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Vitiligo is an acquired multifactorial disease that affects melanocytes and results in skin

depigmentation. In this review, we examine the role of cells stress and self-reactive T

cells responses. Given the canonical and non-canonical functions of NKG2D, such as

authenticating stressed target and enhance TCR signaling, we examine how melanocyte

stress leads to the expression of ligands that are recognized by the activating receptor

NKG2D, and how its signaling results in the turning of T cells against self (melanocyte

suicide by proxy). We also discuss how this initiation phase is followed by T cell

perpetuation, as NKG2D signaling results in self-sustained long-lasting T cells, with

improved cytolytic properties.
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INTRODUCTION

At the end of the eighteenth century, Paul Ehrlich introduced the concept of horror autotoxicus,
which describes the body’s innate aversion to immunological self-destruction. This model remains
valid, as the immune system is entrusted with protecting the host against infections while avoiding
autoimmunity. It is well-accepted that the killing of target cells by T cells occurs through
recognition of the peptide-MHC Class I complex via the T cell receptor (TCR). In the thymus,
T cells undergo positive and negative selection based on the TCR signal strength (1). T cells
that recognize self-antigens with strong affinity undergo negative selection. In contrast, T cells
that weakly respond to self-antigens undergo positive selection and populate the periphery as
mature T cells. Thus, while self-reactive T cells are present in the periphery, their TCR interactions
with peptide-MHC Class I complex are insufficient to mediate activation. Moreover, additional
peripheral mechanisms are also in place to prevent their activation, namely regulatory T cells
(Tregs) (2, 3).

Under certain pathophysiological conditions, T cells are responsible for several autoimmune
disorders, including vitiligo. Vitiligo is an autoimmune disease characterized by the progressive
loss of skin pigmentation as a result of melanocyte destruction. In this context, T cells are known to
target and kill melanocytes, the pigment-producing cells in the skin. Vitiligo is the most common
skin pigmentation disorder, affecting 0.1–2% of the population worldwide (4, 5), with no sex bias
(6–9). While it can affect people at all ages, vitiligo appears more frequently before 20 years of age
and its early onset (during childhood) is associated with hereditary disease (5, 7, 9–11). Vitiligo is
characterized by white lesions on the skin, and the associated psychological and social effects make
patients more prone to depression and low self-esteem (12). Regrettably, there are currently no
FDA-approved treatments for vitiligo (13). Although great progress has been made throughout the
past decades in elucidating the mechanisms that cause this disease, it remains incurable.

While T cells turn against melanocytes for reasons that remain largely unknown, recent studies
suggest that CD8T cells kill melanocytes through the recognition of stressed/damaged cells via
Natural Killer Group 2D (NKG2D). NKG2D is a type II transmembrane receptor encoded by the
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killer cell lectin-like receptor subfamily K member 1 (Klrk1) gene
(14, 15) expressed by CD8T cells, NK cells, NKT cells, and a
subset of γδ T cells, and by CD4T cells in some pathologies (16,
17). Although NKG2D is expressed in both NK and CD8T cells,
the mechanisms of action differ. In NK cells, NKG2D signaling
is sufficient to mediate direct killing of target cells (18). However,
in CD8T cells, NKG2D requires the concurrent activation of the
TCR. In this case, NKG2D enhances TCR activation and thus, T
cell function (18–20).

A number of elements are thought to contribute to the
initiation of vitiligo, including genetic predisposition (21,
22), reduced proliferative capacity of melanocytes, increased
oxidative stress in melanocytes, the subsequent expression of
“danger” signals, reduced presence and function of Tregs, and
increased activation of a self-reactive T cell repertoire (7, 23, 24).
Moreover, there is evidence of an association between early
inflammatory events (e.g., exposure to UV light, a bleaching
agent, phenols, or trauma) and vitiligo (25, 26). We believe
this is of significance, as the expression of NKG2D ligands
(NKG2DL) is upregulated in response to cell stress (insult),
rendering these cells visible to NKG2D-expressing immune cells
(14, 18–20, 27). The ligands for NKG2D are composed of a variety
of stress molecules, including the major histocompatibility
complex (MHC) class-I-related chain (MIC) A/B and ULBP
binding proteins 1–6 in humans (16) and members of the Rae-
1 and H60a-c families in mice (28, 29). Importantly, NKG2DL
expression on the cell surface is rigidly controlled. In contrast
to physiological conditions in which few or no NKG2DL are
expressed, their expression is induced under stress conditions,
such as infection and transformation (28, 29). Of significance,
proinflammatory signals such as IFN-α (30) and TLR4 and
TLR7/8 signaling (28), as well as the ataxia telangiectasia
mutated and Rad3-related (ATM/ATR) DNA damage response
pathway also result in surface expression of these ligands (20,
27, 31, 32). Thus, the canonical function of NKG2D is to
authenticate the stressed/damaged feature of the target cells. This
cell authentication occurs in part by favoring the TCR signaling.

