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Abstract

CD47 is an immune checkpoint protein that downregulates both the innate and adaptive anti-

tumor immune response via its counter receptor SIRPα. Biologics, including humanized CD47

monoclonal antibodies and decoy SIRPα receptors, that block the SIRPα-CD47 interaction,

are currently being developed as cancer immunotherapy agents. However, adverse side

effects and limited penetration of tumor tissue associated with their structure and large size

may impede their clinical application. We recently developed a quantitative high throughput

screening assay platform to identify small molecules that disrupt the binding of SIRPα and

CD47 as an alternative approach to these protein-based therapeutics. Here, we report on the

development and optimization of a cell-based binding assay to validate active small molecules

from our biochemical screening effort. This assay has a low volume, high capacity homoge-

nous format that relies on laser scanning cytometry (LSC) and associated techniques to

enhance signal to noise measurement of cell surface binding. The LSC assay is specific, con-

centration dependent, and validated for the two major human SIRPα variants (V1 and V2),

with results that parallel those of our biochemical data as well as published studies. We also

utilized the LSC assay to confirm published studies showing that the inhibition of amino-termi-

nal pyroglutamate formation on CD47 using the glutaminyl cyclase inhibitor SEN177 disrupts

SIRPα binding. The SIRPα-CD47 interaction could be quantitatively measured in live and

fixed tumor cells. Use of fixed cells reduces the burden of cell maintenance and provides stable

cell standards to control for inter- and intra-assay variations. We also demonstrate the utility of

the assay to characterize the activity of the first reported small molecule antagonists of the

SIRPα-CD47 interaction. This assay will support the screening of thousands of compounds to

identify or validate active small molecules as hits, develop structure activity relationships and

assist in the optimization of hits to leads by a typical iterative medicinal chemistry campaign.
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Introduction

Cancer arises in part when tumor cells acquire mechanisms to disrupt both innate and adap-

tive immunity to evade immune surveillance [1–3]. Immune checkpoint inhibitors are being

developed as a therapeutic strategy to enable the immune system to eradicate neoplasia, espe-

cially disseminated tumor cells [4,5]. Antibodies to inhibit the adaptive immune checkpoints

PD-1/PD-L1 and CTLA-4/(CD80, CD86) have proven to be remarkably efficacious in a subset

of patients [6–10]. Chimeric T-cell receptors and dendritic cell vaccines are also promising

treatment modalities to boost the adaptive immune response [11,12]. Another emerging strat-

egy focuses on enhancing innate tumor immunity by targeting the SIRPα-CD47 axis [13].

CD47 is widely expressed on cells and binds to its counter-receptor SIRPα, which is

expressed on the surface of macrophages and antigen-presenting cells (APCs), to inhibit

phagocytosis and antigen presentation [14–18]. This is a basic mechanism of innate immune

tolerance—the so called ‘don’t eat me” signal. Increased expression of CD47 by tumor cells

inhibits their phagocytosis, a crucial way in which they evade immune surveillance [19]. Many

preclinical studies have shown that abrogation of the SIRPα-CD47 interaction, especially

when combined with tumor targeting antibodies or chemo/radiotherapy, promotes cancer cell

death and improves survival [19–27]. Various biologic agents targeting the SIRPα-CD47 axis,

including monoclonal antibodies and decoy receptors, are in early clinical development as

cancer immunotherapies[28–31]. Encouraging results for one of these agents were recently

observed in a phase 1b clinical trial [32].

We have initiated a novel strategy to disrupt the SIRPα-CD47 protein-protein interaction

(PPI) that is focused on drug-like small molecules (SMs)[33]. In contrast to the large biologics,

SM inhibitors can be designed to specifically block the binding of CD47 to SIRPα without

interfering with its other binding partners, e.g. members of the thrombospondin and integrin

families[34]. This strategy will allow the SMs to serve as specific molecular probes of SIRPα-

CD47 signaling in experimental models. Moreover, along with the pharmacodynamic advan-

tages and potential for oral delivery, such specificity may favor their use as therapeutics by

reducing adverse side effects. Recently, we developed a set of quantitative high throughput

screening (qHTS) assays and identified SMs that inhibit the SIRPα-CD47 interaction[33].

