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Abstract: We review the state-of-the-art in bone and marrow tissue engineering (BMTE) and
hematological cancer tissue engineering (HCTE) in light of the recent interest in bone marrow
environment and pathophysiology of hematological cancers. This review focuses on engineered BM
tissue and organoids as in vitro models of hematological cancer therapeutics, along with identification
of BM components and their integration as synthetically engineered BM mimetic scaffolds. In addition,
the review details interaction dynamics of various BM and hematologic cancer (HC) cell types in
co-culture systems of engineered BM tissues/phantoms as well as their relation to drug resistance and
cytotoxicity. Interaction between hematological cancer cells and their niche, and the difference with
respect to the healthy niche microenvironment narrated. Future perspectives of BMTE for in vitro
disease models, BM regeneration and large scale ex vivo expansion of hematopoietic and mesenchymal
stem cells for transplantation and therapy are explained. We conclude by overviewing the clinical
application of biomaterials in BM and HC pathophysiology and its challenges and opportunities.

Keywords: bone and marrow; bone marrow organoids; BM phantoms; biomimetic 3-D scaffolds;
hematological cancer; tissue engineering; drug resistance

1. Introduction

The bone and marrow (BM) are complex and vital tissues responsible for the support, production,
and maintenance of hematopoietic stem cells (HSCs), which differentiate into myeloid and lymphoid
progenitor cells and their lineages. Various cell types are involved to maintain the HSC niches. To restore
the damaged BM tissues, efforts are made to reconstruct the BME niches in vitro mimicking in vivo
conditions. Synthetic and natural biocompatible and biodegradable materials, cells, growth factors,
and tissue engineering technologies are used to fabricate 3-D scaffolds to mimic the natural BM physiology
and functions. Similarly, the HC environment-mimicking 3-D scaffolds are important for understanding
the cancer biology and physiopathology in vitro, and for evolving better therapeutics. The xenograft
animal model for cancer drug testing is widely used [1,2]. However, a non-animal model of biomimetic 3-D
scaffolds not only complements the existing system in practice, but is also cost-effective and convenient [3].
Compatible tissue engineering potentially complements existing cancer models to ultimately lead to
advances in cancer prevention, early detection of aggressive cancer, diagnosis, and treatment. Only sporadic
and scattered literature is available on bone marrow tissue engineering (BMTE) and hematological
cancer tissue engineering (HCTE). Various biomimetic scaffolds are in use for reconstruction of the BM
niche. Co-cultured hematopoietic stem cells with other BM component systems model the BM niche.
The organoids grow rapidly and cost effectively facilitating direct testing of a drug or combination of
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drugs to predict clinical response from patient. The hematological tumor organoids are proven to be
more sensitive or resistant to chemotherapy drug or combination of drugs and radiation. We review the
state of the art in the fields of BMTE and HCTE and envisage dramatic transformations in stem cell and
hematological cancer research and therapeutics.

2. Materials and Methods

A review was made by searching criteria including “Bone marrow,” “Cancers,” “Leukemia,” “Myeloma,”
“Lymphoma,” “Scaffold,” “Biomimetic materials,” “Transplantation,” and “Chemotherapy” for the past
6 decades in various web-based sources such as PubMed, MeSH, Medline, Google Scholar, and others.

3. Results

Interest in BMTE and HCTE has been growing for the past 6 decades as evidenced by published
articles (Figure 1). The use of scaffolds has accelerated since 1985, indicating the importance of BM-
and HC-mimetic 3-D scaffolds in BM and HC research.
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The organisms with regenerative capability regenerate the damaged tissue or whole organ on their
own, without intervention of any external aid [4,5]. The advantages of 3-D culture systems replicating these
features are cell–cell interactions and accurate representation of cyto-architecture for tissue regeneration.
The concept of TE involves a triadic interaction of cells, scaffolds, and regulatory signals, leading to the
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biocompatibility, surface morphology or porosity, and material composition, to promote cell 
proliferation and growth mimicking in vivo condition [6,7]. Interactions of HSC, mesenchymal 
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and HC physiopathology in the BM environmental niche. 

3.1. Bone Marrow Microenvironmental Niches 
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Haversian canals lamella, collagen fibers, collagen fibrils, and non-collagens molecules that are in 
association with the collagen molecules [8,9]. It is divided into three regions, namely the endosteum, 
central marrow, and periosteal regions on the basis of the cell types and surrounding structural 
composition. The multipotent MSCs, bone-lining cells (BLC), osteoblasts, osteocytes, macrophages, 
and osteoclasts are involved in BM maintenance and remodeling in endosteum. The central marrow 
is composed of HSCs and progenitor cells (HSPC). These cells are embedded in a meshwork of 
structural proteins constituting the soft extracellular matrix (ECM). It provides structure and a 
biochemical platform for HSPC cells to interact and function [8–11]. The perivascular niche is highly 
vascularized fibrous connective tissue. It is a site of homing for mesenchymal cells, where they 
differentiate into various cell types such as adipocytes, osteocytes, chondrocytes, and endothelial and 
neuronal cells [12]. 

