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Abstract

Background: Rheumatoid arthritis (RA) is an autoimmune rheumatic disease that carries a substantial burden for
both patients and society. Early diagnosis of RA is essential to prevent disease progression and select an optimal
therapeutic strategy. However, RA diagnosis is challenging, partly due to a lack of reliable biomarkers. Here, we
aimed to explore the diagnostic signature and establish a predictive model of RA.

Methods: The mRNA expression profiling data of GSE17755, containing blood samples of 112 RA patients and 53
healthy control patients, were obtained from the Gene Expression Omnibus (GEO) database, followed by differential
expression, GO (Gene Ontology), and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. A PPI
network was constructed to select candidate hub genes, then logistic regression and random forest models were
established based on the identified genes.

Results: Significantly, we identified 52 differentially expressed genes (DEGs), including 16 upregulated genes and 36
downregulated genes in RA samples compared with control samples. GO and KEGG analysis showed that several
immune-related cellular processes were particularly enriched. We identified nine hub genes in the PPI network,
including CFL1, COTL1, ACTG1, PFN1, LCP1, LCK, HLA-E, FYN, and HLA-DRA. The logistic regression and random
forest models based on the nine identified genes reliably distinguished the RA samples from the healthy samples
with substantially high AUC.

Conclusion: The diagnostic logistic regression and random forest models based on nine hub genes reliably
predicted the occurrence of RA. Our findings could provide new insights into RA diagnostics.

Keywords: Rheumatoid arthritis, Diagnostic signature, Differentially expressed genes, Bioinformatics analysis,
Random forest model
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Introduction
Rheumatoid arthritis (RA) is an autoimmune rheumatic
inflammatory disorder that influences several organs and
tissues and causes chronic synovial inflammation, ultim-
ately resulting in chronic disability, joint destruction,
and decreased life expectancy [1–3]. RA affects nearly
0.5 to 1% of people globally, occurring more commonly
in females [4]. Furthermore, RA is challenging to man-
age and often requires lifelong treatment once developed
[5]. Detection of RA at an early stage affords a window
of opportunity for effective curative responses, and this
pre-clinical period may be as short as several months
[6–8]. Accordingly, early diagnosis of RA is essential to
prevent the progression of radiologic variations and se-
lect the optimal therapeutic strategy [9].
Rheumatoid factor (RF) serum biomarkers have been

used as preferred diagnostic criteria for RA for decades
of years [10]. However, because of the lack of sensitivity
(50–90%) and specificity (50–95%) [11] of auxiliary bio-
markers, anti-citrullinated protein antibody (ACPA) was
included in the diagnostic criteria for RA as developed
by the American College of Rheumatology (ACR)/Euro-
pean League Against Rheumatism (EULAR) in 2010
[12]. Existing biomarkers may be difficult to detect dur-
ing the pre-clinical period. Subsequently, multiple stud-
ies have revealed an association between genetics and
RA [13, 14], indicating that aberrantly expressed genes
may be identified as potential diagnostic biomarkers of
RA. A previous study demonstrated that dysregulated
circular RNAs in the peripheral blood mononuclear cells
of RA patients presented diagnostic value [15]. Multiple
microRNAs have been identified as effective markers for
RA patients [16]. However, the development of RA is a
complex process, making it particularly important to es-
tablish a diagnostic model.
In this study, we aimed to identify blood-derived

mRNA-based diagnostic signatures by integrating bio-
informatics analysis and machine learning algorithms
based on the mRNA expression profiling data of
GSE17755 from the GEO database, containing blood
samples of 112 RA patients and 53 healthy control pa-
tients. We identified a total of 52 differential expression
genes (DEGs) in the RA patients compared with the
controls and identified nine hub genes, including CFL1,
COTL1, ACTG1, PFN1, LCP1, LCK, HLA-E, FYN, and
HLA-DRA. The logistic regression and random forest
models based on these nine genes reliably distinguished
the RA samples from the healthy control samples.

Materials and methods
Data collection
To establish the diagnosis model of RA from blood
sample, the mRNA expression profiling data of
GSE17755 contained blood samples of 112 RA

patients and 53 healthy controls were obtained from
GEO (https://www.ncbi.nlm.nih.gov/geo/) [17]. The
mRNA expression levels of the GSE17755 data set
were quantified based on the Hitachisoft AceGene
Human Oligo Chip 30K 1 Chip Version.