Notably, studies from our group have established in animal
models that NKG2D signaling also leads to the development of
long-lasting CD8T cells with enhanced cytolytic function (33–
35). NKG2DL upregulation and NKG2D signaling activation in
effector CD8T cells play a role in the onset or development
of some autoimmune diseases, including vitiligo, rheumatoid
arthritis, celiac disease, type 1 diabetes, alopecia areata, systemic
lupus erythematosus (SLE), among others (36–41). Moreover,
inhibiting NKG2D engagement can prevent inflammation and
disease development in some models of type 1 diabetes (42),
vitíligo (30), and other inflammatory diseases (16).

Here, we describe the relationship between multiple factors
that can lead to vitiligo development with a main focus on the
involvement of CD8T cells and NKG2D signaling.

MELANIN SYNTHESIS, UV EXPOSURE,
AND OXIDATIVE STRESS

While multiple factors may induce the development of vitiligo,
a dysfunction of the redox balance has been largely observed

both systemically and in active lesions of vitiligo patients, causing
an excessive accumulation of reactive oxygen species (ROS) and
inducing cellular stress (43–45). Oxidative stress can arise when
molecular oxygen (O2) is converted into oxygen radicals and the
production of these species surpasses the anti-oxidant capacity
of the cell, causing oxidation of cellular structures and DNA and
potentially leading to cell death (46–49). A number of pathologies
are associated with excessive ROS generation, which can also
lead to inflammation, particularly in autoimmune diseases (50).
Given the effects of ROS on inflammation as well as the active
role of immune cells in the development of vitiligo, a relationship
between oxidative stress and the immune system is apparent in
the onset of the disease.

Melanocytes are derived from the neural crest and their main
function is to produce the pigment melanin, which is responsible
for skin and eye color (51). Keratinocytes, the most abundant
cell type in the epidermis, regulate melanocytic functions,
including proliferation, melanogenesis, and differentiation (52).
Melanocytes and keratinocytes are arranged in epidermal
melanin units, in which 1 melanocyte is surrounded by 36
keratinocytes. While its synthesis occurs in melanocytes, melanin
is transported to the surrounding keratinocytes (53). This
pigment is generated from the oxidation of tyrosine in a
multistep reaction during which free radicals may arise (54).
These reactions are highly regulated and carried on by a
multienzyme complex unique to melanocytes, including the
enzymes tyrosinase, TYRP1 and TYRP2 (55).

Exposure toUV light and its absorption bymelanocytes causes
photo-oxidation of melanin, generating superoxide radicals (54),
which in turn induce melanin biosynthesis (56). Melanin creates
a supranuclear cap to protect DNA and prevent or reduce its
damage (57) and it has also been shown to act as an antioxidant
and a free radical scavenger (58–60). However, not only does
melanin biosynthesis consist of several oxidation reactions, it
also requires energy production via mitochondrial respiration
(61). Even though ROS generation has an important role in cell
signaling, increased or altered mitochondrial activity may lead
to excessive ROS production (62) that results in detrimental
effects and apoptosis, as is the case in vitiliginous melanocytes.
Although oxidative stress has been observed in both melanocytes
and keratinocytes, the latter are less likely to undergo apoptosis.
Instead, keratinocytes become senescent in response to UV
irradiation (63, 64), and exposure to ROS induces the production
of inflammatory cytokines by keratinocytes (65, 66).

Despite an increased O2 consumption rate, mitochondrial
respiration and energy production is impaired, while ROS
production is increased in vitiliginous melanocytes (67).
Higher levels of ROS peroxynitrite and H2O2 are found
in the skin of vitiligo patients, in concert with lower
concentration of antioxidants and reducing enzymes
(43, 68–70). High concentrations of H2O2 disrupt melanin
synthesis by inhibiting tyrosinase and dihydropteridine
reductase (71). Calreticulin, an endoplasmic reticulum (ER)
protein that regulates Ca2+ homeostasis and signaling,
is also modulated by H2O2, which increases calreticulin
expression and translocation to the cell surface of melanocytes.
This is associated with higher melanocyte apoptosis and
production of pro-inflammatory cytokines IL-6 and TNF-α in

Frontiers in Immunology | www.frontiersin.org 2 February 2021 | Volume 12 | Article 624131

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Plaza-Rojas and Guevara-Patiño Vitiligo, Insults, Stress, and NKG2D

vitiligo (72). As will be further discussed, pro-inflammatory
cytokines have an important role in the vitiligo-associated
immune response.