3.1.1. Interactions of Various Cell Types to Maintain HSC Niches 

Several BM cells and molecules are key players responsible for regulating the hematopoietic 
niche. The majority of HSCs are confined to the endosteal region and interact with a number of cells, 
such as MSCs, the nestin-expressing MSC population (nestin+ MSC), the CXCL12-abundant reticular 
(CAR), and macrophages that influence HSC survival and functions. It has been demonstrated that 
MSCs enhance the engraftment of hematopoietic stem cells in an autologous mouse transplantation 
model [13], and influence differentiation of HSCs [14]. Perivascular endothelial, Schwann, and 
sympathetic neuronal cells promote HSC maintenance and dictate HSC fate [15]. BM mononuclear 
phagocytes are reported to help in promoting the maintenance and retention of HSCs [16,17]. Lipid 
rafts, the glycoprotein microdomains, play a role in signaling processes that could enhance the 
responsiveness of HSPC to homing [18,19]. Several cell types and molecular interactions are involved 
in the maintenance of BM niches. BM homing ligands include E- and P-selectin, VCAM-1, annexin II, 
CXCL12, and Kit ligand. N-cadherin, annexin I, osteopontin (OPN), Ang1, BMP4, thrombopoietin, 
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architectural bioscaffold constructs with specific parameters, such as biodegradability, biocompatibility,
surface morphology or porosity, and material composition, to promote cell proliferation and growth
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mimicking in vivo condition [6,7]. Interactions of HSC, mesenchymal stromal cell (MSC), and HC
dynamic environments were studied to understand HSC maintenance and HC physiopathology in the BM
environmental niche.

3.1. Bone Marrow Microenvironmental Niches

The bone consists of cortical bone, cancellous bone, the periosteum, the endosteum, and articular
cartilage (Figure 3). The cortical bone exhibits hierarchical structural organization with osteon,
Haversian canals lamella, collagen fibers, collagen fibrils, and non-collagens molecules that are in
association with the collagen molecules [8,9]. It is divided into three regions, namely the endosteum,
central marrow, and periosteal regions on the basis of the cell types and surrounding structural
composition. The multipotent MSCs, bone-lining cells (BLC), osteoblasts, osteocytes, macrophages,
and osteoclasts are involved in BM maintenance and remodeling in endosteum. The central marrow is
composed of HSCs and progenitor cells (HSPC). These cells are embedded in a meshwork of structural
proteins constituting the soft extracellular matrix (ECM). It provides structure and a biochemical
platform for HSPC cells to interact and function [8–11]. The perivascular niche is highly vascularized
fibrous connective tissue. It is a site of homing for mesenchymal cells, where they differentiate into
various cell types such as adipocytes, osteocytes, chondrocytes, and endothelial and neuronal cells [12].

3.1.1. Interactions of Various Cell Types to Maintain HSC Niches

Several BM cells and molecules are key players responsible for regulating the hematopoietic niche.
The majority of HSCs are confined to the endosteal region and interact with a number of cells, such as
MSCs, the nestin-expressing MSC population (nestin+ MSC), the CXCL12-abundant reticular (CAR),
and macrophages that influence HSC survival and functions. It has been demonstrated that MSCs
enhance the engraftment of hematopoietic stem cells in an autologous mouse transplantation model [13],
and influence differentiation of HSCs [14]. Perivascular endothelial, Schwann, and sympathetic
neuronal cells promote HSC maintenance and dictate HSC fate [15]. BM mononuclear phagocytes
are reported to help in promoting the maintenance and retention of HSCs [16,17]. Lipid rafts,
the glycoprotein microdomains, play a role in signaling processes that could enhance the responsiveness
of HSPC to homing [18,19]. Several cell types and molecular interactions are involved in the maintenance
of BM niches. BM homing ligands include E- and P-selectin, VCAM-1, annexin II, CXCL12, and Kit
ligand. N-cadherin, annexin I, osteopontin (OPN), Ang1, BMP4, thrombopoietin, and connecxin 43 are
some of the endosteal ligands. ECM interactions and intercellular adhesion lead to cell morphogenesis.
The complex signaling pathways regulate HSC development from hemogenic endothelial cells (HEC)
through endothelial-to-hematopoietic transition (EHT), pro-HSC and pre-HSC [20].
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3.1.2. Therapeutic Radiation and Chemotherapy Damage Hematopoietic Stem and Progenitor Cells
(HSPC) and Recovery Strategies

Therapeutic radiation and anticancer chemotherapy drugs inadvertently damage the HSC niche
and pose immense challenges for treating patients while protecting the BM niches. As radiation therapy
damages HSC, MSC transplantation rescue has been in practice for the past 50 years to improve HSC
recovery with the support of MSC. Radiation accelerate differentiation ability of MSC due to increased
oxidative stress [21]. MSCs are resistant to radiation, which is attributed to ataxia-telangiectasia
mutated (ATM) protein phosphorylation, activation of cell-cycle checkpoints, double-strand break
repair, and the antioxidant capacity for scavenging reactive oxygen species (ROS) [22,23].