Identification of differentially expressed genes (DEGs)
The dataset of GSE17755 was normalized by robust
multi-array (RMA) and the DEGs were analyzed by
using a limma R package [18]. After quantile
normalization, raw signals of analyses were log2 trans-
formed. DEGs were defined by absolute value of fold
change (FC) > 2 (|log2FC| > 1) and false discovery rate
(FDR) < 0.05.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis
To analyze the functions and pathways associated with
DEGs, data were merged to obtain gene symbols, then
GO enrichment analysis and KEGG pathway analysis
were performed by using enrichGO function and enrich-
KEGG function of clusterProfiler package of R [19], re-
spectively. Subsequently, GO enrichment results were
visualized by using a GOChord function in GOplot pack-
age [20], and KEGG enrichment results were visualized
by using a Barplot function in clusterProfiler package, in-
dependently. The GO included molecular function, bio-
logical process, and cellular component. The P < 0.05
was regarded as statistically significant.

PPI analysis
The protein-protein analysis (PPI) was conducted in the
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) database (https://string-db.org/cgi/input.pl) with
the threshold of confidence score ≥ 0.4 [21]. The
visualization of the PPI network was presented by Cytos-
cape software (https://cytoscape.org/) [22]. The modular
analysis of the PPI network using the molecular complex
detection (MCODE) plug-in of Cytoscape software with
MCODE score > 2 as the threshold [23].

Construction of logistic regression and random forest
model
The logistic regression model and random forest model
were established based on the identified genes in the PPI
network, in which the expression of identified DEGs served
as continuous variable, and the sample type (RA or not)
served as a binary responsive variable. The logistic regres-
sion model was constructed using glm of R [24]. The ran-
dom forest model based on the Bagging method was
constructed using randomForest R package [25]. The 5-fold
cross-validation was performed in the models using caret R
package (https://CRAN.R-project.org/package=caret). The
receiver operating characteristic curves were generated to
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evaluate the sensitivity and specificity of the models, and
the area under the curve (AUC) was calculated to assess
the reliability of the models.

Results
Identification of DEGs
To comprehensively understand the development of
rheumatoid arthritis (RA) and explore the potential diag-
nostic biomarkers, the mRNA expression profiling data
of GSE17755, containing blood samples of 112 RA

patients and 53 healthy controls, were obtained from
GEO database. The dataset was normalized by robust
multi-array (RMA), and we observed that the data devi-
ation was acceptably small, which could be used for fur-
ther analysis (Fig. 1a and Table S1). In order to verify
the data repeatability, the principal component analysis
(PCA) based on the mRNA expression value of the sam-
ples was performed, and our data revealed that the sam-
ples of RA patients and healthy controls were effectively
separated (Fig. 1b), indicating that the availability of the

Fig. 1 Identification of DEGs. a The dataset of GSE17755 was normalized by robust multi-array (RMA) and the result was shown in the box-plot.
The x-axis was the samples and the y-axis was the gene expression levels. b The principal component analysis (PCA) based on the mRNA
expression value of the samples was performed, in which the dots with different colors represented samples in different groups. The distance of
the dots represented the similarity of mRNA expression of the samples. c Volcano plot filtering map displayed DEGs in the RA samples compared
with the normal samples. The x-axis was the Log2fold change (FC) and the y-axis was −log10 (FDR). d The DEGs were presented by heatmap. The
x-axis was samples and the y-axis was DEGs, in which red and green represented the expression level of genes, respectively
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data repeatability. Significantly, we identified a total of
52 DEGs, including 16 upregulated genes and 36 down-
regulated genes in the RA samples compared with the
normal samples (Fig. 1c), in which the remarkable differ-
ence was presented by heatmap (Fig. 1d).

GO and KEGG analysis of DEGs
For primary comprehensions of these DEGs, GO
[16] and KEGG pathway analysis were performed

based on the identified DEGs. We enriched 102
GO terms and 41 KEGG pathways in the analysis
(P < 0.05) (Table S2). The top 10 significant bio-
logical process and cellular component [26] GO
terms (Fig. 2a, b), the 11 remarkable molecular
function GO terms (Fig. 2c), and the top 15 not-
able KEGG pathways were demonstrated (Fig. 2d),
in which multiple cellular processes were associ-
ated with immune response.

