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n-induced nephrotoxicity
in Wistar rats by aqueous leaf-extracts of
Chromolaena odorata and Tridax procumbens
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Abstract
Background: The major draw-back of doxorubicin’s use in chemotherapy is its toxicity on various organs including the kidneys.
This study investigated the potential protective role of aqueous leaf-extracts ofChromolaena odorata and Tridax procumbens against
nephrotoxicity induced by doxorubicin.

Methods: To this end, their impact on plasma biomarkers of kidney function, as well as renal lipid profile, biomarkers of oxidative
stress, electrolyte profile and activities of renal ATPases was monitored in doxorubicin treated rats. Metformin (250mg/kg body
weight, orally) and the extracts (50, 75 and 100mg/kg, orally) were daily administered for 14days; while nephrotoxicity was induced
with doxorubicin (15mg/kg, intra-peritioneally), once on the 12th day of study.

Results:The plasma concentrations of creatinine, and urea; as well as the renal malondialdehyde, cholesterol, calcium and sodium
concentrations in the Test control, were significantly (P< .05) higher than those of all the other groups. However, the renal
concentrations of ascorbic acid, chloride, magnesium and potassium, and the renal activities of catalase, glutathione peroxidase
superoxide dismutase, Ca2+-ATPase, Mg2+-ATPase and Na+,K+-ATPase in the Test control were significantly (P< .05) lower than
those of all the other groups.

Conclusions: Pre-treatment with the extracts and metformin boosted endogenous antioxidants, and prevented doxorubicin-
induced renal damage, as indicated by the attenuation of doxorubicin-induced renal oxidative stress, as well as the attenuation of
doxorubicin-induced adverse alterations in renal cholesterol, ATPases and electrolyte balance, and plasma biomarkers of kidney
function, and keeping them at near-normal values.

Keywords: ATPases, cholesterol, Chromolaena odorata, doxorubicin, electrolytes, kidney function markers, oxidative stress,
Tridax procumbens
Introduction

Doxorubicin’s toxicity affects various organs including the
kidneys.1–6 Numerous studies suggests that doxorubicin-induced
toxicity may be a consequence of oxidative stress, which results in
oxidation and cross-linking of cellular thiols and membrane lipid
peroxidation.1 Doxorubicin-induced oxidative stress in renal
tissues is characterized by elevated malondialdehyde (a marker of
lipid peroxidation) and lowered reduced glutathione levels4,7,8; as
well as lowered activities of catalase,2 glutathione peroxidase and
superoxide dismutase.3,8,9 In addition to oxidative damage,
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doxorubicin toxicity also induces inflammatory changes in
kidney tissues.8,10 Doxorubicin-induced nephrotoxicity causes
increased capillary porousness and glomerular shrinking.8 It is
characterized by increased plasma levels of creatinine, urea2,7 and
uric acid,7 and increased plasma lactate dehydrogenase activity7;
as well as reduced renal Ca2+-ATPase, Mg2+-ATPase and Na+,
K+-ATPase activities.1,11

Studies suggest that the healing effect of metformin (a widely
used anti-hyperglycaemic drug for type 2 diabetes mellitus) is
facilitated by its effect on adenosine monophosphate-activated
protein kinase in tissues.12,13 Numerous studies show that
metformin lowers intracellular reactive oxygen species and
regulates mitochondrial function.12,14,15 The beneficial effects of
metformin on renal injury with different aetiologies have been
reported,16 including the alleviation of diabetes-associated renal
injury.12,17 Metformin ameliorates tubular injury by regulating
oxidative stress and restoring biochemical alterations in renal
tubules,12 as well as by anti-inflammatory and anti-apoptotic
activities.14,18