3.2. Biomimetic 3-D Scaffold for Bone Marrow and Hematological Cancer Niches

The in vitro reconstruction of the BM and HCs niches requires a thorough understanding of the
natural BM and HCs microenvironments and the properties of BM and HCs mimicking materials.
Bone is primarily composed of calcium hydroxyapatite with trace elements, collagen protein, and water,
which provides mechanical support structure for protecting bone marrow and maintain bone and
marrow homeostasis. The components of the endosteum, central marrow, and perivascular niches
of the BM artificially built to mimic the structures and functions of the BM. BM cells (e.g., HSC,
MSC, osteocyte, osteoblast, osteoclast etc.) in scaffold used to investigate cellular function such as
mineralization and HSC maintenance. Incorporation of fat cells in bone marrow further allowed
to investigate the association of bone, fat, and hematopoietic stem cells. Furthermore, inclusion of
hematological cancer cells within the scaffold bone marrow, provides an important tool to test and
optimize new drugs. Table 1 provides a brief summary of various aspects scaffolds that are reported
earlier. Table 2 provides biomimetic 3-D in vitro bone marrow and cancer models.

Table 1. Comparative constituents of natural BM and synthetic scaffolds to reconstruct and replicate
the BM microenvironment for transplantation and regeneration.

BM Components,
Architecture and

Environmental Niches

BM and HC Components
Functions

Scaffolds Components
Mimicking the BM and HC

Microenvironment
Comments References

1. Bone
Bones comprise mainly

collagen type I and
hydroxyapatite (HA).

Creating synthetic BM and
HCs niches to mimic the

natural BM and HCs
environments using the
structural components.

Bones support the body and
hold the soft organs. Marrow
is a site of hematopoietic stem

cells.

Convenient to fabricate
artificial BM and
cancer mimicking

scaffolds for BM and
HC studies.

[7,24–26]

1a. Mineral component of
bone

1a. Calcium component
Heterogeneous composite
mineral, 70% by weight of
bone is a modified form of

HA.

HA synthesized wet by
direct precipitation of

calcium and phosphate ions,
and used up to 40% of HA in

the scaffold fabrication.
PLGA and PCL are ECM like

polymers that render
mechanical strength.

The hardness and rigidity of
bone are due to the crystalline

complex of calcium and
phosphate, known as
hydroxyapatite (HA).

Required amounts can
be incorporated to
build up structure.

[27,28]

1b. Trace elements
Zinc, Silicon, Copper,
Fluorine, Manganese,

Magnesium, Iron, Boron and
others elements are present.

Incorporating these trace
elements into tissue

engineered bone (TEB)
scaffold at the time of

fabrication. Doping the
scaffolds with silicon,

carbonate, and zinc simulate
the natural bone

environment.

Zinc contributes to tissue
remodeling, protein and

nucleic acid synthesis,
cell proliferation,

and remodeling ECM.
Silicon is essential for bone,

cartilage, organ,
and connective tissues.

Other elements such as copper,
fluorine, manganese,

magnesium, iron, and boron
influence bone function.

Trace elements needed
for the healthy

functioning of bone cell
viability and survival.

[29–31]

1c. Porous
architecture

Spongy and porous nature
of the bone.

Desired pore sizes and pore
microarchitecture can be

created using appropriate
size porogens at the time of

scaffold fabrication.

Cell distribution
interconnection, diffusion of

nutrients and oxygen,
especially in the absence of a
functional vascular system.

Permeability as a
function of porosity.
Controlled porosity
can be created in the

3-D scaffolds.

[32]
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Table 1. Cont.

BM Components,
Architecture and

Environmental Niches

BM and HC Components
Functions

Scaffolds Components
Mimicking the BM and HC

Microenvironment
Comments References

2.Extracellular matrix
Collagen constitutes 90% of

the matrix proteins,
and accounts for 25 to 30%
of the dry weight of bone

Collagen type 1 is the
predominant fraction of

collagen, together with other
proteins and

mucopolysaccharides.

Synthesis of ECM like matrix
Collagen type I and other

mucopolysaccharides can be
added to TEB scaffold at the

time of synthesis
Chitosan (CS) is another
ECM-like material. It is a
nontoxic, biocompatible,
biodegradable cationic

polysaccharide. It can be
incorporated to TEB scaffold.

Incorporating native or
synthetic ECM into 3-D

scaffolds.

Collagen with its triple helix
tertiary structure and high

mineralization imparts high
tensile strength and high

flexibility to bone. It is
essential for tissue

morphological organization
and physiological function.

Chitosan simulates the
marrow environment. It also

promotes electrostatic
interactions with anionic

glycos-
aminoglycans (GAG) and

proteoglycans.
Incorporating native or
synthetic ECM into 3-D

scaffolds.

An important
structural protein

Chitosan is a natural
biopolymer. It is easily
available and widely

used in tissue
engineering.

Direct transfer of
native physio-

logical and
biochemical cues.

[33–37]

3. BM cells
Osteoblasts, bone lining cells

(BLC), osteocytes,
osteoclasts, MSC, CAR cells,

adipocytes, macrophages,
and other cell types.

BM cells are in dynamic
state of interactions with
various cell types in BM

environment.
Studying the interactions of

these different cell types
help in understanding the

mechanisms of their
influence on HSC behavior.

Varying combinations of
these bone marrow cells in
co-culture systems can be

used for culturing in BM TE
scaffold.

Osteoblasts involved in
mineralization of bone and

matrix proteins. Play a role in
calcium homeostasis and bone
resorption. Bone lining cells

(BLC) function as a barrier for
certain ions and induced

osteogenic cells.

