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Ultrahigh-speed violet laser 
diode based free-space optical 
communication beyond 25 Gbit/s
Wei-Chun Wang, Huai-Yung Wang & Gong-Ru Lin   

Violet laser diode (VLD) based ultrahigh-speed free-space optical (FSO) system is demonstrated 
for point-to-point data transmission. By directly encoding the VLD with 64-quadrature amplitude 
modulation discrete multi-tone (64-QAM DMT) data stream for optical wireless communication through 
0.5–10 m in free space, the point-to-point VLD-based FSO link allows delivering the 64-QAM DMT data 
at an ultrahigh bit rate of up to 26.4 Gbps. After receiving with a high-speed p-i-n photodiode, such a 
VLD-FSO link can provide clear constellation plot with error vector magnitude (EVM) of 8.57%, signal-
to-noise ratio (SNR) of 21.34 dB and bit error ratio (BER) of 3.17 × 10−3 under forward-error-correction 
criterion. The EVM increases from 8.8% to 9.4% and the SNR decreases from 21.1 to 20.6 dB to slightly 
degrade the reachable data rate from 25.8 to 24 Gbit/s with transmission distance lengthening from 3 to 
10 m.

Nowadays, the demanded data transmission capacity for indoor or harsh free-space environment has rap-
idly grown up due to the tremendously increased amount of multimedia streaming and data exchange among 
devices and networks. However, the existing radio frequency (RF) band has been almost congested with data 
traffic, which triggers alternative communication scenarios to be comprehensively proposed with more flexibility 
than ever. Accordingly, the visible light source enabled optical wireless communication (OWC), also known as 
free-space optical (FSO) transmission, visible light communication (VLC) and light-fidelity (Li-Fi)1, has been rec-
ognized as a promising technology to provide high-speed data communication in free space with unique advan-
tages such as its entire electromagnetic immunity, long propagation distance and high streaming security. At early 
stage, light-emitting diodes (LEDs) were comprehensively employed to serve as the OWC or FSO transmitters as 
it can also be easily integrated with the present lighting facility. Nevertheless, the long lifetime of spontaneously 
emitted photons severely limits its modulation bandwidth to several tens MHz. Although the divergent output 
beam of LED benefits from wide lighting coverage, it deteriorates the performance of point-to-point FSO link 
with huge power dissipation under disoriented transmission.

To improve the allowable modulation bandwidth of the OWC or FSO link, laser diodes (LDs) with shorter 
photon lifetime (~ps), narrower spectral linewidth, longer coherent distance and larger transmission capacity 
were lately recognized as promising candidate for promoting the VLC data rate. In 2012, Lin et al.2 preliminar-
ily employed green and red laser pointers to propose a cost-effective visible laser light communication (VLLC) 
system over 10 m in free space with allowable bit rate of 500 Mbit/s. Subsequently, Watson et al.3 reported an 
OWC system at 2.5 Gbit/s based on the directly modulated gallium nitride (GaN) LD at 422 nm. Afterwards, 
a bidirectional passively optical network (PON) which combined a 20-km single-mode fiber (SMF) channel 
with a 15-cm-long red-LD VLC channel was designed by Chen et al. to achieve 2.5-Gbit/s transmission4. In the 
meantime, the direct non-return-to-zero on-off keying (NRZ-OOK) modulation of a GaN LD at 450 nm for 
high-speed VLC up to 4 Gbps was also demonstrated5. Not until 2015, an OWC system which enabled delivering 
the OOK data up to 2.6 Gbit/s was proposed by Lee et al.6, and similar VLLC link with a 410-nm rigid LD further 
improved the data rate to 5 Gbit/s in the next year7. Alternatively, Shen et al. designed an integrated waveguide 
modulator to externally encode the LD at 448 nm at 1 GHz8. In 2016, the error-free data rate of the NRZ-OOK 
stream carried by the blue LD has ultimately approached 5 Gbit/s9.