Studies have shown that doxorubicin-induced oxidative
damage to the kidney can be mitigated or prevented by treatment
with natural antioxidants;9,10,19 hence necessitating the investi-
gation of various natural sources of antioxidants. The leaves of
Chromolaena odorata and T procumbens are rich in potent
antioxidants such as allicin, caffeic acid, ellagic acid, epicatechin,
lycopene, naringenin, quercetin and silymarin.20–26 These
antioxidants have been variously reported to exert nephro-
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protective effects via attenuation of oxidative stress in the kidney,
induced by doxorubicin, oxytetracycline, cadmium or gentami-
cin.2,5,8,9,10,19,27–32

Various studies have reported the anti-hypertensive, anti-
dyslipidaemic, weight reducing,22,24,25,33–39 hepato-protective
and anti-diabetic activities of leaf-extracts of C odorata and T
procumbens.21,40–44 Their anticancer45-47 and antioxidant48–52

activities have also been reported. In this study the impact of
aqueous leaf-extracts of C odorata and T procumbens on
doxorubicin-induced renal damage was investigated in Wistar
rats.
Materials and methods

Procurement of materials

Fresh samples of C odorata and T procumbens were collected
from within the University of Port Harcourt, and were duly
identified as earlier reported.20–26,34–39,41,53 Forty-five Wistar
rats (weight 120–190g) were obtained from the Animal House of
Department of Pharmacology, University of Port Harcourt,
Nigeria. All chemicals used were of analytical grade and products
of Sigma-Aldrich, St Louis, MO, USA. The cholesterol,
triglyceride and calcium kits were products of Randox
Laboratories Ltd, County Antrim, UK; the sodium and potassium
kits were products of AtlasMedical, Cowley Rd, Cambridge, UK;
while the chloride, magnesium, creatinine and urea kits were
products of Agappe Diagnostics Switzerland, GmbH.
Preparation of extracts

The leaves were rid of dirt. Then 6kg ofC odorata and 5.5kg ofT
procumbenswere macerated. The resultant extracts were dried in
a water bath, and their residues (127 and 116g, respectively)
were stored for use in the assay. The resultant leaf-extracts of C
odorata and T procumbens (hereinafter referred to as COLE and
TPLE, respectively), were weighed, reconstituted in distilled
water and administered to the experimental animals, according
to their groups’ dosages and their individual weights.

Experimental design and sample collection

All experimental procedures in this study were performed in
accordance with the ethical guidelines for investigations using
laboratory animals, and complied with the guide for the care and
use of laboratory animals.54 The animals were weighed and
sorted into 9 groups of five animals each, so that their average
differences in weights were <3g.55 They were housed in cages at
the Department of Pharmacology, and allowed water and feed ad
libitum. After 1week acclimatization, the treatment commenced
and lasted for 14days. DiabetminTM (metformin HCl) (dissolved
in distilled water) was orally administered daily at 250mg/kg
body weight to the Metformin group. The extracts were
administered via the same route at 50mg/kg to COLE-50mg
(COLE) and TPLE-50mg (TPLE); 75mg/kg to COLE-75mg
(COLE) and TPLE-75mg (TPLE); and 100mg/kg to COLE-
100mg (COLE) and TPLE-100mg (TPLE). The Normal and Test
control groups received distilled water in place of the extract.
On day 12, doxorubicin was dissolved in normal saline and

intra-peritioneally injected (15mg/kg), into all the groups, except
the Normal control which was given normal saline instead. The
doxorubicin dosage was adopted from Song et al.56 The dosages
of administration ofC odorata extract was adopted and modified
from Ikewuchi et al22,24,25; that of T procumbens extract was
2

from Ikewuchi et al36,37; while that of metformin was from
Zilinyi et al.57

The animals were sacrificed on day 14, under chloroform
anaesthesia and blood samples were collected into heparin
bottles; their kidneys were harvested, and their weights and sizes
were documented.24 The blood samples were centrifuged at 1000
rpm for 10min, and their plasma were removed and stored. The
harvested organs were homogenized in distilled water (at 0.4g
per 5mL), and the ensuing homogenates were stored for use in the
assay. The kidney weights/sizes indices were determined using the
formula below.58