BM cellular functional
interactions.

HSC maintenance.
[16,38,39]

4. Interaction of BM
cellular components

Co-cultures in 3-D with MSC
increased proliferation and

maintained HSC.

To maintain the
microenvironment of

hematopoietic stem and
progenitor cell function.

Simulate the in vivo
condition in vitro

cultures.
[40,41]

5.Blood vessels-forming
cells

Interactions of multiple cell
types in BM to form blood

vessels.

HUVEC and MSC in
perivascular niches

self-assemble and form
organized structures.

Blood vessel formation
provides niches for

hematopoietic stem cells that
reside within the BM.

Vascularization
facilitates the

proliferation and
maintenance of HSC.

[42–45]

6. Macrophages
Macrophages are distributed

in tissues throughout the
body and contribute to both

homeostasis and disease

Co-culture of human
induced

(hiPSC)—mesenchymal stem
cells and macrophages
recapitulate the tissue

remodeling process of bone
formation.

Macrophages help to retain
the HC niche

Through various cellular and
molecular mechanisms.

HSC maintenance is
performed by BM
macrophages by

mobilizing depleted
HSC.

[16,17,46,47]

7.BM Sympathetic nerves
They involve in BM

hematopoietic homeostasis
by

regulating HSC maintenance
genes expression.

Schwann cells localize close
to HSCs and maintain HSC

quiescence.
Chemotherapy-induced

bone marrow nerve injury.

Scope for studying
co-cultures of neuronal cells
with HSC supporting cells.
Scope for creation of nerve
tissue in BM environment.

Hematopoietic stem cell
hibernation in the BM niche.

Involve in BM function.
Adult BM cells are sources of

Schwann cells

Maintain HSC
quiescence

Repair of impaired
hematopoietic
regeneration.

[48,49]

8 Bone marrow fat
The intimate relationship

among adipocytes,
osteoblasts,

and hematopoietic stem.
Lipid rafts, the glycoprotein

microdomains.

Fat components can be
incorporated to the scaffolds
at the time of fabrication for
creating BM environment in

co-culture systems.

Fat primes homing-related
response of HSC/PHSC to

SDF-1, through CXCR4.
Fat also binds bone with
calcium and forms bone

grease.
Play a role in signaling process,
enhance the responsiveness of

HSPC to homing.

The association
between bone, fat,

hematopoietic stem
cell numbers, cytokine
levels, and aging has
been demonstrated.

[18,19,50,51]
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Table 1. Cont.

BM Components,
Architecture and

Environmental Niches

BM and HC Components
Functions

Scaffolds Components
Mimicking the BM and HC

Microenvironment
Comments References

9. HSC cellular stress
Oxidative stress and

hypoxia.

Study of these conditions
and induced effects of

radiation and cytotoxic
chemotherapy in 3-D

scaffold.

Understanding the damage
caused by external agents to

the biology of HSC.

In vitro model of HSC
cellular
Stress.

[52]

10. BM niche model of
tissue and fluids.

Engineered bone marrow
(eBM) on ‘bone

marrow-on-a-chip’
microfluidic device is

extended 3-D culture model.

Long term cultures of Bone
HSC and PHSC. Myeloid

toxicity studies.

Advanced stem
Cell therapeutics. [53–55]

11. Hematopoietic
malignancies

CLL, ALL, CML, AML,
MML leukemia and multiple

myeloma

Fabrication of BM and HC
environments mimicking

3-D scaffolds.

BM and cancer in vitro drug
testing models.

In vitro disease
model. [56–59]

As shown in Table 2, biomimetic 3-D scaffolds are fabricated for creating a microenvironment of various cellular
components, including the ECM and vascular systems, with the required physical characters of native tissue.

Table 2. Biomimetic 3-D in vitro bone marrow and cancer models.

3-D Scaffold Materials Methods

Solid Scaffold
PLGA, PCL, PGDA, PVA and other

polymers, fats, minerals,
and microelements.

Solvent casting and porogen leaching,
gas foaming, freeze-drying, electrospinning,

and 3-D scaffold printing.

Hydrogel Hyaluronic acid, Chitosan, Alginate,
Collagen, Gelatin, Agarose, and others Gel casting and use of molecular cross-linkers.

Matrigel Basement membrane extract. Gel casting.

Biocomposite scaffold polymers, cells, growth factors. Bioprinting using ink-jet, laser, valve,
and acoustic based.

Scaffold-free systems No scaffold material required. Delivery
of cells and active biomolecules.

Magnetic levitation and self-assembly
hanging drop method for spheroid formation.

3.3. Porosity

In the 3-D architecture of the scaffold, porosity and pore sizes play an important biophysical
role. Interconnections of the pores facilitate circulation of nutrients and exchange of gases, thereby
diminishing hypoxia in in vitro and in vivo conditions. The pores also support cell function with respect
to attachment, migration, and proliferation. Kuboki et al. demonstrated in a rat ectopic model that pores
in hydroxyapatite particles are required for osteogenesis [33]. It has been reported that the optimum
pore size is 5 µm for neovascularization, 100–350 µm for regeneration of bone, and 40–100 µm for
osteoid in growth. [60]. A minimum of ∼100 µm pore size is essential for cell migration and transport,
and capillary formation in the bone; pore sizes >300 µm are required for enhanced new bone and
capillaries formation [34]. Pore sizes generated in different fabrication methods are given in Table 3.

