95% CI) P value RR (95% CI) P value RR (95% CI) P value

Risk score (mean ± SD) 2.171 (1.626-2.898) <0.001 2.148 (1.620-2.849) <0.0001 2.169 (1.636-2.874) <0.0001
Cancer type, n (%)

PTC 1 NA NA NA NA

FTC 1.000 (0.392-2.552) 1.000

Age, n (%)

≤55 1 1 1

>55 1.367 (0.579-3.228) 0.476 1.336 (0.580-3.079) 0.496 1.584(0.811-3.093) 0.178

Gender, n (%)

Male 1 NA NA NA NA

Female 1.231 (0.619-2.450) 0.553

Tumor size, n (%)

≤2 cm 1 1 1

>2 cm 2.306 (0.784-6.784) 0.129 2.339 (0.804-6.804) 0.119 2.444 (0.847-7.054) 0.098

N, n (%)

N0 1 1 1

N1 1.673 (0.837-3.344) 0.145 1.644 (0.860-3.143) 0.133 1.739 (0.927-3.261) 0.085

M, n (%)

M0 and MX 1 1 1

M1 4.576 (1.523-13.755) 0.0274 4.411 (1.521-12.788) 0.006 4.478 (1.546-12.967) 0.006

Stage, n (%)

Stages I and II 1 1 NA NA

Stages III and IV 1.287 (0.569-2.908) 0.545 1.313 (0.586-2.943) 0.508

Anatomic site, n (%)

Unilateral lobe 1 NA NA NA NA

Isthmus 0.689 (0.091-5.183) 0.717

Bilateral lobe 1.354 (0.628-2.916) 0.439

Adjust I model adjusts for parameters with P value <0.05 based on univariate Cox regression analysis. Adjust II model adjusts for risk score, age, tumor size, N,
and M.
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BMP-2 are members of the transforming growth factor-beta
family, which exert important roles in tumor growth and
invasion. TGF-β1 and epidermal growth factor- (EGF-) like
ligands have opposite roles in different stages of thyroid can-
cer growth: on one hand, they act as tumor suppressors
through inhibiting the proliferation of thyroid cells and reg-

ulating the formation of extracellular matrix [27, 28]; on
the other hand, they can promote angiogenesis in advanced
stage of thyroid cancer [29]. TGFβ and BMPs pathways can
contribute to the synergistic suppression of tumor growth,
but atypical TGFβ that activates PI3K/AKT signaling can
reverse this suppression and promote tumor cell proliferation
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Figure 5: Establishment and validation of a predictive nomogram. (a) The nomogram for predicting proportion of DTC patients with 1-, 3-,
and 5-year disease-free survival. (b) ROC curves of the nomogram for 1-, 3-, and 5-year DTC patients recurrence compared with other models
in the entire dataset. (c) The calibration curve of the nomogram.
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[30]. The mitogen-activated protein kinase (MAPK) pathway
is one of the most classical signal transduction pathways in
thyroid cancer. In this pathway, BRAF-mutations and
RET/PTC rearrangements can promote the transformation
of thyroid follicular cells into papillary thyroid cancer, which
is considered as a hallmark for PTC development and pro-
gression [31].

The five-gene signature was established as a new molecu-
lar predictive index for the recurrence in DTC patients. The
results of multivariate Cox regression coefficient of the five
genes indicated that TENM1, FN1, and F12 were protective
factors, while APOD and BTNL8 were unfavorable elements
for recurrence risk of DTC patients. Multiple studies have
shown that the expression of TENM1, which acts as a cell sig-
nal transducer in neurons, is highly positively correlated with
the growth and invasion of PTC, and it is a potential bio-
marker for early diagnosis of thyroid cancer [32–34]. FN1
encodes fibronectin and is involved in cell proliferation,
adhesion, and migration. Previous studies demonstrated that
FN1 is a potential therapeutic target highly related to tumor
invasion in PTC and medullary carcinoma, and it is also
one of the markers to distinguish malignant from benign
nodules in thyroid cancer [35–37]. F12 encodes coagulation
factor XII which circulates in blood as a zymogen; however,
the relationship between F12 and tumorigenesis has not been
reported. This study pointed out that F12 is highly expressed
in DTC tissues. Furthermore, our results demonstrated that
the F12 expression is higher in FTC tissues than in PTC tis-
sues, and its expression is highly correlated with patient
age, lymph node metastasis, and postoperative recurrence
risk (P < 0:05). APOD, known as apolipoprotein D, is regu-
lated by P73 and P63 proteins, which belong to the P53
tumor suppressor family [38]. Moreover, it has been shown
that APOD can inhibit the proliferation of cancer cells in
breast cancer, prostate cancer, and colorectal cancer cell lines,
and it may be used as a marker of the initial stage of tumor
deterioration [39–41]. Butyrophilin-like (BTNL) protein
can regulate T lymphocyte response. Research indicates that
BTNL8 is also related to inflammatory disorders and tumor-
igenesis. In intestinal tumors, where BTNL8 was found to be
downregulated, it can enhance the immune response medi-
ated by T cells and plays a role in immune surveillance of
tumor cells [42].