Kidney weight or size index ð%Þ ¼ Kidneyweight ðgÞ or kidney size ðcm3Þ
Bodyweight ðgÞ � 100

Assay of biochemical parameters

The homogenates’ malondialdehyde concentrations were ana-
lysed according to the method of Gutteridge and Wilkins.59 The
“sample tubes” contained 1mL of glacial acetic acid, 1mL of 1%
thiobarbituric acid solution and 0.2mL of sample. They were
read at 532nm, after zeroing the spectrophotometer with a blank
containing 0.2mL of distilled water instead. The ascorbic acid
contents were estimated by iodine titration.60 Aliquot (1.0mL) of
the sample was added to 5mL of reaction mix (31.746 mg%
starch in 1.243% (v/v) HCl); and titrated with iodine solution,
until the appearance of a permanent blue colour. Catalase
activities were according to Beers and Sizer.61 The “sample
tubes” contained 2.50mL of hydrogen peroxide, and 2.70mL of
distilled water was used to zero the spectrophotometer and
absorbance read at 420nm, exactly 1 minute after adding
0.20mL of the sample. The “reference” contained 0.20mL of
distilled water in place of the sample. Superoxide dismutase
activities were according to Misra and Fridovich.62 The “sample
tubes” contained 0.1mL of sample, 1.25mL of 0.05M carbonate
buffer. They were equilibrated at room temperature, and 1.5mL
of distilled water was used to zero the spectrophotometer
and absorbance read at 520nm, exactly 1 minute after adding
0.15mL of 0.3mM adrenaline. The “reference” contained
0.1mL of distilled water in place of the sample. Glutathione
peroxidase activities were according to Rotruck et al.63 The assay
mixture containing 0.5mL of sodium phosphate buffer (0.1M,
pH7.4), 0.1mL of 10mM sodium azide, 0.2mL of 4mM reduced
glutathione, 0.1mL of 25mM hydrogen peroxide, 0.5mL
sample, and 0.6mL distilled water was incubated at 37°C for
3min, before adding 0.5mL 10% TCA. After centrifugation, the
residual glutathione contents of the supernatants, was deter-
mined by adding 0.5mL of the supernatants, 4.0mL of 0.3M
disodium hydrogen phosphate solution and 1mL of 0.01M
DTNB reagent, and reading at 412nm, against a reagent blank
containing only 4.5mL phosphate solution and 1mL DTNB
reagent. Half millilitre of the standard (4mM glutathione
solution) was treated in a similar way. The activities of the
ATPases were determined by the method of Hesketh et al.64 The
quantity of inorganic phosphate was determined by the method
of Fiske and Subbarow.65 The homogenates’ protein contents
were determined by Lowry method.66

The calcium, chloride, cholesterol, magnesium, potassium,
sodium and triglyceride contents of the homogenates were
assayed according to the kits manufacturers’ instructions; except
that homogenates were used instead of plasma. The assay
procedures for the plasma creatinine and urea concentrations



Figure 1. Effects of aqueous leaf-extracts of C odorata and T procumbens on the kidney weight and size indices of doxorubicin treated rats. Values are mean±
SEM, n=5 animals, per group. Bars in the same block with different superscript letters differ significantly at P< .05.
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were according to the kits manufacturers’ instructions. The urea
to creatinine ratio was calculated with the formula below.67

Urea=creatinine ratio ¼ Plasma urea concentration ðmmol=LÞ
Plasma creatinine concentration ðmmol=LÞ
Determination of per cent protection

The per cent protection of the kidneys were calculated with the
formula below.21

Percent protection ¼ Parametertest control � Parametertreatment

Parametertest control � Parameternormal control
Statistical analysis of data

Statistical calculations were carried out with the Excel 2010
(Data Analysis Add-in) software. All data are expressed as mean
± standard error of the mean (SEM), and were analysed using
1-way analysis of variance (1-way ANOVA). Significant
difference of the means was determined using a post-hoc analysis
Table 1

Effects of aqueous leaf-extracts of C odorata and T procumbens on

Treatments
Malondialdehyde
(mmol/mg protein)