The pores of closed, open, blind, and through pore types can be created. The pores are
created by conventional gas foaming [61,62], CO2-water emulsion templating [63], dense gas CO2 +

cross-linker [64], porogen leaching [65], freeze-drying [66–71], and electrospinning methods [72,73].
As shown in Figure 4A, round pores are created in the polymer scaffold using sodium bicarbonate
(NaHCO3) which generate CO2 gas in a mild acid solution [61]. In this method, the pores created
are of heterogeneous sizes depending on the size of the gas bubbles emerging from the polymer
slurry. In the solvent casting, casting/particle leaching method, the desired porogens are dispersed
into a polymer solution and subsequently leached out by immersing the scaffold in a selective solvent,
resulting in the formation of a porous network in the scaffold (Figure 4B). In this method, controlled
pore sizes can be generated. Interconnected porous nonlinear filament 3-D scaffolds are fabricated
by an electrospinning method of forming ECM mimicking nonlinear fibers under electro static forces
(Figure 4C), and hydrogel is introduced into the stacks of nonlinear scaffolds for cell proliferation and
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growth [73,74]. These polymer fibers can be used for making nanocomposite scaffolds using other
polymers and hydrogels.
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While Tables 1–3 provide summaries of fabrication strategies for BM and cancer
environment-mimicking 3-D systems, there are also major requirements for the characteristics of the
scaffolds, such as mechanical strength, degradation kinetics, swelling in liquid media, and molecular
linkers essential for fabrication of structural and functional stability of the scaffolds. Similarly, the HC
microenvironment can be created using biomimetic synthetic polymer scaffolds, extracellular matrices
(ECM), endothelial cells, and stromal cells.

Table 3. Pore sizes generated using various processes for different scaffolds.

Process Polymer Pore Size (µm) References

Conventional gas foaming PEGDA 100–400 [61,62]

CO2-water emulsion templating Dextran 6.25–7 [63]

Dense gas CO2 + cross-linker Elastin 80 [64]

Dense gas CO2 + cross-linker Gelatin 80–120 [75]

Porogen leaching PEG/PCL 180–400 [65]

Porogen leaching PLGA 250–500 [6]

Freeze-drying Collagen/Chitosan 50 [66]

Freeze-drying Agarose 71–187 [67]

Freeze-drying Chitosan, alginate 60–150 [68]

Freeze-drying Gelatin 40–500 [69]

Freeze-drying PVA/PCL 30–300 [70]

Freeze-drying Chitosan/PCL 10–100 [72]

Electrospinning Gelatin/PCL 20–80 [72,74]

3.4. Mechanical Sterngth and Stiffness Characterization of Bone Marrow

The mechanical properties of BM niches are varied [76] with a higher value of 435 kPa in
endosteum [77], 2–10 kPa in marrow sinusoids [78,79], and 0.3 kPa in the central marrow [80].
Hydroxyapatite (HA) having higher elastic modules when fabricated with collagen forms an ECM-like
scaffold mimicking the central marrow environment. The mechanical strength of the scaffold, apart from
the surface chemistry and topographical features, affects MSC growth, differentiation, and regenerative
capacity in the 3-D cultures [81–84]. The mineralization of BM causes enhanced stiffness. The HSCs
grown in the matrix with mechanical strength of 3.7 kPa remained round and wedged in the matrix,
whereas in matrix scaffolds with higher mechanical strength (>44 kPa), they are stretched and
elongated, and driven to niche-mediated HSC fate decisions [85]. Human colorectal carcinoma (CRC)
cell lines DLD1 and HT29 grown on 3-D laminin enriched ECM [86] and the breast cancer cell line
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MCF-7 grown in 3-D collagen scaffolds exhibited an enhanced expression of their respective cancer
stem cell characteristics [87]. A variety of linkers and cross-linker molecules are used in the fabrication
of scaffolds. They maintain the structural stability and strength of scaffolds when layers of different
polymers are involved in the fabrication process. The biomimetic scaffolds are surface-modified and
functioned with a variety of active biomolecules to mimic the BM and HCs environments or for any
other applications. The protein chemical targets, known as primary amines (–NH2), carboxyls (–COOH),
and sulfhydryls (–SH) account for the vast majority of cross-linking and chemical modification methods
for bioconjugation. A novel phosphoramidite (PA) linker is also reported for AFM single molecule
force spectroscopy experiments [88]. The cross-linker molecules establish interconnections of various
biological molecules for fabrication of bioactive scaffolds.

3.5. Application of Biomimetic Scaffolds in Reconstion of BM and HCs Niches

In the BM environment, various cells interact and function to maintain BM homeostasis. BM niches
can be created in vitro mimicking in vivo niches. Second, HCs interact with BM to create a specific BM
pathophysiological environment.

