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It is hard to forecasting oil future prices accurately, which is affected by some nonlinear, nonstationary, and other chaotic
characteristics. -en, a novel GA-SVR-GRNN hybrid deep learning algorithm is put forward for forecasting oil future price. First,
a genetic algorithm (GA) is employed for optimizing parameters regarding the support vector regression machine (SVR), and the
GA-SVRmodel is used to forecast oil future price. Further, a generalized regression neural network (GRNN)model is built for the
residual series for forecasting. Finally, we obtain the predicted values of the oil future price series forecasted by the GA-SVR-
GRNN hybrid deep learning algorithm. According to the simulation, the GA-SVR-GRNN hybrid deep learning algorithm
achieves lowerMSE, RMSE,MAE, andMAPE relative to the GRNN, GA-SVR, and PSO-SVRmodels, indicating that the proposed
GA-SVR-GRNN hybrid deep learning algorithm can fully reveal the prediction advantages of the GA-SVR and GRNNmodels in
the nonlinear space and is a more accurate and effective method for oil future price forecasting.

1. Introduction

Oil, as a strategic resource, is presently playing a critical role
in the economic and social operations of countries all over
the world. However, it is hard to forecasting oil future prices
accurately, which is affected by some nonlinear, nonsta-
tionary, and other chaotic characteristics [1]. Until now,
researchers have not reached a consensus on the technol-
ogies and models used for oil future price prediction, and
large number of researchers have done work to help solve
this problem [2–8]. -e oil future price forecasting has al-
ways been an important and challenging issue and widely
studied by scholars. Many researchers have found that oil
future price has chaotic features such as nonstationary and
nonlinear. -ese features usually bring thorny challenges to
researchers who aim to forecast oil future price [9].
-erefore, employing some related deep learning algorithms
or statistical models into oil future price prediction is still a
popular and interesting topic in growing literature [10–18].
Existing research proposes methods for predicting oil future
price from various angles, which can basically be

summarized as four aspects to enhance the accuracy of
prediction: (1) statistical model, (2) deep learning algorithm,
(3) hybrid methodology, and (4) parameter optimization.

On the one hand, many local and international aca-
demics have focused on the oil future price forecasting using
statistical models in the past, mostly using linear statistical
models for enhancing the forecasting accuracy of oil future
price. Autoregressive integrated moving average (ARIMA)
model for the forecasting of oil future price was adopted by
many literature [10–14]. Later, the hidden Markov model
(HMM), dynamic model averaging (DMA), and ARCH
approach were adopted by many researchers for forecasting
oil future price [15–17]. Previous scholars have made some
progress and breakthroughs in forecasting oil future prices
using the statistical method. However, considering the in-
herent nonlinear and chaotic characteristics existed in oil
future price, the statistical method is not powerful enough
for predicting the oil future price. On the other hand, as deep
learning technology develops, more and more literature
using deep learning algorithms to forecast oil future price in
current research. Benefiting from the in-depth development
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of deep learning, deep learning methods are more and more
widely used for predicting oil future price. -e support
vector regression machine (SVR) is a famous deep learning
algorithm for oil future price prediction, which widely
employed for forecasting the oil future price [17, 18]. Yu
et al., for example, build an LSSVR ensemble learning
paradigm for the oil future price forecasting by treating user-
defined parameters as uncertain (or random) components
[19]. In machine learning field, SVR presents the advantage
that it can effectively solve nonlinear problems, and over-
fitted problems, which is better than some other deep
learning algorithm such as artificial neural network (ANN)
[1, 20–23].

Simultaneously, due to the aim of increasing model
prediction accuracy and addressing the drawbacks of single
model, more and more hybrid models were employed for
forecasting oil future price [24–27]. On the one hand, SVR is
often adopted into hybrid model for enhancing the accuracy
of oil future price [27–31].On the other hand, GRNN model
was also frequently employed in hybrid model for effec-
tiveness of forecasting [32, 33]. Concerning the different
merits of SVR and GRNN, it is necessary to incorporate SVR
and GRNN for enhancing the prediction accuracy. Fur-
thermore, researchers refined the nonparametric prediction
model from the standpoint of parameter optimization and
mostly used genetic algorithm (GA) to optimize the results
[34–36]. GA method have proved that it is necessary to
optimize model’s parameter by it.