In addition to the use of NRZ-OOK format, the quadrature amplitude modulation orthogonal 
frequency-division multiplexing (QAM-OFDM) data format was also introduced with enhanced spectral usage 
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efficiency, improved transmission capacity and robust channel tolerance for the VLLC system. The premier 
demonstration on GaN LD based point-to-point FSO link with 64-QAM OFDM data transmission at 9 Gbit/s 
over 5 m was demonstrated by Chi et al. in 201510. Singh et al. employed a 641-nm red laser pointer to realize 
4-QAM OFDM data transmission as high as 10 Gbit/s with lengthening distance over 163 m11. In 2016, a world-
wide new record on high-speed VLLC system via the directly 16-QAM OFDM encoded blue LD at 14 Gbit/s over 
7 m was performed by Huang et al.12. Based on the same format, the 4-Gbit/s blue LD VLLC link in combination 
with remote phosphor based color converter was preliminarily reported for white lighting13. Subsequently, the 
universal filtered multi-carrier (UFMC) additive 16-QAM OFDM scheme was implemented in the blue LD based 
VLLC system, which further suppresses the inter-carrier-interference (ICI) between OFDM subcarriers by effec-
tively eliminating the subcarrier side-lobes with programmable spectral filters. Huang et al. used such a format to 
perform a 16-m-long VLLC link with upgraded transmission rate of 18 Gbit/s14, which is superior as compared 
to the performance of 16.4 Gbit/s for the OFDM data with the same cyclic prefix (CP) before adding side-lobe 
filter15.

Later on, the GaN blue LD based point-to-point VLLC has also shown its superiority for underwater wireless 
optical communication (UWOC), including small divergent angle, long propagation distance and low absorption 
in seawater environment. Some remarkable UWOC works employed the directly NRZ-OOK modulated green 
LD at 520 nm with 2.3-Gbit/s data rate16, and a 20-m-long UWOC link with 1.5-Gbps NRZ-OOK was succes-
sively proposed17. With the use of 16-QAM OFDM format, the 450-nm blue LD based UWOC link can speed 
up to 4.8 Gbit/s18. Furthermore, the UWOC distance can lengthen up to 34.5 m with 2.7-Gbps NRZ-OOK data 
delivered by a green LD19. As late as 2017, Wu et al. preliminarily demonstrated a UWOC system over a 1.7-m 
tap-water link at 12.4 Gbit/s20, and the modified UWOC link in seawater environment was reported by Huang 
et al. to further upgrade the data rate to 14.8 Gbit/s over the same distance with using the filtered OFDM data 
format. The allowable transmission capacity only slightly decreases to 10.8 Gbit/s even with lengthening the 
transmission distance to 10.2 m21. Aside from the blue LD based VLLC scheme, Janjua et al. further utilized the 
fiber-based red/green/blue (RGB) LD module to set up a wavelength division multiplexing white-lighting OWC 
with achieving the bit rate of up to 4 Gbit/s for a single LD22. Nearly-ultraviolet LD with RGB phosphors has also 
been considered for white-lighting VLC at several Gbit/s23 Afterwards, Wu et al. elevated the RGB-LD mixed 
white-light transmission data rate up to 8.8 Gbit/s in 2017 with using free-space lens collimation for the transistor 
outline can (TO-can) packaged LDs24. In the same year, the wavelength division multiplexing approach with the 
RGB LD mixed UWOC link has been updated to 9.5-Gbit/s transmission over 10 m25. More recently, Chi et al. 
preliminarily revealed the capability of 405-nm VLD based point-to-point VLLC for carrying 16-QAM OFDM 
data at 12 Gbit/s26.

Even though, the ultimately high transmission capacity of the VLD has yet to be explored until now, and 
the breakthrough on the VLD based point-to-point FSO link toward 25 Gbit/s per channel relies strictly on 
data format optimization and device bandwidth upgradation. In this work, the spectrally filtered 64-quadrature 
amplitude modulation discrete multi-tone (64-QAM DMT) format is implemented as the data stream to directly 
encode the VLD for FSO transmission, and an ultrafast photodiode in connection with a broadband amplifier is 
employed as the receiver to provide high cutoff frequency and low noise figure. With distinctly enhanced trans-
mission and receiving performances, the TO-38-can packaged VLD based point-to-point FSO link is performed 
over a distance from 0.5 to 10 m, and an ultrahigh transmission capacity of 26.4 Gbit/s is successfully demon-
strated by enlarging the transmitting bandwidth of the 64-QAM DMT data up to 4.4 GHz. To further elevate the 
transmission performance, the 64-QAM DMT data format is spectrally filtered to eliminate the ICI caused by 
the OFDM side-lobes, and the subcarrier power pre-leveling is also performed to enhance the signal-to-noise 
ratio (SNR) of the data delivered by high-frequency DMT subcarriers. In addition, the bias current, the encoding 
bandwidth and the pre-leveling slope are respectively optimized to maximize the transmission capacity of the 
VLD based FSO link with its bit error ratio (BER) below the criterion of forward error correction (FEC).