3.5.1. Co-Cultured Hematopoietic Stem Cells with Other BM Component Systems Modeling the BM
Niche Compartments In Vitro with In Vivo Conditions

The co-culture system facilitates our understanding of the natural interaction between the cell
types and its mechanisms. The knowledge of interactions helps in regulating growth and survival in
the event of damages caused by irradiation and chemotherapy. HSCs in the BM interact with MSCs,
macrophages, endothelial cells, and myeloma cells in cancer disease modeling of niche components
in vitro. Co-cultures of HSCs and MSCs have been extensively studied [14,89,90]. Theresa Vasco’s
group observed that iPSC-derived MSCs are less supportive to HSC than are primary MSCs in terms
of lower long-term culture-initiating cell (LTC-IC) frequency with iPSC-MSCs as compared to primary
MSCs [91]. Activated BM monocytes and macrophages preserve primitive hematopoietic cells in the
bone marrow [92]. Jana Travnickova’s group demonstrated the control of HSPC mobilization and
definitive hematopoiesis by macrophages [93]. The transfer of MSC-secreted ECM to MSC cultures
promoted osteogenesis and bone formation in an ectopic rat model [35–37,94–96]. For in vitro 3-D
model of BM tissue engineering, we used cKit enriched BM derived HSCs and demonstrated the
formation of spheroids. As shown in Figure 5A,B, BM-HSC grew on PLGA and hydroxyapatite (HA)
composite 3-D scaffold, forming stem cell spheroids. We co-cultured MSC and HUVEC on PLGA-HA
and Matrigel composite scaffolds as a BM niche and demonstrated the formation of microvessels (MVs),
as shown in Figure 5C–E.
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3.5.2. Biomimetic Scaffold Implantation, Not as a Prosthesis, for Desired BM Tissue Repair and Development

In tissue engineering, culture-expanded cells and scaffolds are used to produce a tissue construct
for implantation. They support tissue regeneration and growth, but not as a prosthesis. In bone
disorders, because of disease, irradiation, and chemotherapy, the bone environment is damaged. As a
repairing strategy, scaffolds were seeded with MSCs, embryonic stem cells (ESCs), adult stem cells,
induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP) for recovering and repairing the
damaged bone tissue [97]. Similarly, damaged central marrow and perivascular regions can be repaired
using soft hydrogel-based scaffolds. MSCs grown on polycaprolactone (PCL) fibrous scaffolds produced
paracrine products involved in tissue repair/regeneration [73]. An advanced method of biomimetic
engineered bone marrow (eBM) is a “bone marrow-on-a-chip” microfluidic system. It involves
culturing the cells on a scaffold in vitro, implantation in vivo, removal, and perfusion with media in
microfluidic devices. It was demonstrated to have HSC and progenitor cell characteristics [40,98].
The MSC and cord blood derived HSPC cultured on hydroxyapatite coated zirconium oxide scaffold
showed that HSPC remained in their primitive state (CD34+ CD38−) and were capable of forming all
major colonies [53].

3.5.3. Scaffold for Studying Hematological Cancers

With the advent of 3-D culture systems, malignancies, predominantly cancer cells from solid
tumors such as breast cancer were utilized to understand the role of the cancer environment and cancer
progression. Breast cancer cells grown in the cancer environment mimicking 3-D cultures using PLGA
and PCL scaffolds showed comparative biomarker expression as observed in vivo [99]. It indicates the
usefulness of scaffolds in cancer research in understanding cancer biology, anti-cancer drug screening,
and control of cancer progression. Mouse CT26 colon cancer cells and BM-derived dendritic cells
(BM-DC) co-cultures on an electrospun fibrous scaffold increased expression of CD86 and major
histocompatibility complex Class II [100]. 3-D anisotropic collagen scaffolds were used for breast
cancer cell migration studies, and showed increased migration potentials in the cancer mimicking
3-D cultures [101]. These studies indicate the substantial potential for the design and fabrication of
composite scaffolds for mimicking the cancer tumor environment.