Ascorbic acid
(mg/mg protein)

Glutathi
(mmol/m

Normal control 1.221±0.108a 18.881±0.270a 0.19
Test control 1.894±0.093c 7.925±0.030c 0.13
Metformin 1.157±0.096a,b 12.838±0.222d 0.21
COLE-50mg 1.159±0.062a,b 15.324±0.227e 0.19
COLE-75mg 1.122±0.105a,b 15.580±0.248e 0.17
COLE-100mg 1.003±0.059a,b 9.331±0.177f 0.18
TPLE-50mg 1.132±0.047a,b 9.402±0.157f 0.16
TPLE-75mg 1.245±0.140a 8.603±0.036g 0.17
TPLE-100mg 0.946±0.085b 10.687±0.275b 0.18

Values are mean±SEM, n=5. Values in the same column with different superscript letters differ sign

3

involving LSD (least significant difference) test; with P< .05
considered statistically significant.
Results

The effects of aqueous leaf-extracts of C odorata and T
procumbens on the kidney weight and size indices of doxorubicin
treated rats is presented in Figure 1. The kidney weight index and
kidney size index of Test control were not significantly different
from those of all the other groups, except TPLE-50mg. The renal
malondialdehyde concentration of Test control was significantly
(P< .05) higher than those of all the others (Table 1). The renal
ascorbic acid concentration, and the renal catalase, glutathione
peroxidase and superoxide dismutase activities of Test control
were significantly (P< .05) lower than those of all the others
(Table 1). The plasma concentrations of creatinine, urea and
blood urea nitrogen of Test control were significantly (P< .05)
higher than those of all the others (Fig. 2). However, the
urea/creatinine ratio of Test control was significantly (P< .05)
lower than those of COLE-100mg and TPLE-100mg, but not
significantly different from the others.
The renal cholesterol concentration of Test control was

significantly (P< .05) higher than those of all the others except
renal biomarkers of oxidative stress of doxorubicin treated rats

one peroxidase
in/mg protein)

Superoxide dismutase
(units/mg protein)

Catalase
(mmol/min/mg protein)

2±0.004a 0.503±0.056a 3.382±0.118a

7±0.008c 0.281±0.032c 1.646±0.083b

0±0.002d 0.754±0.042b,d 3.412±0.313a

4±0.007a 0.554±0.036a 3.399±0.281a

1±0.004b,f 0.647±0.038d 2.664±0.100c

4±0.007a,f 0.787±0.029b 3.607±0.104a,d

8±0.002b 0.687±0.027b,d 3.001±0.231a,c

7±0.003b,e,f 0.736±0.068b,d 3.467±0.086a

7±0.002a,e 0.719±0.061b,d 4.103±0.238d

ificantly at P< .05.
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Figure 2. Impact of aqueous leaf-extracts ofC odorata and T procumbens on plasma biomarkers of kidney function of doxorubicin treated rats. Values are mean±
SEM, n=5. Bars in the same block with different superscript letters differ significantly at P< .05.

∗
Has no unit.
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Metformin (Table 2). The renal triglyceride concentration of Test
control was not significantly different from those of all the others.
The Mg2+-ATPase, Na+,K+-ATPase and Ca2+-ATPase activities
of Test control were significantly (P< .05) lower than those of
all the other groups (Table 2). As shown in Table 3, the renal
chloride, magnesium and potassium concentrations of Test
control were significantly (P< .05) lower; while the calcium and
sodium concentrations were significantly (P< .05) higher than
those of all the other groups. The administration of the extracts
andmetformin prevented the doxorubicin-induced renal damage,
as indicated by the attenuation of doxorubicin-induced adverse
alterations in the plasmamarkers of renal functions/integrity, and
Table 2

Effects of aqueous leaf-extracts of C odorata and T procumbens on r

Lipid profile (mmol/mg protein)