In the present report, we describe a sensitive, high capacity, cell-based, SIRPα-CD47 bind-

ing assay with characteristics that will enhance the identification of preclinical and clinical

agents. It combines laser scanning cytometry (LSC)[35] with a 384-well or 1536-well plate for-

mat and the addition of reagents without intervening washing steps (homogeneous format).

This maximizes the interaction of reagents in a small volume, minimizes the consumption of

materials and permits the direct comparison of many compounds in broad concentration-

response titrations. Additionally, the homogeneous format results in a shorter duration assay

(~45 min.) more conducive to the use of live cells. The use of formalin-fixed as an alternative

to live cells adds to the convenience of the assay and potential applications. We used this assay

to further validate a number of active SMs from our qHTS program, and quantitatively charac-

terize the impact of the pyro-GLU N-terminal post-translational modification of CD47 on

SIRPα binding described by others[36].

Methods

Reagents

SIRPα (with and without biotin conjugation) and CD47 were produced as described in [33].

Anti-CD47 clone B6H12-Alexa488 was purchased from Santa Cruz, clone B6H12 (non-conju-

gated) was purchased from Ebioscience, clone CC2C6-FITC and clone CC2C6 (non-
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conjugated) were purchased from Biolegend. Streptavidin-Alexa488, Neutravidin-Alexa488

and DRAQ5 nuclear stain were purchased from ThermoFisher. PBS buffer was purchased

from Gibco. HEPES buffer contains 10 mM HEPES pH 7.5, 0.15 M NaCl, all of which were

purchased from Sigma.

Cell lines and tissue culture. Jurkat T lymphoma cells and A2058 melanoma cells were

obtained from American Type Culture Collection. The CD47(-) Jurkat somatic mutant JinB8

was from Dr. Eric Brown (PMID:10330276). Cells were cultured in RPMI 1640 medium

(Gibco, ThermoFisher) supplemented with 10% fetal bovine serum (Gibco, ThermoFisher), 2

mM Glutamine, 25 mM HEPES, and 1 mM sodium pyruvate (Gibco, ThermoFisher). All cells

were cultured at 37˚C in a humidified incubator under 5% CO2. All Cell lines were Myco-

plasma-free as determined with the MycoAlert mycoplasma detection kit (Lonza, Walkersville,

MD, USA) and were carried no more than 20 passages from the validated stocks.

Flow cytometry assay. Approximately 100,000 cells were harvested, washed with PBS,

resuspended in 200 μL of PBS containing 1% human serum albumin and 0.01% sodium azide

(FACS Buffer, BD), and added to a 96-well round bottom plate for staining. SIRPα-biotin was

added as indicated in Fig 1 (0.1, 0.3 1.0 μM) and incubated for 30 min at room temperature.

Cells were then washed by centrifuging at 1000 x g for 5 min, supernatant aspirated, and resus-

pended in 200 μL of FACS Buffer. Streptavidin-Alexa488 (SAV488) was then added at 0.5 μg/

mL for 30 min at room temperature after which the cells were washed again as above. For

non-biotin SIRPα competition studies, the non-biotin and biotin conjugated forms were

incubated with the cells at the same time at the indicated concentrations. For Anti-CD47 anti-

body labeling studies, fluorochrome conjugated antibodies B6H12 and CC2C6 were used at

Fig 1. SIRPα specifically binds to CD47 on Jurkat cells (A) Schematic of the SIRPα extracellular domains (d1, d2, d3) and the soluble, biotin-conjugated,

CD47-interacting SIRPα (d1) construct used in these studies (SIRPα-Avi-biotin). Flow cytometry histograms showing the concentration-dependent binding of SIRPα to

(B) CD47(+) or (C) CD47(-) Jurkat cells imaged using Alexa-488 conjugated streptavidin. Control indicates cells treated with SAV-488 alone (no SIRPα). (D)