3.5.4. Interaction between Hematological Cancer and Bone Marrow Niche

The HSCs reside in BM microenvironment niches that can regulate their self-renewal and
differentiation. Similarly, hematological cancer stem cells (HCSCs) reside in the cancer niche,
and microenvironmental cues regulate their growth and proliferation during tumor progression and
development [102]. In the BM niche, MSCs interact with cancer cells, promote tumor progression and
modulate the extracellular matrix (ECM) environment such that it is favorable for the invading tumor
cells [103,104]. With the increasing rate of BM disorders and conditions, as well as the use of therapeutic
radiation on the BM, engineered BM is considered as a potential alternative source for BM restoration.
The disturbance in hematopoietic homeostasis leads to hematological cancers (HCs)/hematological
malignancies and leukemic stem cell (LSC) formation. LSC/leukemia pathophysiology depends
on biological cues from the BM niche for survival and proliferation. Upon administration of
chemotherapeutics, LSC/leukemia cells use the BM niche as a sanctuary for survival and to escape
from the therapeutic agents, acquiring chemoresistance [102,105–110]. A few recent publications are
available concerning the study of hematological malignancies and their physiopathology in an ex vivo
disease environment mimicking a 3-D scaffold system. The 3-D and microfluidic platform scaffolds
were used to mimic the AML niche and demonstrated retention of the cells’ phenotype and proliferation,
compared to the 2-D cultures [111]. Polyurethane (PU)-collagen scaffolds were used to study the biology
and treatment of primary AML in an ex vivo condition [112]. Different leukemia cell lines cultured on
a 3-D stromal-based model were shown to be more resistant to drug-induced apoptosis compared to
effects in 2-D cultures. Similarly, N-cadherin expression in treated 3-D cultures, as compared to 2-D
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cultures, is indicative of cell proliferation and chemotherapy resistance [56]. Leukemia cells flourish
in the BM microenvironment and may be resistant to cytotoxic drugs. Disrupting the interaction
of leukemia cells and stromal cells in biomimetic polystyrene 3-scaffolds impairs their ability to
gain resistance and enhances the killing effect of chemotherapy drugs [57]. Thus, BM mimetic 3-D
scaffolds help in understanding the drug efficacy and toxicity studies in vitro with in vivo conditions.
A poly (ethylene glycol) (starPEG)–heparin hydrogel scaffold was used to grow leukemia lines, KG1a,
MOLM13, MV4-11, and OCI-AML3, and primary cells from AMLs, HUVCEs, and MSC to mimic cell
interactions between AML and the vascular niche [58]. This approach is facilitating visualization of
AML-vascular interactions in chemotherapeutic responses. 3-D scaffolds were used for demonstrating
a mesenchymal stem cell model of the multiple myeloma (MM) bone marrow niche, indicating cytokine
secretion by MSC in 3-D cultures support MM cell growth [97]. Further, they have demonstrated
MSC with conserved phenotype (CD73 + CD90 + CD105+), activation of osteogenesis (MMP13, SPP1,
ADAMTS4, and MGP genes), and osteoblastogenic differentiation. MSCs were grown on silk fibrous
3-D scaffolds in dexamethasone-free osteogenic media and demonstrated osteogenesis in a multiple
myeloma-mimicking BM environment [59]. HSC niche mimetic 3-D scaffolds in combination with
perfusion in static and dynamic cultures demonstrated the role of cytokines dose and application in vitro
model for testing myeloid toxicity [55]. Further, they have demonstrated the effect of dimensionality
(2-D or 3-D) and mode (static or dynamic) of HSPC/MSC co-cultures to assess myelotoxicity to
5-fluorouracil. The advanced 3-D cultured organoids are self-organized tissue architecture. They are
grown from pluripotent ESCs, iPSCs, and adult stem cells [113]. They recapitulate the developmental
events of tissues and organs, including natural orientation and spatial organization of different tissue
specific cell types, cell–cell interactions, cell-matrix interactions, and response to biophysical cues,
and more representative of vivo physiology [114]. The organoids of cancer were developed from
primary colon, esophagus, pancreas, stomach, liver endometrium and emphasized the importance of
organoids in cancer research [115]. The organoids grown from adult stem cells are suitable for in vitro
and in vivo modeling, drug therapy, and regenerative therapy [113,116].

3.6. Choice of Materials and Advanced Fabrication Technologies for Scaffold Preparation

The fabrication of efficient and BM and HCs mimetic 3-D scaffolds needs to be improved with
more accurate representation of the components found in the natural BM and HCs as depicted in
Table 1. The basic requirements for the scaffold materials are biocompatibility, biodegradability, suitable
mechanical properties, scaffold architecture, and fabrication technologies. All of these characteristics
are assessed before fabricating a scaffold. Osteoconductive and time-frame biodegradability of
scaffolds are critical for osteoblastic differentiation, bone regeneration, and vascularization [117,118].
The mechanical properties (Mpa) and Young’s modulus of ECM-like polymer scaffolds fabricated for
various tissue engineering applications were studied [119–123]. The scaffold fabrication for mimicking
the endosteum region needs HA with PCL in preference over a PLGA polymer because of the long
degradation time for PCL, ranging from 1–2 years compared to PGA scaffolds [124].

Currently, the scaffold is prepared predominantly by manual methods. There are challenges to
prepare this scaffold readily without in-depth experience. Recently introduced scaffold printing and
bioprinting technologies are in the market for printing architectural and compositional elements of
desired 3-D scaffolds and target tissue formations. Efforts have been made to improve accuracy, quality
and reproducibility of design using computer-aided design (CAD) and fabrication of functionally
graded scaffolds. In 3-D tissue printing, the target tissue elements are mixed with ECM like polymer
scaffolds and printed in precise geometrical tissue or organ structures. The steps involve in selecting
the organ of interest to be printed; scanning (X-ray, MRI or CT scan); creating graphics (Bio-CAD or
Med-CAD); use of Rhinos software for modelling geometry and printing with cell types from the organ
of interest [125]. Bioreactors with controlled in vivo conditions help the tissue in proper circulation of
oxygen, nutrients, catabolic and anabolic waste material from the tissue. Thus, bioreactors mitigate the
drawbacks of 3-D scaffold-based cell culture systems, predominantly by manual methods.
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In magnetic levitation, the cells form a micro tissue rather than individual cells in the media and
air interface. The micro tissue of BM-MSC formed under the magnetic field prevent spontaneous
differentiation into other cell phenotypes, and retaining high expression of stem cell markers STRO-1 and
nestin up to 14 days, unlike in 2-D monolayer cultures where MSC stem cell markers were lost within
3 days [126]. Magnetic levitated breast cancer (BC) and colorectal cancer (CRC) cells expressed
high levels of N-cadherin and epidermal growth factor receptor molecules comparable to BC and
CRC xenografts grown in severe combined immunodeficient (SCID) mice [127]. Magnetic levitated
3-D cancer cells/micro tissue was used as in vitro model for in vitro tumor development and tumor
suppression therapeutics, instead of use of mice [127]. Although it is not truly representative of BM
and cancer environment niches, it facilitates cell–cell interactions and aggregate growth that leads to
the formation of BM and HC micro-tissue in vitro 3-D models with in vivo conditions for testing drug
efficacy and toxicity. Thermoreversible injectable hydrogel-based materials are widely used for in
neuro-engineering applications [74,128].