-e effectiveness of “deep learning algorithm,” “hybrid
model,” and “parameter optimization” has been proved by
previous literature. In view of the potential of SVR, GRNN,
and GA in the parameter optimization, respectively, we de-
veloped a GA-SVR-GRNN hybrid deep learning algorithm
for forecasting oil future price. First, a GA is used for opti-
mizing the parameters of SVR, and the GA-SVR model
employed to forecast oil future price. Further, a GRNNmodel
is constructed for forecasting residual series generated by GA-
SVR. At last, the predicted values of the GA-SVR-GRNN
hybrid model are obtained for the oil future price.

Our marginal contributions can be summed up as
follows:

First, a novel hybrid deep learning algorithm that cor-
rectly incorporated SVR, GRNN, and GA is suggested. To
our knowledge, this is the first time the GA-SVR-GRNN
hybrid model has been used for predicting oil future price,
and it fully utilizes the SVR and GRNN strengths of deep
learning algorithms. Second, GA is employed to optimize
parameters of SVR, which aim to improve predicting per-
formance even more. -ird, results of experiments reveal
that the GA-SVR-GRNN hybrid deep learning algorithm
achieves lower MSE, RMSE, MAE, and MAPE relative to the
GRNN, GA-SVR, and PSO-SVR models.

-e key novelty of the study also can be summed up as
follows:

First, a novel ensemble model incorporating the three
methods is developed for forecasting oil future price, in-
spired by the effective combination of SVR, the powerful
optimization ability of GA, and the potential prediction
performance of GRNN. Second, GA-SVR and GRNN are

first combined, and GA is applied to optimizing parameter
simultaneously. -ird, the proposed GA-SVR-GRNN hy-
brid deep learning algorithm is first developed to predict the
oil future price, and the experiment results verify the ef-
fectiveness of the model.

In the following sections, we propose the concept and
algorithm of the GA-SVR-GRNN hybrid deep learning al-
gorithm and provides a short introduction to GA, SVR, and
GRNN in Section 2. -e benchmark experimental results on
the forecasting of oil future price by the GA-SVR-GRNN
hybrid deep learning algorithm are presented in Section 3.
Section 4 reports and discusses the additional experimental
results on oil future price forecasting by comparative model,
including GRNN, GA-SVR, and PSO-SVR models. Finally,
Section 5 gives concluding remarks and policy implication.

2. Materials and Methods

2.1. GA-SVR-GRNN Process Description

(1) Obtain and input oil future price time series
(2) Utilize GA and useMSE as fitness function (objective

function) to perform five-fold interactive verification
on the sequences above, respectively, in order to find
the optimal penalty parameter C, the insensitive loss
function ε as well as the RBF kernel function pa-
rameters c of SVR corresponding to the weekly oil
future price time series

(3) Based on above indicators of C, ε, and c of three
fuzzy information granular sequences, further divide
it into the training set and the test set meanwhile
establishing GA-SVR model for the training and the
prediction

(4) Output the generated residual sequence corresponds
to the training of the GA-SVR model, followed by
using the GRNNmodel for correcting the prediction
result from GA-SVR training residual

(5) Establish GA-SVR-GRNN hybrid deep learning al-
gorithm and output the forecast results regarding oil
future price time series

All in all, SVR has excellent generalization ability; shows
distinguished advantage in solving small sample; nonlinear
as well as high-dimensional spaces; and can avoid dimen-
sional disasters, local extreme values, and other problems. As
show in Figure 1, the outstanding feature of GA is easy to
find the global optimal solution with high computational
efficiency and can use probabilistic search technology with
better self-organization, self-adaptation, and other charac-
teristics, thus genetic algorithm is a simple method with
strong versatility. Meanwhile, GRNN model has strong
predictive ability for nonlinear time series. Hence, the GA-
SVR-GRNN hybrid deep learning algorithm is constructed
combining the advantages of the forementioned model.