High ROS can also induce ER oxidation; in particular,
H2O2 can interfere with the ion channel TRPM2, resulting
in higher Ca2+ influx into the cell and the mitochondria
(73). Increased mitochondrial Ca2+ concentration ([Ca2+]), in
addition to augmented ROS production, induces a reduction of
the mitochondrial membrane potential (19m) in melanocytes
and the circulating mononuclear cells of vitiligo patients (44,
72). While melanin is known to chelate Ca2+ and control
intracellular [Ca2+], protecting the cell from DNA damage
caused by ROS or UV rays, eventually, these alterations may
lead to cytochrome c release and apoptosis (74, 75). In the
ER, ROS induces accumulation of dysfunctional and unfolded
proteins, triggering the unfolded protein response (UPR) within
vitiliginous melanocytes, potentially leading to cell death (76).
Moreover, aberrant self-proteins, perceived as foreign antigens,
can elicit immune responses (77). Therefore, oxidative stress
in vitiligo skin is likely to precede the autoimmune response.
In particular, NKG2DL expression can be triggered by ROS in
multiple cell types and in cancer (78–83). NKG2D-mediated
activation of CD8T cells may thus play a significant role in the
development of vitiligo, as discussed below.

NKG2D, STRESS SIGNALS, AND T CELLS

NKG2D is an activating receptor that is expressed by many
cytotoxic lymphocytes and binds to a variety of ligands (i.e.,
MICA and Rae-1 in human and mouse, respectively) expressed
on stressed cells. Studies including ours have shown that the
function of these ligands is to enable stressed cell recognition
and destruction in a suicide by proxy mechanism, facilitated
by immune cells expressing NKG2D (34, 84, 85). Interestingly,
increased expression of NKG2DL has been shown in response
to multiple insults, including oxidative cell stress (86, 87).
Moreover, studies have shown an association between CD8T
cells expressing NKG2D and various autoimmune diseases,
including skin conditions such as alopecia areata (88–90),
vitiligo, pancreatitis, diabetes (91), and celiac disease (39, 92). For
example, in type 1 diabetes, NKG2D engagement is necessary for
the development of the disease (42) and destruction of β-cells in
the pancreas by CD8T cells has been compared to melanocyte
death in skin patches of vitiligo patients (93, 94).

In a mouse model of vitiligo, we show that engagement
of NKG2D results in exacerbation of CD8T cell-mediated
vitiligo (34). Consistent with this, melanocyte-reactive T cells
are further activated and drawn to stressed melanocytes that
express NKG2DL (19). Moreover, NKG2D-expressing T cells
are enriched in vitiligo patients (30). Thus, understanding
the mechanisms that regulate NKG2DL expression on stressed
melanocytes can lead to development of therapeutic approaches
targeting the interactions of NKG2D+ self-reactive CD8T cells
with melanocytes in vitiligo.

The expression of NKG2DL is upregulated in response to
cell stress, rendering stressed or altered cells visible to NKG2D-
expressing CD8T cells. Studies have shown that stress signals
induce the expression of NKG2DL on most cell types, including

melanocytes (30). Increased expression of such signals in healthy
tissue may induce the destruction and inflammation associated
with autoimmune diseases (36, 37, 39, 41, 42, 88, 95–97). In
fact, melanocyte-reactive T cells, normally suppressed by Tregs,
have been found in circulating blood of individuals that do not
exhibit vitiligo (98). While such self-reactive cytolytic T cells can
be exploited for anti-tumor therapy, loss of functional Treg cells
can result in the onset of vitiligo (98, 99).