Fig. 2 GO and KEGG analysis of DEGs and PPI network construction. The GO and KEGG analysis were performed based on the identified DEGs
using clusterProfiler package of R. The top 10 significant biological process (a) and cellular component (b) GO terms, and the 11 remarkable
molecular function GO terms (c) were demonstrated. The right half-circle was the enriched GO terms, which were presented in different colors.
The left half-circle was the gene enriched in these terms, in which red represented upregulation and blue represented downregulation. d The
top 15 notable KEGG pathways were shown in the bar plot. The y-axis was the name of signaling pathways and the x-axis was the gene number.
e PPI network based on the identified DEGs was constructed in the STRING online database. Each dot represented a node and the number of
lines connected to the dot represented the degree of the node. The red represented the upregulated genes and the green represented the
downregulated genes. The blue triangle was the Cluster1 and the blue diamond was the Cluster2
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PPI network construction and candidate hub gene
selection
To further identify the candidate hub genes among the
DEGs in the healthy cases and RA patients, we con-
structed PPI network based on the 52 DEGs in the STRI
NG online database (https://string-db.org/cgi/input.pl),
and we identified 39 genes with confidence score ≥
0.4 in the PPI network (Fig. 2e). The network module
may represent the specific biological significance and
thereby is usually the core of the PPI network [27].
Accordingly, we performed the modular analysis of
the PPI network using the MCODE plug-in of Cytos-
cape software with MCODE score > 2 as the thresh-
old and identified Cluster1 including CFL1, COTL1,
ACTG1, PFN1, and LCP1, and Cluster2 containing
LCK, HLA-E, FYN, and HLA-DRA (Fig. 2e), suggest-
ing that these nine genes may play critical roles in
the development of RA.

Construction of logistic regression and random forest
model
We constructed the logistic regression model and the
random forest model based on the selected nine genes
including CFL1, COTL1, ACTG1, PFN1, LCP1, LCK,
HLA-E, FYN, and HLA-DRA in the PPI network, in
which the expression of selected nine genes served as
the continuous predict variable and the sample type (RA
or not) served as the response variable. The 5-fold cross-
validation was performed in the model to verify the

reliability of the model and we observed that the AUC of
the logistic regression model (Fig. 3a) and the random
forest model (Fig. 3b) was substantially high, suggesting
that both models can reliably distinguish the RA samples
from the healthy control samples.

Discussion
Consistent with the results of previous studies, our study
indicates that RA is a disease involving a complex gene
network and multiple gene contributors [28]. In this
study, 39 genes were selected in the PPI network and 9
hub genes were identified after modular analysis of the
PPI network, including CFL1, COTL1, ACTG1, PFN1,
LCP1, LCK, HLA-E, FYN, and HLA-DRA. These genes
may be significantly correlated with the progression of
RA. Furthermore, we constructed a logistic regression
model and random forest model based on the nine iden-
tified genes, both with a significant AUC.
Combined with previous reports, COTL1, LCK, HLA-

DRA, and HLA-E, among our identified hub genes, have
been reported to be associated with RA. Proteomics re-
vealed that upregulation of COTL1 might affect the 5-
lipoxygenase (5LO) activity involved in leukotriene bio-
synthesis and mediate inflammation in RA [29]. Whole-
exome sequencing defined LCK as linked to familial RA
and highlighted LCK variation in the T cell receptor
(TCR) signaling pathway leading to T cell activation,
resulting in T cell differentiation, survival, and effector
functions [30]. Bioinformatics analysis showed that HLA-

Fig. 3 Construction of logistic regression and random forest model. a, b The logistic regression model and the random forest model based on
the selected genes were constructed using glm of R and randomForest R package, respectively. The reliability of the model was assessed by the
AUC analysis. a The 5-fold cross-validation was performed in the logistic regression model. b The 5-fold cross-validation was performed in the
random forest model
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DRA was dysregulated in RA patients [31, 32]. Further-
more, HLA-E was involved in susceptibility to RA and
anti-TNF treatment in RA patients [33]. Little evidence
has directly demonstrated any relation of other genes to
RA, such as CFL1, ACTG1, PFN1, or FYN; however, these
genes play a key role in immune regulation [34–37].
In conclusion, we selected innovative biomarkers by

analyzing the critical genes that influence the molecular
mechanisms of RA, and nine mRNA-based diagnostic
signatures were identified. The logistic regression and
random forest models based on these nine hub genes
were able to reliably distinguish RA samples from
healthy control samples. Meanwhile, the nine genes had
immune-related functions, including T cell activation,
differentiation, tolerance, and lymphocyte formation.
Further exploration is warranted to validate the clinical
significance of these genes in the immune disorder of
RA progression.
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