Treatments Triglyceride Cholesterol

Normal control 0.237±0.043a 0.231±0.056a

Test control 0.306±0.079a 0.459±0.052b

Metformin 0.250±0.023a 0.401±0.022b,c

COLE-50mg 0.212±0.048a 0.219±0.043a

COLE-75mg 0.216±0.025a 0.185±0.045a

COLE-100mg 0.169±0.051a 0.252±0.059a,c

TPLE-50mg 0.241±0.040a 0.243±0.049a

TPLE-75mg 0.195±0.051a 0.174±0.059a

TPLE-100mg 0.233±0.050a 0.202±0.070a

Values are mean±SEM, n=5. Values in the same column with different superscript letters differ sign
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renal markers of oxidative stress, and caused a subsequent
protection towards normalization. The administration of the
extracts also prevented the doxorubicin-induced reduction in
activities of renal ATPases, and caused a subsequent protection
towards normalization. These protections have been presented in
Table 4 in the form of per cent protection of the parameters by the
different test treatments.
Discussion

One of the major contributors to doxorubicin toxicity is
oxidative stress, which leads to membrane lipid peroxidation,
enal lipid profiles and ATPase activities of doxorubicin treated rats

ATPase activities (mmol/min/mg protein)

Mg2+-ATPase Na+,K+-ATPase Ca2+-ATPase

3.721±0.353a 15.881±1.601a 1.468±0.081a,f

1.965±0.129c 7.973±1.250c 0.697±0.058c

3.555±0.212a 28.399±1.210b 1.713±0.068d

13.060±0.930d 16.503±1.928a 1.143±0.059b,e

4.257±0.292a 19.626±2.474a 1.656±0.085d,f

8.326±0.481f 16.178±2.033a 1.012±0.087b

5.565±0.182b 17.365±2.198a 1.297±0.051a,e

4.192±0.409a 16.608±2.579a 1.908±0.086d

5.853±0.499b 21.522±2.274a 1.420±0.074a

ificantly at P< .05.



Table 3

Effects of aqueous leaf-extracts of C odorata and T procumbens on renal electrolytes profiles of doxorubicin treated rats

Treatments
Calcium

(mg/mg protein)
Chloride

(mEq/mg protein)
Magnesium

(mg/mg protein)
Potassium

(mmol/mg protein)
Sodium

(mEq/mg protein)

Normal control 9.557±0.197a,d 11.307±0.262a 3.894±0.026a 0.799±0.020a 7.090±0.831a,c

Test control 13.867±0.487c 6.877±0.076c 3.072±0.027b 0.416±0.017c 12.449±0.443b

Metformin 9.172±0.462a,b,d 8.914±0.266d 5.876±0.030c 0.474±0.010d 7.138±0.163a,c

COLE-50mg 10.027±0.434d 12.882±0.387e 5.083±0.041d 0.561±0.012e 8.017±0.220a

COLE-75mg 8.644±0.508a,b 8.597±0.338d 4.626±0.040e 0.471±0.016d 7.521±0.144a,c

COLE-100mg 8.163±0.326a 14.603±0.323f 4.351±0.024f 0.606±0.009e,f 8.019±0.382a

TPLE-50mg 8.197±0.480a 13.191±0.362b,e 5.250±0.047g 0.734±0.029g 8.107±0.315a

TPLE-75mg 8.176±0.406a 8.245±0.071d 3.732±0.026h 0.685±0.008b,g 6.516±0.188c

TPLE-100mg 8.718±0.263a,b 14.040±0.442b,f 5.056±0.041d 0.646±0.027b,f 8.161±0.326a