NKG2DL expression on melanocytes may also drive the onset
of the disease. This was demonstrated in a mouse model which
revealed that NKG2DL expression on target cells is sufficient to
induce vitiligo (34). Accordingly, melanocyte-reactive T cells also
have a higher NKG2D expression. In particular, a subset of tissue-
resident memory CD8T (TRM) cells populating lesion areas in
the skin of vitiligo patients was shown to have increased NKG2D
levels and to be responsible for the increased production of IFN-
γ and TNF-α (30). This TRM cell activation was mediated not
only by IL-15, a key cytokine in memory formation, but also by
skin dendritic cells (DCs) expressing human NKG2DL MICA/B
(30). Engagement of NKG2D on CD8T cells in combination
with IL-15 stimulation can trigger the killing of target cells, a
feature of autoimmune diseases (39, 84, 95, 100–102). While
NKG2D plays an important role in the effector phase of T cells,
we have shown that engagement of this receptor also has long-
term effects, including the promotion of memory formation
(35). In the mentioned study, we show that signaling through
NKG2Dmediates a process that we termedmemory certification.
We found that temporary blockade of NKG2D signaling during
the effector phase resulted in the formation of highly defective
memory CD8T cells characterized by altered expression of
the ribosomal protein S6 and epigenetic modifiers, suggesting
modifications in the T cell translational machinery and epigenetic
programming. Based on these data, we concluded that NKG2D
signaling during this initial effector phase, poises NKG2D
engaged cells with a certification or molecular accreditation that
results in their optimal development as memory T cells. This
process of certification guarantees that thememory compartment
is populated with CD8T cells that have demonstrated their ability
to kill the correct targets through a two-step process that utilizes
the TCR and NKG2D signaling. Interestingly, in this system,
NKG2D-certtified memory T cells will be able to kill melanocytes
independently of NKG2D, thus resulting in the destruction
of healthy melanocytes. We postulate that melanocyte-reactive
CD8T cells that receive NKG2D signaling during the killing
phase will also persist as memory cells and potentially enrich the
skin TRM population in vitiligo patients.

Heat shock protein are stress-inducible chaperones that
protect cells from undergoing apoptosis through several
mechanisms, including the binding and renaturing or
degradation of misfolded proteins during the stress response
(103). In particular, Hsp70 expression in tumor cells has been
shown to elicit both innate and adaptive immune responses (104–
108). In vitiligo, stressed melanocytes increase the expression
of Hsp70, which binds and transports potentially immunogenic
antigens to the MHC complex, allowing for their presentation on
the cell surface to cytotoxic T cells (109). Moreover, free Hsp70
also triggers an immune response by interacting with DC surface
receptors (107, 110, 111), inducing the expression of human
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NKG2DL MICA (107). This acts as a danger signal, rendering
stressed cells visible to both NK and CD8T cells expressing
NKG2D. Hsp70 expression can be induced not only by physical
and chemical stress, but also in physiological conditions, such
as under high ROS production, as seen in vitiligo and other
pathologies (110, 112, 113). Expression of both inducible HSP70
and NKG2DL is controlled by the transcriptional activator heath
shock factor 1 (HSF1) (83). In response to cell stress, HSF1 is
released in the cytoplasm. Following nuclear translocation, HSF1
binds to the promoter regions of both HSP70i and NKG2DL,
initiating their transcription. These observations raise a novel
paradox: while the canonical function of intracellular HSP70i is
cytoprotectant, expression of NKG2DL results in cell suicide by
proxy. While it is not known how melanocytes survive or render
themselves visible for killing after cell stress, we believe that
focusing on answering this question may in turn help identify
actionable therapies in vitiligo.

Environmental insults can trigger inflammation and result in
the onset of vitiligo, especially in adulthood (25, 26). For example,
monobenzone, a skin bleaching agent is used to complete
skin depigmentation in vitiligo patients. Monobenzone induces
ROS generation and oxidative stress in the skin (114), further
contributing to the autoimmune response in vitiligo. In addition,
monobenzone is converted into a reactive quinone by tyrosinase
(114); these quinone products bind covalently to proteins in
melanocytes, forming aberrant antigens targeted by T cells (115).
Therefore, monobenzone induces a systemic T cell response,
effectively targeting all melanocytes in the skin.

THE INFLAMMATORY
MICROENVIRONMENT IN VITILIGO

Cytokines have a crucial role in regulating immune responses.
High levels of cytokines are often found in vitiligo patients,
including cytokines corresponding to Th1, Th17, and
innate cell responses (116). Interestingly, keratinocytes in
vitiligo lesions aberrantly produce IL-1, IL-6, and TNF-α,
which inhibit melanocyte function (65, 66) and elicit an
inflammatory response.