3.7. Future Perspectives and Conclusion

Most of the research on cancer was focused on solid cancer tumors, as such now there is a greater
opportunity to focus on HCs. The potential of MSC to increase proliferation and maintenance of
hematopoietic progenitor cells is harnessed in co-cultures with the HSC to enhanced engraftment of
HSC in transplantation [13], formation of micro blood vessels with endothelial cells [44], multi-lineage
hematopoiesis in co-cultures with differentiated osteoblasts [90] can be further exploited in 3-D
co-cultures modeling the niche components in vitro using advanced scaffold systems. The role of
macrophages in maintaining hematopoiesis [16,17] can be further assessed. HSC niche mimetic 3-D
scaffolds may be used to study the role of cytokines and application in an in vitro model for testing
myeloid toxicity. As HC cells flourish in the BM microenvironment and are resistant to cytotoxic
drugs, BM and HC mimetic 3-D scaffolds help in understanding the drug efficacy and toxicity studies
in vitro with in vivo conditions. The study of primary cells from AML, HUVCE and MSC to mimic cell
interactions between AML and the vascular niche assists in visualization of AML-vascular interactions
in chemotherapeutic responses. The MSC model of the multiple myeloma (MM) BM niche indicates
cytokine secretion by MSC in 3-D cultures supporting MM cell growth. The various scaffold types
used for different applications in BMTE and HCTE are summarized in Figure 6.
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In view of the clinical importance of therapeutic regeneration and restoration of BM tissue after
damage caused by chemo- and radiation therapy and understanding the pathophysiology of HC in
BM niches perspectives and development of novel therapeutics, attention has focused on improving
BM and HC mimetic 3-D scaffolds. The other technologies such as CFUs, PDMS based microfluidic
systems, organ-on-chip [129,130], bone marrow-on-a-chip [110], induced pluripotent stem cells (iPSC) [131]
long-term culture of human hematopoietic stem cells in a 3-D microfluidic environment [53,132] for
studying specific BM niche conditions and replicating BM physiology in vitro need to be improved. Further
advances in 3-D non-destructive, non-invasive tissue analysis methods help in adopting 3-D culture systems
widely [60,133–138]. As the BM environment is heterogeneous in nature, a composite cell culture system
with multiple cell types and advanced scaffold architecture materials are needed to replicate the various
microenvironment niches and large-scale ex vivo expansion of HSC and MSC for transplantation and therapy.

The combination therapy of chemo and radiation in BM and HCs mimetic 3-D scaffolds and
the scaffold-free magnetic levitation systems will open new frontiers of BM and HCs therapeutics
in vitro with in vivo conditions. Biomimetic BM phantoms are used in this study for the first time as an
in vitro model to study the radiation effects on hematological cancers. BM phantoms will revolutionize
not only in vitro studies of hematological cancers but also radiofrequency (RF) heating and thermal
monitoring studies.

Currently, such data are scanty or lacking and efforts are needed in this direction for BM phantoms
and printing 3-D scaffolds and 3-D tissue.
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Abbreviations

ALL Acute lymphoid leukemia HSPC Hematopoietic stem and progenitor cells
AML Acute myeloid leukemia HUVEC Human umbilical vein endothelial cell
BC Breast cancer LN Laminin
BLC Bone lining cells LTC-IC long-term culture-initiating cell
BM Bone marrow MSC Mesenchymal stem cell
BMTE Bone and marrow tissue engineering MVs Microvessels
CAR CXCL12-abundant reticular NP Nanoparticle
CFU Colony forming unit PCL Polycaprolactone
CLL Chronic lymphoid leukemia PDMS Polydimethylsiloxane
CML Chronic myeloid leukemia PEG Polyethylene glycol
COL Collagen PEGDA Polyethylene (glycol) Diacrylate
CRC Colorectal cancer PLA Poly-L-lactic acid
CS Chitosan PLAGA Poly (lactic acid -co-glycolic acid)
EBM Engineered bone marrow PLGA Poly(lactide-co-glycolide) copolymer
ECM Extracellular matrix PRP Platelet rich plasma
ESC Embryonic stem cell PVA Polyvinyl alcohol
FN Fibronectin ROS Reactive oxygen species
GAG Glycosaminoglycan SEM Scanning electron microscope
HA Hydroxyapatite SCF Stem cell factor
HCs Hematological cancers SDF1 Stromal derived factor 1
HCTE Hematological cancer tissue engineering TCPS Tissue culture polystyrene
hiPSC Human induced pluripotent stem cell TE Tissue engineering
HPC Hematopoietic progenitor cell TEB Tissue engineered bone
HSC Hematopoietic stem cell
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