2.2. Genetic Algorithm (GA). GA, first put forward by
Goldberg and Holland, combines Darwin’s theory of evo-
lution [37] and then becomes an important optimized
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algorithm that was adopted by many researches [38–40]. In
this work, we use GA to find the optimal penalty parameter
C, the insensitive loss function ε, and the radial basis
function (RBF) kernel parameters c in the SVR model,
followed by establishing a GA-SVR model for predicting
time series of oil future prices. -e following are the specific
steps:

(1) Select an encoding strategy and specify the values of
genetic parameters such as population size, selection,
crossover, mutation method, crossover probability
Pc, and mutation probability Pm. As GA uses indi-
vidual fitness values to evaluate the pros and cons of
an individual and determine the size of their genetic
opportunities, the evolutionary algebra is set to 200
generations, the population size is set to 20, and the
fitness function to MSE (mean squared error). -is is
the MSE generated by the validation subset from the
cross-validation (CV) mechanism capable of effec-
tively measuring the pros and cons of chromosomes
in the regression prediction problems as well as
avoiding or reducing the phenomenon of overfitting
after CV. In this work, we adopted a five-fold CV
process with the following fitness function formula:

MSE �
1
n



n

i�1
yp − y

∗
p 

2
. (1)

Here, yp and y∗p denote the observed value and the
predicted value, respectively, and n is the training set
sample size for the fuzzy information particle.

Smaller fitness value means better individual effect
and greater probability of being selected.

(2) According to the feature subset encoding of each
chromosome, complete the encoding operation and
generate the initial population P randomly. Gener-
ally, the nature of the issue to be solved decides
which coding scheme shall be selected. Common
coding schemes include the binary coding and the
real number coding, with the former more com-
monly used.

(3) Take into account the fitness function for calculating
each individual’s fitness value. Perform genetic op-
erations using selection, crossover, and mutation
operators for the formation of the next generation of
populations.

(4) Estimate whether the fitness value satisfies the preset
standard; if not, then come back to the previous step
or the step 2 for continuing the optimization algo-
rithm until reaching the termination condition. -e
individual which has the smallest fitness during the
evolution is finally confirmed as the optimal
individual.

SVR models are good at classifying and regressing, but
their optimal generalization performance depends greatly on
the setting of parameters. For a given dataset, the most
important task is to find the optimal parameters. In practical
applications, there is still no proper approach to select
parameters during the practical application. At present,
parameters can be primarily selected through experiments
or a time-consuming CV grid search method.

As a search algorithm with strong robustness that can be
used for optimization of complex systems, GA has unique
advantages compared with other intelligent algorithms for
optimization. GA can easily find the global optimal solution.
For GA, the genetic operations are simple, and adopting
natural selection with survival of the fittest, t is not restricted
by conditions of the search space during calculation, and no
other auxiliary information is required.

2.3. Support Vector Regression (SVR) Machine. -e essence
of the SVR is the support vector machine that is a neural
network model put forward by Vapnik et al. in the 1990s for
the investigation of small samples as well as small-proba-
bility events [41]. -en, it was applied in the regression
prediction field and in many research fields [40]. SVR relies
on the structural risk minimization principle for regression
estimation, of which the estimation relies on the insensitive
loss function ε. In addition, SVR uses a risk function that is a
combination of penalty terms derived from the principle of
minimizing the empirical error and the structural risk. -e
proposed nonlinear ε-SVR is constructed as follows.