The production of pro-inflammatory cytokines allows for
enhanced T cell recruitment and activation, resulting in increased
presence of activated CD8T cells in vitiligo lesions (13, 117–122).
Produced bymultiple immune cell types, IFN-γ is associated with
vitiligo. IFN-γ promotes the production of other cytokines and
chemokines, and the recruitment of T cells as well as other types
of immune cells (123). Studies show that IFN-γ directly induces
melanocyte apoptosis (124, 125) and its signaling enhances
CD8T cell function and expansion (126). Notably, we and others
have demonstrated that NKG2D signaling upregulates IFN-γ
production (18, 33). IFN-γ also promotes the expression of MHC
Class I and therefore antigen presentation for CD8T cells. IFN-
γ is also responsible for stimulating the production of CXCL9
and CXCL10 in keratinocytes, which engages the chemokine
receptor CXCR3 on melanocytes and triggers apoptosis, further
contributing to the disease (127).

TNF-α is also produced at high levels in vitiligo (128). While
its role as an apoptotic mediator has been shown in multiple
cell types (129), in vitiligo, TNF-α inhibits melanogenesis by
activating the transcription factor NF-κB (130). In addition,
it induces the expression of ICAM-1 on melanocytes (131),
allowing for the attachment of T cells and triggering cytotoxicity
(132). Moreover, TNF-α inhibits tyrosinase and Trp1 activity,
both essential for melanin synthesis (61). ROS production is
also increased by TNF-α, further promoting stress signals in
vitiligo melanocytes.

While keratinocytes can contribute to the production of
inflammatory factors, melanocyte-reactive CD8T cells are
sufficient to initiate the development of vitiligo, as it has
been shown that perilesional T cells from vitiligo patients can
recognize and kill melanocytes in healthy skin (122). Activated
self-reactive T cells remain in the skin and differentiate into
TRM cells. This differentiation is mediated by IL-15 derived from
keratinocytes (133). Blockade of IL-15Rβ (CD122) reduces IFN-γ
production and can eliminate skin TRM and reverse vitiligo (133).

Another indicator of an existing melanocyte-reactive T cell
population is the development of vitiligo in melanoma patients
who receive immunotherapy (134–140). In patients without
the right stimuli, these T cells do not mount a response, but
can potentially be activated for the treatment of cancer. This
observation also indicates the possibility to treat melanoma with
agents known to trigger vitiligo, such as skin bleaching agents
(114, 115).

In addition to a high production of pro-inflammatory
cytokines, there is a corresponding reduction in suppressive
cytokines in the skin of vitiligo patients. Tregs maintain immune
tolerance by controlling self-reactive cytotoxic T cells. In healthy
adults, Tregs constitute about half of the CD4T cell population
in the skin (141). In vitiligo, however, a much lower percentage
of Tregs is often found surrounding lesions (23), which has been
associated with reduced levels of Treg growth and differentiation
factors TGF-β and IL-10 (142, 143). In particular, low TGF-
β concentrations in both serum and skin have been found to
correlate with skin depigmentation in vitiligo (142, 144). In
addition, there is an association between reduced expression
of CCL22, a skin-homing chemokine, and Treg infiltration in
vitiligo skin, suggesting impaired migration of Tregs to the
skin in vitiligo patients (24). These events can thus result in
the alteration of the Treg/cytotoxic T cell ratio, impaired Treg
differentiation, and increased inflammation in vitiligo.

In summation, the imbalance of pro-inflammatory and
suppressive cytokines further contributes to disease progression.
The interplay of these messengers, the immune system, and the
affected skin cells is being actively investigated to identify novel
therapeutic avenues.

GENETIC AND TRANSCRIPTIONAL
ALTERATIONS IN VITILIGO

Genetic predisposition is heavily linked to an overreactive
immune system and patients often exhibit more than one
autoimmune disease. While the inflammation and stress
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observed in vitiligo patients can have a variety of causes,
including environmental, there is also a high risk of vitiligo
heritability, with about 8% of patients having at least one
affected relative (7). Gene analysis studies have revealed a higher
expression of Class II MHC haplotypes HLA-DR and HLA-DQ
in Caucasian patients resulting from a polymorphism in a super-
enhancer within the Class II region (6, 145). Moreover, there
is a correlation in the expression of such MHC haplotypes and
a higher production of pro-inflammatory cytokines IFN-γ and
IL-1β (6). In addition, mutations affecting other loci implicated
in immune regulation have been associated with vitiligo and
other autoimmune diseases. These genes include those encoding
IL-2Rα (146), the TCR signaling regulator UBASH3A (146),
and CCL20 receptor CCR6 (147), among others (21). While
these reports indicate that there is an association between
immune regulation and the onset of autoimmunity and vitiligo,
there is also evidence that some polymorphisms lead to
reactivity specifically against melanocytes. These include peptides
derived from tyrosinase, the transmembrane protein OCA2, and
melanocortin 1 receptor (MC1R), all of which are naturally
processed and presented as antigens by Class I MHC molecules
(5, 148, 149). This, in combination with higher MHC expression,
increases the potential for the presentation ofmelanocyte-specific
antigens and for self-reactive T cells targeting these cells.