Concentration response plot showing the calculated EC50 of SIRPα binding to CD47(+) Jurkat cells. (E) Concentration-dependent inhibition of SIRPα binding to CD47

(+) Jurkat cells by SIRPα-cold (no biotin).

https://doi.org/10.1371/journal.pone.0226661.g001
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1 μg/mL final concentration. Fluorochrome-labeled isotype control antibodies were used as

negative controls for nonspecific immunoglobulin binding. Cells were washed as above, sam-

ples were resuspended in 200 μL of FACS Buffer and measured on a FACS CALIBER II and

Accuri C6 Flow Cytometer (BD BioSciences). We adhered to the guidelines for the use of flow

cytometry and cell sorting in immunological studies.

Laser scanning cytometry assay. The assay was conducted as in Table 1, and all manipu-

lation/incubations were subsequently carried out at room temperature. Optimized reagent

amounts for 384 and 1536 well plates are as in Table 2. DRAQ5-labeled cells were added to 384

or 1536 well plates using a multichannel pipet or a Multidrop dispenser (ThermoFisher). Com-

peting ligand/antibody or control mixed with SIRPα-biotin were added to the cells using a

multichannel pipet or Mosquito liquid handler (TTP Labtech). Following NAV488 addition

and incubation, cell plates were imaged using the Mirrorball LSC according to Table 1. For

measurements involving fixed cells, the cells were fixed in 4% paraformaldehyde for 30 min on

ice, washed and then stained as above.

Small molecule synthesis and testing. NCGC00138783 is a compound derived from

qHTS testing of the NCATS chemical libraries as described in [33]. Based on the confirmed

activity of NCGC00138783 in biochemical assays, a synthetic scheme was devised to create

analogs with which to develop a structure activity relationship (see S1 Material).

SEN177 treatment. A2058 cells were plated on day 0 in 6 well plates at 300,000 cells per

well in fully supplemented RPMI as described above. The cells were allowed to adhere over-

night and then were treated with SEN177 (Sigma) with a constant DMSO (vehicle) level of

0.9%. The treatment was repeated 24 hours later. 24 hours after the second SEN177 treatment,

the cells were harvested using trypsin and fixed (4% paraformaldehyde for 30 min on ice)

before being split into 3 samples for analysis in parallel using SIRPα/LSC, CC2C6/flow cytom-

etry, and B6H12/flow cytometry. Data represent the mean and standard error of 3 biological

replicates with 3 technical replicates of each biological replicate.

Table 1. Optimized LSC assay protocol.

Sequence Parameter Value Description

1 Cells 2x106 Remove 2x106 Jurkat cells and wash 1x with HEPES buffer and resuspend with 8 mL of HEPES buffer into a 15 mL Falcon tube

2 Reagent 3 μL Add 3 μL of DRAQ5 to cell tube (2 μM final)

3 Incubate 5 min Incubate cell tube in incubator for 5 minutes (37C, 95%RH, 1atm, 5%CO2)

4 Plate 20 μL Add 20 μL/well of cells (5000 cells/well) with multichannel pipet or Multidrop dispenser to Greiner 384 well plate

5 Reagent 10 μL Add SIRPα-biotin,10 μL/well

6 Centrifuge 30 sec Centrifuge plate for 30 sec at 1000 RPM

7 Incubation 30 min Incubate plates at room temperature for 30 min, protected from light

8 Reagent 10 μL Mix 10 μL of NAV488 with 5 mL of Hepes buffer, add 10 μL/well (0.5 μg/mL final)

9 Centrifuge 30 sec Centrifuge plate for 30 sec at 1000 RPM

10 Incubation 30 min Incubate plates at room temperature for 60 min, protected from light

11 Detector Mirrorball Measure signals with Mirrorball (DRAQ5 on FL4 triggering NAV488 on FL2)

12 Analyze Prism Data processing and analysis using GraphPad Prism

https://doi.org/10.1371/journal.pone.0226661.t001

Table 2. Optimized LSC assay parameters.