Consider a set of data G � (xi, yi) 
n

i , thereinto xi de-
notes the input feature vector, yi denotes the target value,
and n stands for the sample size regarding the time series
data. Nonlinear SVR holds a basic idea of mapping data x to
a high-dimensional feature space by using a nonlinear
mapping Φ where linear regression is conducted:

Input weekly crude oil price time series

Use genetic algorithm (GA) for parameter optimization

Based on the optimized parameters, establish the GA-SVR model to
predict the time series of crude oil prices

Obtain the prediction residuals of the GA-SVR model, further establish
the GRNN model to predict the residuals, and establish the GA-SVR-

GRNN combined prediction model

Sum up the crude oil price time series predicted by the GA-SVR model
and the residual error series predicted by the GRNN model, output the

predicted value of crude oil price

Figure 1: GA-SVR-GRNN hybrid deep learning algorithm flow
chart.
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f(x) � ωTΦ(x) + b, (2)

Φ: R
n⟶ F, ω ∈ F. (3)

In (2) and (3), b denotes the threshold value;Φ stands for
the high-dimensional feature space, the nonlinear image of
the input space x. We need to estimate ω and b to solve the
optimization problem; the result can be given by the fol-
lowing equation’s minimum value:

1
2
‖w‖

2
+ C 

i

i�1
ξi + ξ∗i( ,

s.t

yi − w · φ(x) − b≤ ε + ξi,

w · φ(x) + b − yi ≤ ε + ξ∗i ,

ξ, ξ∗i ≥ 0, i � 1, . . . , n.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

In formula (4), C represents the penalty parameter, ξ, ξ∗i
represents the slack variable, and ε represents the insensitive
loss function. -e introduction of ε improves the robustness
of the estimation. When conducting empirical research, we
need to select the parameters C and ε. Dual theory is
generally used to solve the problems above by transforming
them into a problem about convex quadratic programming.
-e Lagrange transformation of (4) can be obtained as
follows:

L �
1
2
‖ω‖

2
+ C 

i

i�1
ξi + ξ∗i(  − 

i

i�1
λi ε + ξi − yi + ω, xi(  + b(  − 

i

i�1
λ∗i ε + ξ∗i + yi − ω, xi(  − b(  − 

i

i�1
ηiξi + η∗i ξ

∗
i( . (5)

In formula (5), λi, λ
∗
i , ηi, η∗i ≥ 0, i � 1, . . . , n; the partial

derivative of the Lagrangian function regarding the variable
ω,b, ξi, ξ

∗
i is 0. Importing the Lagrangian operator and

optimization restriction formula, formula (5) has the de-
cision function of

f(x) � 
l

i�1
λi − λ∗i( k x, xi(  + b. (6)

In formula (6), k(x, xi) denotes the kernel function of
SVR. SVR can use the kernel function for mapping the low-
dimensional nonlinear raw data to high-dimensional feature
space when dealing with nonlinear problems, followed by
linear processing in high-dimensional space. Conventional
kernel functions are linear kernel functions, polynomial
kernel functions, and the Gaussian RBF kernel. Previous
research experience indicates that RBF has the best effect
when the sample data lack prior knowledge [39]. In this
paper, we use RBF as the kernel function in the following
form:

k x, xi(  � exp −c x − xi

����
����
2

 , c> 0. (7)

-e kernel parameter in formula (7) is c. -e selection of
the c value has an important influence on the kernel
function. If it is set too large, it will cause overfitting; if it is
set too small, it will weaken the generalization ability of the
model.

2.4. Generalized Regression Neural Network Model (GRNN).
GRNN was first put forward by Specht [42]. We conduct the
GRNN model based on the MATLAB toolbox.

distj �

�������������



R

i�1
xi − IWji 

2




, (j � 1, 2, . . . , M). (8)

-e product function of network, netprod, multiplies
the elements regarding the hidden layer threshold b1 and
the output elements regarding ‖dist‖ to form the net
input n1, which is passed to transfer function of radbas. X
and Y stand for the input and output of the network,
respectively, and M is the total training sample number.
-e first layer is a radial basis hidden layer, and the unit
number is the training sample numberM. dist represents
the weight function of modified layer, for determining
the distance of the network input from the first layer’s
weight IW11:

Generally, its transfer function is the Gaussian function,
which is given by

a
1
j � radbas netprod distjb1j  ,

� exp −
n
1
j 

2

2σ2j




,

� exp −
distjb1j 

2

2σ2j




(j � 1, 2, . . . , M).