Values are mean±SEM, n=5. Values in the same column with different superscript letters differ significantly at P< .05.
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and oxidation and cross-linking of cellular thiols.1 That the
doxorubicin administration produced oxidative stress in this
study, is supported by the elevated renal malondialdehyde and
lowered renal ascorbic acid levels, as well as the reduced renal
activities of catalase, glutathione peroxidase and superoxide
dismutase, observed in the Test control group. This result is in
consonance with earlier reports.2,7–9 Pre-treatment with the
extracts and metformin attenuated the doxorubicin-induced
oxidative stress, by lowering the renal malondialdehyde and
raising the ascorbic acid levels, and activities of catalase,
glutathione peroxidase and superoxide dismutase. This antioxi-
dant protective effect is in agreement with the reports of the
improvement of ocular antioxidant levels in alloxan-induced
diabetic rats by T procumbens extract,41 and improvement of
antioxidant levels in the diaphragms of streptozotocin-induced
diabetic rats by C odorata extract.42 This result supports the
suggestion by Lee et al68 that significant enhancements of
endogenous enzymatic antioxidants by plant extracts might be a
good strategy for decreasing oxidative stress in tissues. So, these
increases caused by the extracts, signify a consolidation of the
Table 4

Per cent protection of the kidneys by the extracts

Parameter Metformin COLE-50mg COLE-75mg

Plasma
Creatinine 141.2±0.9a 52.9±9.3b 82.4±13.2b

Urea 176.2±1.8a 32.0±6.0c 86.3±3.1d

Blood urea nitrogen 176.2±1.8a 32.0±6.0c 86.3±3.1d

Urea nitrogen/creatinine ratio -758.1±63.0a,d 323.7±128.1a,c 62.2±216.3
Renal
Mg ATPase 90.5±12.1a 631.8±53.0c 130.5±16.6a

Na-K ATPase 258.3±15.3a 107.9±24.4b 147.4±31.3b

Ca ATPase 131.8±8.8a,d 57.9±7.6c,e 124.4±11.0d

Triglyceride 90.9±15.9a 117.6±33.4a 114.8±17.2a

Cholesterol 25.7±9.6a 105.3±18.8b 120.2±19.9b

Calcium 108.9±10.7a 89.1±10.1b 121.2±11.8a

Potassium 15.0±2.5a 37.9±3.1c 14.4±4.2a

Magnesium 341.4±3.7a 244.8±5.0b 189.2±4.9c

Chloride 46.0±6.0a 135.6±8.7c 38.8±7.6a

Sodium 99.1±3.0a,c 82.7±4.1b 92.0±2.7a,b

Ascorbic acid 44.8±2.0a 67.5±2.1c 69.9±2.3c

MDA 109.5±14.3a,b 109.2±9.2a,b 114.8±15.6a

SOD 213.0±18.7a,c 122.8±16.2b 164.7±16.9b

Catalase 101.7±18.0a 101.0±16.2a 58.7±5.7b

Glutathione peroxidise 133.5±2.9a 104.3±12.9c,e 61.7±8.0b,c

Values are mean±SEM, n=5. Values in the same row with different superscript letters differ significa
MDA = malondialdehyde; SOD = superoxide dismutase.
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endogenous antioxidant status of renal tissues, and their
subsequent shielding from free radical damage.41 The high
ascorbic acid content in the renal tissues may be sequel to the high
content of ascorbic acid in the leaves.53 The extracts may owe
their antioxidant protective effects to the presence in them of any
1 or a combination of 2 or more, of allicin, caffeic acid, ellagic
acid, epicatechin, lycopene, naringenin, quercetin and silymarin;
whose antioxidant and nephro-protective effects have been
variously reported.
In this study, induction of oxidative stress by doxorubicin

raised plasma urea and creatinine levels. This is in line with other
reports of doxorubicin-induced elevation in plasma creatinine
and urea levels.2,7 Plasma biomarkers such as creatinine and urea
concentrations are usually monitored to evaluate glomerular
function, because of their inverse relationship with the latter.69–73

Therefore, the reduction in the plasma creatinine and urea levels,
produced by the extracts, is suggestive of their capacity to protect
the nephrons from doxorubicin-induced damage,8 and thus
preserve the functional capacity of the glomerular filtration
apparatus. The extracts’ lowering of plasma creatinine, blood
COLE-100mg TPLE-50mg TPLE-75mg TPLE-100mg