Plate type # of Cells Total Vol. NAV488 conc. Incubation time Read time

384 well—Corning 3712; Greiner 781096 5000 40 μL 0.5 μg/mL 65 min 12 min

1536 well–Aurora E8 2500 6 μL 2.0 μg/mL 65 min 45 min

https://doi.org/10.1371/journal.pone.0226661.t002
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Results

SIRPα binding to Jurkat cells detected by flow cytometry

We previously used SIRPα and CD47 recombinant proteins to develop a set of biochemical

assays for qHTS of SM libraries to identify inhibitors of the SIRPα-CD47 interaction[33]. The

next step toward identifying SIRPα-CD47 inhibiting SMs was to establish an assay that would

enable us to test the ability of lead compounds to inhibit SIRPα binding to CD47 naturally

expressed by tumor cells. For this purpose, we developed a model where the affinity for CD47

of a truncated biotin-tagged SIRPα, hereafter referred to as SIRPα, was assessed on Jurkat T

cells with [CD47(+)] or without [CD47(-)] CD47 expression by flow cytometry (Fig 1A).

SIRPα bound CD47(+) cells in a concentration-dependent manner, while no binding to CD47

(-) cells was detected (Fig 1B and 1C). The specificity of the interaction was demonstrated by

both saturable binding (Fig 1D) and competition with a non-biotin conjugated SIRPα deriva-

tive (SIRPα-cold; Fig 1E).

Development of a SIRPα-CD47 binding assay using laser scanning

cytometry

While flow cytometry is routinely used for cell-based ligand binding assays and immunoassays,

it has practical limitations with regard to the sample processing speed, reagent consumption,

and the number of samples that can be tested in a single experiment. To overcome these limita-

tions, a cell-based SIRPα-CD47 binding assay ideally would include a low cell/reagent consump-

tion, large sampling density for replicates and high-resolution concentration-response titrations.

To satisfy these criteria, we developed a binding assay using a LSC platform (Mirrorball, TTP

Labtech). Early LSC-style assays developed for cell-based cytokine and GPRC receptor fluoro-

phore-labeled ligand binding were first demonstrated on early prototype plate-based cytometers

[35]. The current LSC platform utilizes confocal optics that enable discrimination of cell-based

fluorescence from bulk (unbound) fluorescence, permitting a wash-free, homogeneous protocol

[37]. Using the same reagents as in the conventional flow cytometry assay described above, we

optimized the LSC assay signal and robustness for plate type, cell number, secondary detection

reagent concentration, incubation time, and instrument settings (Tables 1 and 2). The staining

strategy is as illustrated in the schematic drawing (Fig 2A). Representative data show the nuclear

counter stain employed for cell detection (DRAQ5; Fig 2B) and the Alexa488 channel that rep-

resents SIRPα binding via neutravidin-Alexa488 (NAV488; Fig 2C). Selective detection of

Alexa488 signal in the vicinity of cell nuclei reduces the contribution of unbound reagent fluo-

rescence to background signal (see overlay; Fig 2D). Each object is recorded (Fig 2E) and sub-

jected to object-level and population-level filtering (Fig 2F) for quantification of the final

analysis parameters, analogous to routine data processing associated with flow cytometry.

Evaluation and utility of the optimized LSC assay

CD47(+) Jurkat cells were subjected to a titration of SIRPα concentrations to determine EC50

and specificity in comparison to control Jurkat cells lacking detectable CD47 expression

[CD47(-)]. The EC50 value of 16 nM obtained in the optimized LSC assay (Fig 3A) is