Results
Output characteristics of the violet laser diode.  With controlling the temperature at 25 °C, the pow-
er-current-voltage (P-I-V) curve in Fig. 1(a) for the employed VLD shows a power-to-current slope (dP/dI) 
of 0.6893 W/A beyond its threshold current (Ith) of 30 mA, and the available output power can reach 68.2 mW 
before saturation. The power saturation of VLD starts at biasing beyond 100 mA with 1-dB compressing point at 
140 mA. To demand sufficient power for distant point-to-point FSO transmission, the impedance matching must 

Figure 1.  The characteristic of the employed 405-nm VLD. (a) The power-current-voltage curve, (b) Resistance 
and differential resistance at different bias currents, and (c) frequency response at different bias currents.
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be considered with adjusting the VLD bias current. Both the lumped and differential resistances are calculated 
by dividing and differentiating the voltage-to-current response, respectively, as shown in Fig. 1(b). The VLD is 
biased at 60 mA with corresponding differential resistances of 16.3 Ω, which is smaller than 50 Ω typically set 
for commercially available microwave instruments. Such an impedance mismatch inevitably enlarges the reflec-
tion of the data stream directly modulated to the VLD. The reflection coefficient (Γ) of the VLD is calculated as 
Γ = (Zload − Zsource)/(Zload + Zsource) = −0.508. Furthermore, the voltage standing wave ratio (VSWR = (1 + |Γ|)/
(1 − |Γ|) of 3.065 is obtained to result in the related return loss (ηRL = −20log10(|Γ|)) of 5.883 dB. Direct modu-
lating the VLD biased at 14 dBm and 60 mA leads to a throughput power of only 10.39 dBm with nearly −4 dB 
attenuation. Figure 1(c) exhibits the directly analog modulated throughput response versus VLD bias, in which 
the grey and black lines denote the power attenuation level at −3 dB and −6 dB, respectively. As the bias current 
increases from 30 mA to 40 mA, the relaxation oscillation peak shifts from 2.1 GHz to 3.5 GHz. The −3 dB and −6 
dB bandwidths of the VLD biased at 60 mA are 0.97 and 1.33 GHz, respectively. Enlarging the direct current (DC) 
of the VLD initially broadens and flattens the modulated frequency response, and particularly the high frequency 
throughput is enlarged with the upshifted relaxation peak. Nevertheless, continuously raising the bias current 
to 80 mA would attenuate the throughput intensity in the opposite way, which degrades the data transmission 
performance as the roll-off modulation effect occurs accordingly.

Point-to-point transmission performance of the VLD based FSO communication link.  To 
achieve the maximal data rate for FSO transmission, the 64-QAM DMT data stream was generated from the arbi-
trary waveform generator (AWG) with a sampling rate of 12 GS/s. After back-to-back and 0.5-m point-to-point 
FSO transmission, the received data were decoded via an offline MATLAB program. Under broadband 
QAM-DMT encoding, the VLD bias is optimized to obtain sufficient throughput intensity with suppressed rela-
tive intensity noise (RIN). Figure 2(a) indicates the BERs of 4-GHz wide 64-QAM DMT data carried by the VLD 
with its DC bias adjusted from 50 mA to 70 mA. Increasing the bias current from 50 mA to 60 mA upshifts the 
relaxation oscillation frequency to improve the signal-to-noise contrast at high frequency region, hence the RIN 
from the VLD is restrained to improve the BER from 5.67 × 10−3 to 3.58 × 10−3. Overly biasing the VLD not only 
declines the modulation throughput but also degrades the on/off extinction ratio, which inevitably increases the 
BER to 3.91 × 10−3 as the VLD bias enlarges to 70 mA. That is, the lowest BER of 3.58 × 10−3 can be achieved 
when biasing the VLD at 60 mA. Subsequently, the bandwidth of 64-QAM DMT data is further expanded to 
approach the ultimate data rate allowable with the VLD, as the blue sphere symbol in Fig. 2(b) demonstrates. 
Enlarging the bandwidth from 4 GHz to 4.5 GHz degrades the BER performance from 3.58 × 10−3 to 8.89 × 10−3, 
because the high-frequency response of the VLD is insufficient to provide adequate SNR for the demanded 
FEC criterion. Consequently, the DMT subcarrier power pre-leveling technique is employed to compensate the 
degraded responses of the high-frequency subcarriers. In detail, the green triangle symbol in Fig. 2(b) represents 
the received BERs of the pre-leveled 64-QAM OFDM data at 4.3 and 4.4 GHz after delivering by the VLD.