Reduced function and number of the tolerogenic Tregs has
also been associated with the development of vitiligo. Genetic
polymorphisms in Foxp3, a transcription factor critical for Treg
differentiation, and transcription factor FoxP1 (147), also critical
for Treg homeostasis (150, 151), have been associated with
Treg dysfunction in vitiligo (23, 152–154). Similarly, variants
in the genes encoding TGF-β receptor II (155) and IL-10 (156)
may affect Treg-mediated immune suppression in vitiligo. As
mentioned, both TGF-β and IL-10 are cytokines essential for Treg
differentiation and development (157–159).

Additionally, transcriptional analyses have demonstrated
altered expression of factors involved in proliferation, apoptosis
and regeneration of melanocytes (160). This is supported
by the observation that vitiliginous melanocytes display poor
proliferative capacity and cannot be sub-cultured in vitro (161,
162).

Aberrant expression of miRNAs has also been observed in
vitiligo (163–165). In particular, miRNA-211 is highly expressed
in healthy melanocytes, but its expression is severely reduced in
non-pigmented melanoma and in the vitiligo cell line PIG3V
(22). miRNA-211 target genes have functions involved in cell
respiration and metabolism, including mitochondrial complexes
I, II, and IV. In consequence, reduced miRNA-211 expression
in vitiligo is associated with increased O2 consumption and

FIGURE 1 | NKG2D-expressing T cells initiate and perpetuate vitiligo. The occurrence of vitiligo can be associated with genetic predisposition and hereditary disease,

which in turned is linked to an overreactive immune system. Expression of certain MHC variants, for example, can lead to increased self-antigen presentation.

However, other contributing factors can trigger the onset of the disease. An inflammatory event, or insult, may lead to increased ROS production and oxidative stress

in melanocytes and their surroundings. In response to this, the production of cytokines by immune cells and keratinocytes can further induce inflammation and an

immune response. Melanocytes in turn express “danger” signals, including NKG2D ligands (e.g., MICA/B in humans) and chaperone proteins, such as hsp70.

Self-reactive cytolytic T cells are thus able to recognize melanocytes through the TCR and become activated via the engagement of NKG2D, whose signaling further

enhances the downstream effects of TCR signaling, including cytotoxicity. Moreover, NKG2D activation certifies these self-reactive T cells to become memory cells

and renders them more resistant to immune suppression. These certified T cells have enhanced local trafficking and are able to continue killing melanocytes. These

events, in combination with reduced suppression by dysfunctional Treg cells, result in the onset, perpetuation, and spreading of vitiligo. Created with BioRender.com.
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may partially explain the oxidative stress observed in patients
(22, 166).

CONCLUSIONS

Vitiligo is a complex disease with multiple causal factors,
including genetic predisposition, enhanced self-antigen
presentation, and increased pro-inflammatory signals.
Inflammation is known to induce DNA and cell damage
and increased ROS production, triggering the expression
of NKG2DL on melanocytes. It is well-accepted that the
interaction between the autoantigen:MHC-I complex and the
self-reactive TCR on CD8T cells is weak. However, under stress
and inflammation, the recognition of both autoantigen and
NKG2DL by NKG2D-expressing T cells causes the reduction
of the T cell activating threshold (Figure 1). In this scenario,
the expression of NKG2D ligands on stressed melanocytes is
sensed by the immune system as an instruction for destruction
(suicide by proxy). This initiation phase is followed by the

perpetuation phase: once T cells have killed stressed melanocytes
via engagement of both the TCR and NKG2D, these T cells are
endowed with a transcriptional program that enables them to
become long-lasting, with enhanced cytolytic properties as well
as independence from immunological help. Evidence suggests
that these NKG2D-engaged T cells are then responsible for
the killing of healthy melanocytes in an NKG2D-independent
mechanism, thus perpetuating the disease.
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