~100-fold lower (greater affinity) than in the flow cytometry assay (see Fig 1D), most likely

due to differences in the specific protocols that affect reagent avidity (see Discussion). We

next evaluated the binding affinity of CD47 to the most common human SIRPα allelic variants,

variants 1 and 2 (SIRPαV1 and V2). SIRPαV2 was two-fold more potent than SIRPαV1 in

binding to CD47 (Fig 3B), a finding consistent with biochemical studies[38] and now demon-

strated here in a cell-based assay.
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Fig 2. (A) Schematic of the LSC assay showing the multivalent Alexa-488 conjugated neutravidin (NAV-488) SIRPα probe binding to CD47+ tumor cells stained with

the nuclear dye, DRAQ5. (B-D) Representative images of all CD47+ Jurkat cells in a single well (B) DRAQ5 nuclear stain for object classification (C) Alexa-488

conjugated SIRPα probe signal, and (D) the overlay of B and C indicating cell-specific staining. (E) The size and signal intensity of each object in the well are captured

and (F) represented as in a typical flow cytometry histogram. Red triangles and shaded area indicate the signal limits that define the cell population of interest.

https://doi.org/10.1371/journal.pone.0226661.g002

Fig 3. Quantitative measurements of SIRPα -CD47 binding using the optimized LSC assay platform. (A) Concentration-dependent SIRPαV2 binding to CD47(+)

Jurkat cells using the LSC assay. Negative controls included are CD47(-) Jurkat cells and both CD47(+) and (-) cell lines incubated with NAV-488 and without SIRPα
(NegCTRL, nonspecific binding). (B) Comparison of the binding affinities of SIRPαV1 and V2. Negative control indicates background nonspecific binding (-SIRPα).

Error bars indicate standard deviation of n = 4 replicates.

https://doi.org/10.1371/journal.pone.0226661.g003
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To verify the CD47 specificity of the assay, we examined the binding of SIRPα to CD47(+)

cells in the presence of a CD47 blocking antibody, clone CC2C6,—an antibody selected for its

ability to block both SIRPαV1 and V2 binding to CD47 on CCRF-CEM cells[39]. In these

assays, a fixed concentration of SIRPαV1 (20 nM) was co-incubated with the competitor for

CD47 binding (CC2C6, B6H12 or recombinant CD47 as indicated). CC2C6 inhibited

SIRPαV1 binding to Jurkat cells with an IC50 of 74 pM, comparable to the previously reported

CD47 blocking activity of this antibody [40] (Fig 4A). Another CD47 blocking antibody,

B6H12, also disrupted the SIRPα-CD47 interaction (Fig 4B). The IC50 of B6H12 (6 nM) was

consistent with the literature[41]. The ability of soluble recombinant CD47 to inhibit

SIRPαV1 binding to cell-expressed CD47 was also measured and found to be similar to previ-

ously reported biochemical results (0.9 μM vs 0.8 μM, respectively) (Fig 4B) [42,43]. Using a

similar competition assay, we measured the ability of non-biotin conjugated SIRPαV1 and

SIRPαV2 to antagonize the binding of their biotin-conjugated analogs. The IC50s of SIRPαV1

and SIRPαV2 to native, cell surface expressed CD47 were 7.5 and 3.0 μM, respectively (Fig

4C). These data were consistent with a previous report that SIRPαV1 is a relatively weaker

binder (~2-fold) than SIRPαV2, although the IC50 values we observed were ~5-fold higher

(weaker inhibition) than the kD observed in a pure biochemical assay (surface plasmon reso-

nance spectroscopy, SPR)[38,42]. Taken together, our results established the utility of the LSC

platform for the measurement of SIRPα-CD47 binding affinity in live cells.

Fig 4. LSC-based ligand binding activities agree with previous biochemical studies. SIRPα binding to CD47(+) cells was inhibited using a fixed SIRPα concentration

(20 nM) and a titration of the anti-CD47 monoclonal antibody clone (A) CC2C6, (B) B6H12, or recombinant human CD47 (rhCD47) or (C) non-biotin conjugated

(cold) SIRPαV1 and V2. Negative control indicates background nonspecific binding (-SIRPα). Error bars indicate standard deviation of n = 4 replicates. (D) The IC50

value for each reagent competing with SIRPα for binding CD47 on Jurkat cells and their comparison to their literature derived biochemical affinities. 1[28]; 2[42]; 3[38];
4[43].

https://doi.org/10.1371/journal.pone.0226661.g004
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Use of fixed cells in SIRPα-CD47 binding assay with LSC platform