(9)

In formula (9), σj is called the smoothing factor, de-
termining the basis function shape at the position of the jth
hidden layer. Larger σj value means smoother basis
function. -e linear output layer constitutes its second
layer and has a normalized point weight product function
nprod. -e dot product regarding previous layer output
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together with the weight IW21 of this layer constitutes the
weight input, which can be directly transformed to transfer
function of purlin; the following formula is the network
output:

yk �  IWkia
1
i (k � 1, 2, . . . , s). (10)

Notably, the smoothing factor σ remarkably affects the
prediction performance exhibited by the network, so
selecting a suitable smoothing factor can help to enhance the
prediction accuracy of the network. Here, we use the method
for determining the smoothing factor proposed and opti-
mized by Specht [20]. Finally, a one-dimensional optimi-
zation method is used for the optimization of the smoothing
factor σ by four steps:

(1) An initial smoothing factor σ is set.
(2) A sample is selected from the training sample for

testing and the network is built from the remaining
samples.

(3) -e constructed network model is adopted for the
calculation of the absolute value of the error of the
test sample, which is called the test error.

(4) Steps 1 and 3 will be repeated till all training samples
are used for testing once, followed by finding the
average square error between the predicted value of
all the points to be estimated and the sample’s
measured value in this process, that is,

MSE(σ) �
1
n



n

i�1
yt − yt 

2
. (11)

In formula (11), yt denotes the training sample value. yt

represents the predicted value of the network following
training. -e initial smoothing factor is set as 0.1. -e
smoothing factor sees the optimal value in the case that the
above mean square error is the smallest.

3. Results and Discussion

3.1. Experimental Dataset Source and Evaluation Criteria.
-e market share of Brent oil occupies over two-third of
the world’s oil futures trading volume, and it is imported
for international market [43]. -is paper selects weekly
data on North Sea Brent (Brent) oil future settlement
prices from June 2, 2017, to May 21, 2021. We followed the
above literature and obtained the related data from the
WIND database [43]. We selected the first 80% of the total
sample observations as a training dataset and choose the
remaining 20% of the total sample observations as the test
dataset.

Four indicators are employed in the paper for evaluating
the experimental results, including the mean square error
(MSE), the root mean square error (RMSE), the mean ab-
solute error (MAE), and the mean absolute percentage error
(MAPE) [30].

MSE �


N
i Pi − Oi( 

2

N
,

RMSE �

������������


N
i Pi − Oi( 

2

N
,



MAE �


N
i Pi − Oi




N
,

MAPE �


N
i Pi − Oi( /Oi( 




N
.

(12)

Here, N is the size of the sample, and Oi and Pi represent
the real and forecasted results at time i, separately. -e
experiment includes two parts, with the first part using the a
forementioned GA-SVR-GRNN hybrid deep learning al-
gorithm for oil future price time-series prediction, and the
second part comparing the proposed method with a variety
of other methods for verifying whether the GA-SVR-GRNN
prediction method exhibits better accuracy and adaptability.
-is experiment uses the LIBSVM toolkit to complete the
corresponding test in the Matlab R2018b environment.

3.2.GeneticAlgorithm (GA)OptimizationParameters. In the
environment of Matlab R2018a, this paper uses GA for
optimizing the penalty parameter C, the insensitive loss
function ε, and the RBF kernel function parameters c in the
SVR model. We set the evolutionary algebra set to 200
generations, and the population size to 20. -e fitness
function is selected as the MSE for five-fold cross-validation.
-e results of the GA process of optimizing parameters are
shown in Figure 2. Finally, based on the GA, the optimal
penalty parameter C determined is 32.6251, the parameter c

of the RBF kernel function is 2.7166, and the parameter ε of
the insensitive loss function is 0.0441.