88.2±21.6b 76.5±25.3b 94.1±15.0b 152.9±7.2a

21.0±5.9c 155.0±2.4b 85.5±5.6d 25.8±4.3c

21.0±5.9c 155.0±2.4b 85.5±5.6d 25.8±4.3c
a,d 1588.7±697.8c -1012.3±274.9d 373.7±362.1a,c 4476.1±762.3b

,b 362.2±27.4d 205.0±10.4b,e 126.8±23.3a,b 221.4±28.4e

103.8±25.7b 118.8±27.8b 109.2±32.6b 171.3±28.8b

40.9±11.3e 77.8±6.7b,c 157.1±11.1a 93.7±9.5b

147.4±35.5a 97.6±28.1a 129.4±35.3a 102.6±34.7a

91.1±25.8a,b 94.7±21.3b 125.1±26.1b 113.1±30.9b

132.3±7.6a 131.5±11.1a 132.0±9.4a 119.5±6.1a

49.5±2.3c,d 83.0±7.6e 70.1±2.2b,e 60.0±7.2b,d

155.7±2.9d 265.2±5.7e 80.3±3.1f 241.6±5.0b

174.4±7.3d 142.5±8.2b,c 30.9±1.6a 161.7±10.0b,d

82.7±7.1b 81.0±5.9b 110.7±3.5c 80.0±6.1b

12.8±1.6d 13.5±1.4d 6.2±0.3e 25.2±2.5b
,b 132.4±8.7a,b 113.30±7.0a,b 96.4±20.8a 140.9±12.7b
,c 227.7±13.2a 182.9±11.9a,c 204.8±30.6a,c 197.0±27.3a,c

113.0±6.0a,c 78.0±13.3a,b 104.9±5.0a 141.5±13.7c

86.6±12.6d 57.8±3.6b 72.5±5.8b,d 92.4±4.3d,e

ntly at P< .05.
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urea nitrogen and urea may be due to their content of caffeic and
chlorogenic acids, both of which had been reported to decrease
plasma levels of kidney markers to near-normal levels.74,75

In this study, doxorubicin treatment caused significant increase
in renal cholesterol and triglycerides. This is in conformity with
reports of doxorubicin-induced increases in renal cholesterol and
triglycerides levels in both humans and experimental ani-
mals.76,77 However, pre-treatment with the extracts prevented
this cholesterol and triglyceride accumulation. This effect may be
sequel to the presence in the extracts, of chlorogenic acid, ellagic
acid, naringenin and quercetin,21,22,23,26,78 which are known to
lower adiposity and triglyceride contents,79–81 and modulate
hepatic lipids.82–85 The renal cholesterol lowering activity of the
extracts has serious implications on the integrity and function of
the renal cell membranes. This is because studies have shown that
the level of cholesterol in membranes correlates inversely with the
fluidity of membranes.86–88 Cholesterol plays a major role in the
control of the structure and dynamics of the lipid bilayer
(fluidity); and therefore, can modulate the activities of various
membrane transporters such as Ca2+-ATPase, Mg2+-ATPase,
Na+,K+-ATPase and Ca2+ channels in various cells.89–92

In this study, the administration of doxorubicin produced
significantly lowered Na+,K+-ATPase, Mg2+-ATPase and Ca2
+-ATPase activities in the renal tissues. This corroborated earlier
report of doxorubicin-induced significant reductions in renal
Na+,K+-ATPase, Ca2+-ATPase andMg2+-ATPase activities.1,11 It
however, negates the report by Ma et al,93 of doxorubicin-
induced significant activation of Na+,K+-ATPase activity. Pre-
treatment with the extracts raised the renal activities of Na+,K+-,
Mg2+- and Ca2+-ATPases. The extracts’ ability to increase
ATPase activities may be due to the presence of any one or both of
ascorbic acid and epicatechin, earlier reported in them.
According to Kumar et al94 ascorbic acid or epicatechin prevents
oxidative stress-induced lowering of Ca2+-ATPase and Na+,K+-
ATPase activities.
The extracts may have improved Na+,K+-ATPase, Ca2