We explored the possibility of further refining the assay to optimize its suitability for a drug

development campaign. Because fixed cells would be a stable source of CD47 for automated

protocols and inter-day comparisons, we tested the effect of cell fixation on SIRPα-CD47 bind-

ing characteristics in our LSC assay (Fig 5). SIRPα bound similarly before and after cell fixa-

tion, (Fig 5A), consistent with a previous report using flow-cytometry [44]. The EC50 was

somewhat lower for the fixed cells compared to live cells (1.3 nM vs. 4.6 nM). We also observed

that DMSO (1%) had little effect on SIRPα binding in the fixed-cell assay (Fig 5B), thus indi-

cating that the assay could be used for testing the inhibitory activity of SMs solubilized in

DMSO. Lastly, we compared the activity of a known SIRPα-CD47 binding inhibitor (CD47

Fig 5. Adaptation of the LSC assay to measure CD47-SIRPα on fixed vs. live cells. (A) Comparison of SIRPα binding to CD47(+) Jurkat cells before and after fixation

or (B) with and without DMSO. NegCtrl indicates background nonspecific binding (-SIRPα). Error bars indicate standard deviation of n = 4 replicates. (C) Comparison

of inhibitor (anti-CD47 Mab clone B6H12) activity in the biochemical assay of CD47-SIRPα (TR-FRET) and the cell-based assay (LSC); using a 384 and 1536 well plate

format as indicated. The 1536 well LSC assay employed a fixed SIRPα concentration of 10 nM bound to CD47(+) Jurkat cells. Error bars indicate standard deviation of

n = 16 replicates.

https://doi.org/10.1371/journal.pone.0226661.g005
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blocking mAb B6H12) using fixed cells in the LSC-based assay to our biochemical assay in a

1536 well plate format (Fig 5C) (as described in [33]). The IC50 of B6H12 in the LSC assay

was 6 nM and 1 nM for 384 and 1536 well respectively, compared to 10 nM for the biochemical

assay. The shift in potency for the LSC assay in 384 (live cells) to 1536 (fixed cells) wells likely

reflects the same shift due to fixation as seen in Fig 5A. Both LSC assay formats compare well

to our biochemical screening assay.

Cell-based analysis of SM inhibitors previously identified in a CD47-SIPRα
qHTS

In our recent publication[33], we described the development of a series of biochemical assays

for the discovery of SIRPα-CD47 inhibiting SMs using qHTS. In order to characterize vali-

dated biochemical hits and optimize them toward lead molecules, it is important to demon-

strate their activity in cell-based models. For this purpose, we used the LSC assay to measure

SM antagonism of SIRPα binding to CD47 naturally expressed on tumor cells and compared

the activity of these qHTS active SMs to the activity observed in the biochemical assay. Fig 6A

shows a representative set of chemical analogs based on the parent compound identified from

qHTS (NCGC00138783). These compounds illustrate a typical attempt to establish a structure

activity relationship to enable optimization of potency and drug-like properties via medicinal

chemistry. Concentration-response curves for the SMs in the biochemical and cell-based

Fig 6. Comparing small molecule activity profiles using the LSC assay and the biochemical assay. (A) The structures of the compounds compared to the parent

screening active compound (NCGC00138783). (B) Biochemical (ALPHAScreen) SIRPα-CD47 antagonism activity of NCGC00138783 and the structurally related

analogs shown in A were compared to (C) antagonism activity of SIRPα binding to CD47 expressed on live Jurkat cells in the LSC assay. Normalized activity calculated

with neutral control (CD47 + SIRPα, no inhibitor) as 0% and negative control (CD47—SIRPα, no inhibitor) as -100% activity. Assay activity with tested agents was then

compared and normalized to these controls.

https://doi.org/10.1371/journal.pone.0226661.g006
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assays are presented in Fig 6B and 6C, respectively. As shown in the panels, the compounds

displayed a range of potencies in both assays, with greater inhibitory activity evident in the bio-

chemical assay. Nonetheless, cell-based activity was confirmed for the three most potent

compounds.