From Figure 2, we found that the MSE value corre-
sponding to the final optimization result regarding the
penalty parameter C, the insensitive loss function parameter
ε, and the parameter c of the RBF kernel function are all less
than 0.005, indicating the optimization parameter result of
the genetic algorithm (GA) has strong adaptability.

3.3. GA-SVR Model Prediction. Combining the parameter
optimization results of GA, this paper uses the parameter
optimization results of the penalty parameter C, the in-
sensitive loss function ε, and the RBF kernel function pa-
rameters c for establishing an SVR model to predict the oil
future price time series. -e prediction results of training
dataset and test dataset are shown in Figures 3(a) and 3(b),
respectively.

Figures 3(a) and 3(b) indicate the ability of the GA-SVR
model to accurately predict the overall effect of oil future
price index and can accurately depict the relationship be-
tween nonlinear fluctuations and linear trends. For further
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judging the prediction effect of the GA-SVR model, this
paper further calculates the corresponding MSE, RMSE,
MAE, and MAPE.

In later, we compare prediction evaluation indexs of GA-
SVR model with prediction evaluation indexs of GA-SVR-
GRNN model based on prediction evaluation indexs in
Table 1.

3.4. Residual PredictionBased onGeneralizedNeuralNetwork
Model (GRNN). In the environment of Matlab R2018b, this
paper further establishes a GRNN model to predict the
prediction residuals of GA-SVR and then forms a GA-SVR-
GRNN hybrid deep learning algorithm.-e specific steps are
detailed in the following sections.

3.4.1. Visualization of Residuals. From Figure 4, we found
that the residual sequence of the GA-SVR model fluctuates
around the value of 0, which has strong volatility.

3.4.2. GRNN Optimal Smoothing Factor Selection. We fol-
low existing literature in the paper. -e initial smoothing
factor is set to 0.1, and one unit amount (0.1) is added each
time. -e spread factor is set as the optimal value in the case
that the above mean square error is the smallest [30]. Now
plot the MSE of the points to be estimated of different
smoothing factors between all the predicted values and the
measured values of the sample (Figure 5). According to
Figure 5, after checking the output results, we found that
when the smoothing factor is 0.1, the error is the smallest in
both the approximation performance and the prediction
performance. With the increase of the smoothing factor, the
error is also increasing. -erefore, this paper chooses the
smoothing factor as 0.1.

3.4.3. Residual Prediction of the GRNNModel. In this paper,
we select a GRNN network model of which the smoothing
factor is 0.1 to train the residuals and output the residual
prediction value of the GRNN model. On this basement, we
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Figure 3: (a) GA-SVR prediction results of training dataset. (b) GA-SVR prediction results of test dataset.
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Figure 2: GA optimization parameter fitness curve MSE change graph.
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compare the residual prediction value predicted by GRNN
with the actual value (Figure 6). Figures 6(a) and 6(b) display
the prediction results of the training dataset and the test
dataset, respectively.

From Figures 6(a) and 6(b), the GRNN model displays
an accurate prediction effect. It can capture the nonlinear
change characteristics of the GA-SVR residual sequence,
indicating that the GRNN model established in this paper
has strong robustness.

3.5. Forecast Based on the GA-SVR-GRNN Hybrid Model.
-is article sums up the oil future price time series predicted
by GA-SVR and the residual error series predicted by GRNN
to obtain the oil future price forecast value of the GA-SVR-
GRNN combined model, draws the relevant time series
diagram as Figures 7(a) and 7(b), and calculates the cor-
responding statistical evaluation index as summarized in
Table 1. -e prediction results of training set are shown in

Figure 7(a). -e prediction results of test set are shown in
Figure 7(b).

For more deeply evaluating the pros and cons of the GA-
SVR-GRNN hybrid deep learning algorithm for the oil future
price, the paper calculates the relevant prediction and eval-
uation indicators and summarizes them as shown in Table 2.