+-ATPase and Mg2+-ATPase activities by preventing doxorubi-
cin-induced lipid peroxidation or oxidative stress and cholesterol
loading, thereby preventing the subsequent oxidative modifica-
tion of the enzymes, as well as the modification of the membrane
lipid environment and fluidity of the plasma membrane. They
may have accomplished the augmentation of ATPase activities
via any one or a combination of 2 or more of the following.
Firstly, the direct interaction between the phytoconstituents in the
extracts and the enzymes may have resulted in changes in the
enzymes’ structure, and consequent changes in its activity, or
protection of the enzymes’ sulfhydryl groups,95,96 from interact-
ing with doxorubicin or its metabolites, or from oxidation and
subsequent formation of disulphide bridges. Secondly, by
reducing the concentration of free radicals and reactive oxygen
species, and consequently, reducing oxidative stress and lipid
peroxidation94,97–101 Thirdly, by the impact of their phytocon-
stituents in preventing increased lipid order and lowered
membrane fluidity;90,91,97,101–104 which are products of in-
creased cholesterol content and lipid peroxidation.86,105 Lastly,
by the impact of the phytoconstituents in the extracts, on the
lipids of the plasma membrane which in turn may have led to
changes in the surrounding lipid environment or protein-lipid
interactions.90,91,97,101,106–108

Therefore, the reduction in lipid peroxidation (or oxidative
stress) and/or tissue cholesterol, as well as protection of the
enzymes’ sulfhydryl groups may be responsible for the extracts
ability to increase renal Na+,K+-ATPase, Ca2+-ATPase and Mg2
6

+-ATPase activities. The significance of these modulations of
renal ATPases cannot be overemphasized, given that Na+,K+-
ATPase is important in controlling the reabsorption of Na+ and
water in the kidney109,110; while Ca2+-ATPase is involved in renal
active Ca2+ transport.111,112

Consequently, the elevated concentrations of renal calcium and
sodium, as well as the lowered chloride, magnesium and
potassium, induced by doxorubicin in this study, is reflective
of compromised membranes of the renal tissues. However, pre-
treatment with the extracts prevented the doxorubicin-induced
electrolyte imbalance. This ability to modulate renal electrolytes
may also be due to the presence of chlorogenic acid, which had
been reported to improve mineral pool distribution in plasma,
spleen and liver.113 The reduction of renal cholesterol content
may have resulted in the reduction in renal calcium content by the
extracts. This is in view of the reports that decrease in cholesterol
content of plasma membranes leads to decreased Ca2+ influx
through the Ca2+ channel in plasma membranes, which results in
decreases in intracellular calcium, and vice versa.87,114–116

Reduction in membrane cholesterol has also been reported to
stimulate the activities of Ca2+-, Mg2+- and Na+,K+-
ATPases,87,117,118 which modulates the transport of calcium,
magnesium, potassium and sodium ions across plasma mem-
branes,90,119–127 and by extension, intracellular electrolyte
balance. This suggests that modulation of renal calcium, sodium
and magnesium levels by the extracts may have been achieved via
an interplay of the modulation of renal cholesterol concentration
and Ca2+-, Na+,K+- and Mg2+-ATPases.
Therefore, taken together, we can safely posit that the extracts

acted by boosting endogenous antioxidant and modifying the
micro-viscosity of renal membrane via lowering cholesterol
levels, and reducing doxorubicin-induced oxidative stress (lipid
peroxidation) and protein sulfhydryl modification; and that the
ensuing increased fluidity caused improved Ca2+-, Mg2+- and
Na+,K+-ATPase activities. The subsequent improvement in ion
transport then led to improved electrolyte balance, especially,
offsetting doxorubicin-induced calcium overload. This may be
the mechanism of nephroprotective activities of the extracts.
This therefore, is a suggestion of their prospect as resources
for prevention or management of doxorubicin-induced renal
toxicity.
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