LSC assay confirmed that CD47 post-translational modification is required

for SIRPα-CD47 binding

Consistent with interactions inferred from the SIRPα-CD47 co-crystal structure[42,43],

SIRPα-CD47 binding critically depends on a CD47 post-translational modification of its N-

terminal glutamine to a pyroglutamate[36]. This modification in tumor cells depends on the

activity of glutaminyl cyclase (QPCTL) and can be inhibited pharmacologically by the pan-glu-

taminyl cyclase inhibitory molecule SEN177[45]. We used the LCS assay to validate and extend

these findings by treating A2058 melanoma cells with SEN177 to inhibit QPCTL and block the

N-terminal pyroglutamate modification of CD47 (Fig 7). As in [36], we observed a reduction

in SIRPα binding after 48 h treatment with SEN177 (Fig 7A). This was also associated with a

similar reduction in the reactivity of clone CC2C6 antibody, whose epitope is known to be sen-

sitive to the N-terminal pyroglutamate modification[39] (Fig 7B). Total CD47 levels were not

significantly affected as judged by a lack of SEN177 treatment-associated changes in cell sur-

face binding of the CD47 antibody clone B6H12, which is insensitive to N-terminal pyrogluta-

mate modification[36] (Fig 7C). In addition to validating the impact of the glutaminyl cyclase

inhibitor first reported by Logtenberg et al., we determined the IC50 of SEN177 inhibition of

SIRPα binding to be 280 nM. This indicates a lower potency than the IC50 reported for inhibi-

tion of glutaminyl cyclase activity in a biochemical assay (20 nM[46]), but is consistent with

the efficacy of the concentration (10 μM) employed in cells by Logtenberg et al.

Discussion

Maximizing the success of immunotherapies in oncology care will depend on the identifica-

tion of additional immune checkpoint molecules that are co-opted by tumors, the mitigation

of immune related side-effects of those currently targeted by biologics in the clinic and the use

of more effective combinations of immunotherapies and immune adjuvants. Small molecules

could have an important role in achieving these goals. They also have uses as chemical probes

to validate new anti-tumor immune checkpoints and as new therapeutic agents with lower tox-

icity and/or oral delivery to replace biologics for established targets or directed against novel

targets. Their therapeutic also could enable better combinations with other immuno-oncology

or conventional cancer therapies. The ability to monitor small molecule modulation of cell

surface immune checkpoint interactions in their native environment is vital to advance these

Fig 7. The LSC assay can be used to measure SIRPα binding sensitivity to CD47 pyroglutamate modification. (A) A2058 melanoma cells were treated with a range

of concentrations of SEN177 for 48 hours and SIRPα binding quantified using the LSC assay. (B) Anti-CD47 clone CC2C6 or (C) clone B6H12 reactivity for the same

samples as in panel A. The IC50 value is indicated where measurable. Data represents n = 3 replicates measurements for 3 separate experiments.

https://doi.org/10.1371/journal.pone.0226661.g007
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objectives. Past studies have used radiolabeled ligand binding assays and flow cytometry to

monitor cell-based receptor-ligand or receptor-counter receptor interactions. However, these

techniques have important drawbacks that diminish their applicability to HTS-based drug dis-

covery campaigns, such as limits on radioactivity usage and low throughput.

In this report, we describe the development and optimization of a cell-based binding assay

utilizing a LSC platform[35,47]. The assay was designed to support the in vitro characterization

and validation of SMs that disrupt the SIRPα-CD47 protein-protein interaction in a cell-free

biochemical assay (see Miller et al. 2019). The LSC assay is a critical component of our SM

drug-development program to identify novel agents that activate patients’ innate immune sys-

tem for cancer immunotherapy. To our knowledge, this is the only cell-based, ligand-binding

assay to model a protein-protein interaction reported to deploy the Mirrorball LSC platform

[48]. In particular, this assay provides a homogeneous platform to model a cell-cell interaction

mediated by CD47 and SIRPα using a simplified single cell configuration.