By comparing Tables 1 and 2, we discovered that the GA-
SVR-GRNN hybrid deep learning algorithm’s evaluation
indicators are substantially smaller than the GA-SVR single
model, indicating that the combination model presents a
remarkably stronger oil future price prediction accuracy
compared with the single model. -e model’s prediction
result is reliable, can be used to make informed decisions,
and is extremely practical.

4. Further Comparative Analysis of
Various Methods

4.1. PSO-SVR Single Model Comparison Test. -e PSO-SVR
model enjoys a wide application in energies forecasting field
[44]. -is paper uses the PSO algorithm for optimizing the
parameters of the SVR and establishing a PSO-SVR model
for the prediction of the oil future price.

4.1.1. Particle Swarm Optimization (PSO) Algorithm Opti-
mization Parameters. In the environment ofMatlab R2018a,
we use particle swarm optimization (PSO) for optimizing C,
ε, and c in the SVR model. -e evolutionary algebra is set to
200 generations, the population size is 20, and the fitness
function is selected asMSE for five-fold cross-validation.-e
results of the PSO optimization are shown in Figure 8.
Finally, based on the PSO, the optimal penalty parameter C
determined is 14.6549, the parameter c of the RBF kernel
function is 100, and the parameter ε of the insensitive loss
function is 0.01.

FromFigure 8, we found that theMSE value corresponding
to the final optimization result of C, ε, and c of the RBF kernel
function are all less than 0.005, indicating the optimization
parameter result of the PSO has strong adaptability.

4.1.2. PSO-SVR Model Prediction. According to the pa-
rameter optimization results of the PSO, this paper uses the
parameter optimization results of the penalty parameter C,
the insensitive loss function ε, and the RBF kernel function
parameters c for establishing an SVRmodel to predict the oil
future price time series. Figures 9(a) and 9(b) display the
prediction results, with the former showing the results of
training dataset and the latter showing those of the test
dataset.

Table 1: GA-SVR model prediction evaluation index.

Training dataset
Model MSE RMSE MAE MAPE
GA-SVR 2.5227 1.5883 1.1632 2.0392
Test dataset
Model MSE RMSE MAE MAPE
GA-SVR 4.3779 2.0924 1.6994 3.4915
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Figure 4: GA-SVR model residual graph.
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For further judging the prediction effect of the PSO-SVR
model over oil future price time series, we further calculate
the MSE, RMSE, MAE, and MAPE.

Observing the PSO-SVR prediction effect evaluation
indicators in Table 3, we found that the MSE, RMSE, MAE,
and MAPE are all higher than those of GA-SVR, which is
also significantly higher than the corresponding indicators
of the GA-SVR-GRNN hybrid deep learning algorithm. It
shows that the GA-SVR-GRNN hybrid deep learning al-
gorithm exhibits an obviously better prediction effect rel-
ative to the GA-SVR model and the PSO-SVR model.

4.2. GRNN Single Model Comparison Experiment. In the
environment of MATLAB R2018a, GRNN is established
for the prediction over the time series of oil future prices.
First, we need to figure out the optimal smoothing factor of
the GRNN model. Based on the foregoing method, we
select the GRNN network model of which the smoothing
factor is 0.1 for the prediction over the time series of oil
future prices and compare it with the actual results
(Figures 10(a) and 10(b)). Figures 10(a) and 10(b) give the
prediction results of training dataset and the test dataset,
respectively.
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Figure 6: (a) GRNN model prediction results of training dataset. (b) GRNN model prediction results of test dataset.
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Figure 7: (a) GA-SVR-GRNN hybrid deep learning algorithm prediction results of the training dataset. (b) GA-SVR-GRNN hybrid deep
learning algorithm prediction results of the test dataset.
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Table 2: GA-SVR-GRNN model prediction evaluation index.

Training dataset
Model MSE RMSE MAE MAPE
GA-SVR-GRNN 0.0129 0.1136 0.0961 0.1643
Test dataset
Model MSE RMSE MAE MAPE
GA-SVR-GRNN 0.0185 0.1359 0.1221 0.2481
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Figure 8: PSO optimization parameter fitness curve.