In this study, we established a high- and low-risk group
(cutoff value = 0:73) of a five-gene signature through X-tile
software. GSEA enrichment analysis of the two groups
showed that the P53 signaling pathway and the VEGF signal-
ing pathway were significantly enriched in the high-risk
group. The P53 signaling pathway plays a central role in
tumorigenesis. TP53 is one of the most important tumor sup-
pressor genes, which has the functions of inhibiting cell pro-
liferation, participating in cell cycle regulation and inducing
cell apoptosis. Due to a short protein half-life, wild-type
P53 is expressed at a low level in cells, whereas mutant (inac-
tive) P53 is frequently overexpressed in cancer cells due to its
higher stability. Therefore, the high expression of the P53
protein in the tumor tissue is closely related to poor progno-
sis [43]. Vascular endothelial growth factor (VEGF) is an
essential factor for the development of blood vessels, which

is crucial for the growth of tumors. Lymphatic vessel density
and VEGF-C expression have been found to be significantly
different between benign and malignant tissue [44]. The
expression of VEGF is highly correlated with the tumorigen-
esis and the prognosis of DTC [45, 46]. The abovementioned
pathway analysis showed that the biological processes
related to cancer growth was enriched in the high-risk
group. The Kaplan-Meier survival correlation curve of the
training dataset and the testing dataset intuitively reflected
the difference in DFS rates of the two groups, suggesting that
the cutoff points of the high- and low-risk groups were well
differentiated.

In many studies, nomograms for predicting the recur-
rence of thyroid cancer patients had been previously for-
mulated. Pathak et al. established a 10-year recurrence
prediction nomogram (C-index 0.76) for thyroid cancer
patients [47]. Ding et al. successfully established a 3-, 5-,
and 10-year cancer recurrence prediction nomogram (C-
index 0.70) for PTC patients [48]. Wu et al. constructed a
prognostic nomogram related to five-gene signature by ana-
lyzing the data fromGEO and TCGA, with the goal to predict
progression-free interval of PTC patients. The C-index of the
model is 0.76, which has good predictive value for PTC [11].
However, a relevant prognostic nomogram for DTC patients
has not been developed so far. In this study, we found that the
risk score and M stage were independent risk factors for
recurrence in DTC patients (P < 0:05), and we established a
3-, 5-, and 10-year cancer recurrence prediction nomogram
(C-index 0.80) for DTC patients.

Although this study segmented 30% of the data from the
overall population for validation, a large sample validation
analysis of other cohorts could not be carried out due to the
limited availability of data. Since in this study, the clinical
characteristics of patients that could be included in the anal-
ysis was limited, and more indepth verification is warranted.
It is worth noting that this study is the first analyzing the
recurrence prediction of DTC patients from the level of the
prognostic related gene expression, and its accuracy and indi-
vidualized prediction ability were more prominent compared
to that of traditional clinical feature prediction models.

In conclusion, we have successfully established a nomo-
gram of a five-gene signature combined with traditional clin-
ical characteristics to predict the 1-year, 3-year, and 5-year
DFS rate of DTC patients, which can be used as a tool to
assess patients’ postoperative recurrence rate and to formu-
late an individualized, accurate treatment strategy.
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