The final assay that we developed has a low volume, high capacity homogeneous format

that, in combination with our biochemical assay, will enable the screening thousands of com-

pounds to identify active SMs, develop structure activity relationships (SAR) and support the

optimization of hits to leads by a typical iterative medicinal chemistry campaign. We demon-

strated that the assay is specific, concentration dependent and works well for the two major

human expressed variants of SIRPα (V1 and V2). Results with our LSC assay parallel those

obtained with our biochemical assay as well as the previously published studies by others.

Notably, we confirmed the recent findings that treatment of cells with the glutaminyl cyclase

inhibitor, SEN177, blocked SIRPa binding (Fig 7 and Logtenberg et al.). Furthermore, the LSC

assay is capable of quantitatively measuring the SIRPα-CD47 interaction in both live and fixed

tumor cells; as a practical matter, this significantly reduces the cell culture burden and allows

for the use of stable, fixed cell standards to control for inter- and intra-assay variations.

Although we have focused here on SIRPα-CD47, the LSC-based cellular receptor ligand bind-

ing assay is also applicable to other cell surface receptor-ligand or receptor-counter-receptor

complexes (including other immune checkpoints), especially in situations where producing

the recombinant receptor is problematic or where its activity is significantly altered outside of

the native cellular environment.

Because detection of the binding signal in the LSC assay was targeted specifically to cells

marked by a nuclear stain and limited to the cell-containing focal plane by confocal optics,

there was no need to remove non-binding reagents by including washing steps. Under these

conditions, SIRPα is presented to CD47 on the cells as a multimeric reagent bound to tetra-

meric NAV. This presumably contributed to a stronger binding affinity of SIRPα and CD47

relative to measurements in a standard flow cytometry format where SIRPα is first presented

as a monomer and non-bound reagent is removed by washing before exposure to SAV. While

the higher avidity of SIRPα-CD47 interaction in the LSC assay would make it more difficult to

observe the inhibitory effect of compounds having substantially lower potency, we were able to

detect specific inhibition by a number of compounds that were first identified in our qHTS of

libraries containing tens of thousands of SMs. Thus, we were able to validate active SMs from

our cell-free screen and follow up by testing structurally related analogs to begin to determine

SAR for the compound series. Because these are the first SM inhibitors of the SIRPα-CD47

interaction to be described, there were no comparable agents to use as positive controls in the

study. Therefore, we used the well-characterized and very potent (nM) antibodies that are

known to block the SIRPα-CD47 interaction. The goal of our work is to optimize small mole-

cules discovered through unbiased qHTS into molecular probes with sufficient potency and

selectivity for in vivo evaluation and potential therapeutic development. This will require opti-

mized molecules with potency approaching that of the blocking antibodies; the levels of
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potency and efficacy will be defined in biological assays like phagocytosis and in vivo tumor

models. We view the LSC assay as a valuable tool to demonstrate that molecules identified in

the initial discovery phase have activity in a cellular environment and prioritize them for opti-

mization to the potency required for more complex biological evaluation.

The binding of recombinant CD47 with SIRPα was previously determined using SPR with

immobilized CD47. Here we titrated soluble CD47 to measure its ability to bind soluble SIRPα
and antagonize the interaction of the latter with cell-expressed CD47. Using this system, we

demonstrated similar affinities when CD47 and SIRPα were permitted to interact in solution

as compared to their interaction when CD47 was immobilized for an SPR assay (Fig 4B and

4C).

The ability of SIRPα to bind CD47 on paraformaldehyde-fixed cells raises the possibility

that this reagent also might bind specifically to CD47 in formalin-fixed, paraffin-embedded tis-

sue specimens. If this were borne out, then such an assay could be used to identify tumors with

high SIRPα-CD47 binding capacity and therefore more likely to be responsive to immuno-

therapy targeting this interaction. The detection of high affinity SIRPα binding on tumor cells

may prove to be a better indicator of response to therapy than measures of CD47 mRNA or

protein expression.
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