20 40 60 80 100 120 1400
week

40

45

50

55

60

65

70

oi
l p

ric
e

observed value
predict value

(a)

10 20 30 40 50 60 70 80 900
week

40

45

50

55

60

65

oi
l p

ric
e

observed value
predict value

(b)

Figure 9: (a) PSO-SVR prediction results of the training dataset. (b) PSO-SVR prediction results of the test dataset.

Table 3: PSO-SVR model prediction evaluation index.

Training dataset
Model MSE RMSE MAE MAPE
PSO-SVR 3.7967 1.9485 1.5351 2.6009
Test dataset
Model MSE RMSE MAE MAPE
PSO-SVR 5.4907 2.3432 1.7428 3.5256
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For further judging the prediction effect of the GRNN
model over oil future price time series, we further calculate
the MSE, RMSE, MAE, and MAPE.

Observing the GRNN prediction effect evaluation in-
dicators in Table 4, we found that GRNN exhibits higher
MSE, RMSE, MAE, and MAPE relative to the GA-SVR-
GRNN hybrid deep learning algorithm. It shows that the
GA-SVR-GRNN hybrid deep learning algorithm in this
paper has an obviously better prediction effect relative to the
GRNN model.

5. Conclusions

-is article selects the North Sea Brent oil futures settlement
future price week from June 2, 2017, to May 21, 2021. Based
on the data, we established the GA-SVR-GRNN hybrid deep
learning algorithm for forecasting oil future price. -e main
research conclusions of this article are as follows:

First, through empirical research on the weekly data of
Brent oil futures settlement future price in the North Sea,
this article predicts the trend of oil future prices with relative
accuracy. According to the simulation, the GA-SVR-GRNN
hybrid deep learning algorithm achieves lower MSE, RMSE,
MAE, and MAPE relative to the GRNN, GA-SVR, and PSO-
SVR models, indicating that the proposed GA-SVR-GRNN
hybrid deep learning algorithm can fully reveal the pre-
diction advantages of the GA-SVR and GRNNmodels in the

nonlinear space and is a more accurate and effective method
for oil future price forecasting. -e research findings can
help some related organizations and experts to predict the oil
future prices reasonably, which can remarkably optimize the
production structure and decrease the risk caused by oil
future price fluctuations.

Second, this article found that the GA-SVR-GRNN
hybrid deep learning algorithm exhibits an obviously better
effect relative to the GA-SVR model, PSO-SVR model, and
GRNN model, which shows that reasonable hybrid pre-
diction is more accurate and effective than single model
prediction. -e oil future price time series actually present
complex nonlinear structural and chaotic characteristics,
and it is difficult to fully capture the complex information
behind the oil future price time series based on a single
model, which results in the forecasting effect of a single
model is not ideal sometimes. -erefore, this research took
advantages of GA-SVR and GRNN models in the nonlinear
forecasting space and realizes the prediction of oil future
price more accurately.

-ird, the hybrid model of this article has undergone
comparative experiments. It is found that the prediction
results of MSE, RMSE, MAPE, and MAE are significantly
smaller than those of other comparative experiments, and
the prediction results are more accurate. -e reason is that
the GA-SVR-GRNN hybrid deep learning algorithm is
capable of comprehensively combining the advantages
exhibited by GA-SVR and GRNN models. At the same
time, the actual prediction results are consistent with re-
ality, which also confirms that the model is effective and
practical.

Data Availability

All data that are generated or analyzed in the study are
included in this article.
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Figure 10: (a) PSO-SVR prediction results of the training dataset. (b) PSO-SVR prediction results of the test dataset.

Table 4: GRNN model prediction evaluation index.

Training dataset
Model MSE RMSE MAE MAPE
GRNN 2.5408 1.5940 1.1875 2.0653
Test dataset
Model MSE RMSE MAE MAPE
GRNN 3.9397 1.9849 1.6646 3.4035
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