Later on, to select the appropriate pre-leveling slope for pre-emphasizing the DMT subcarrier amplitude of 
the 4.4-GHz 64-QAM DMT data stream, the pre-leveling-slope dependent BERs and peak-to-average power 
ratios (PAPRs) of the received data are measured. Figure 3(a) presents the received BERs enhanced by detuning 
pre-leveling slope from 0.4 dB/GHz to 0.8 dB/GHz. The pre-leveling slope ought to enlarge for compensating 
the declined SNRs of data carried by high-frequency subcarriers; however, the SNRs at low-frequency region 
simultaneously sacrifices by over pre-leveling due to the constant deliverable power from the AWG. Moreover, 
the probability of PAPR increases when the pre-leveling slope of the pre-emphasized DMT subcarrier amplitude 
is overly high, which may cause the undesirable nonlinear distortion during post-amplification. As evidence, 
Fig. 3(b) shows the complementary cumulative distribution functions (CCDFs) of the tested PAPRs. When the 
pre-leveling slope is enlarged from 0.4 dB/GHz to 0.8 dB/GHz, the PAPR at the probability of 10−1 inevitably 
increases from 13.33 dB to 13.92 dB. Eventually, the lowest BER of 3.17 × 10−3 is obtained for the VLD delivered 
64-QAM DMT data covering a bandwidth of 4.4 GHz under power pre-leveling at 0.6 dB/GHz. The RF spec-
trum shown in Fig. 3(c) reveals a carrier-to-noise ratio (CNR) of 11 dB, and the received EVM of 8.57%, SNR of 
21.34 dB and BER of 3.17 × 10−3 are obtained from the corresponding subcarrier SNRs and the constellation plot 

Figure 2.  The optimization of the VLD carried 64-QAM DMT data. (a) The bias current dependent BERs and 
(b) the bandwidth dependent BERs with and without pre-leveling QAM-DMT data carried by the VLD.
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shown in Fig. 3(d). To summarize, the VLD bias optimization and QAM-DMT amplitude pre-leveling enable the 
largest available 64-QAM DMT data bandwidth over 0.5 m in FSO communication link.

Distant transmission of the VLD based FSO communication link up to 10 m.  At last, the distant 
dependent transmission with pre-leveled 64-QAM DMT data is performed. First of all, the received constella-
tion plots of the data covering same bandwidth of 4.4 GHz with a total raw data rate of 26.4 Gbit/s over differ-
ent transmission distances are compared in Fig. 4(a). The estimated EVM for the decoded constellation plot is 
increased from 8.8% to 9.4% with lengthening the distance from 3 to 10 m. Apparently, the SNR spectra exhibit 
a degrading tendency which leads to average SNR decreasing from 21.1 to 20.6 dB due to the reduced receiving 
power with expanding the free-space distance, as shown in Fig. 4(b). The corresponding BER inevitably increases 
from 3.9 × 10−3 to 5.8 × 10−3, which cannot pass the FEC criterion after lengthening transmission distance, as 
shown in Fig. 4(c). That is, the allowable transmission at the longer distant link must be scaled down to the lower 
bandwidth and data rate under FEC limitation. With shrinking the encoded bandwidth from 4.3 to 4 GHz for 
lengthening the transmission distance from 3 to 10 m, the received constellation plots and relative SNR spectra 
are illustrated in Fig. 4(d,e). All the decoded data remain their EVM at 8.8%, average SNR at 21.1 dB and BER 
below 3.8 × 10−3, whereas the maximal data rate reveals a degrading trend from 25.8 to 24 Gbit/s after distance 
expansion, as shown in Fig. 4(f).

Usually, the turbulent communication channel includes environmental parameters such as raining, snowing, 
clouding and fogging effects. Under these circumstances, the transmitted light beam would be scattered by vapor, 
liquid or micro particles to cause receiving power and SNR degradation. Besides, the transmitting path with 
varying refractive index would be induced to cause beam deflection, chromatic dispersion and data distortion. 
However, the transmission system with a turbulent communication channel cannot be simulated or performed 
at present. As the established VLC link in this work cannot play the aforementioned scenarios at current stage, 
and which also includes a high-speed p-i-n photodiode with very small accepting area. During experiments, the 
VLD beam must be highly focused onto the photodiode via a double-convex lens to assure the maximal receiving 
power and SNR. Therefore, such VLD transmission system is less tolerant to mechanic fluctuation and environ-
mental turbulence from this point of view.

Discussion
With using the directly encoded VLD transmitter, the ultrahigh-speed point-to-point FSO link enables the data 
rate beyond 25 Gbit/s per single-channel. This is a premier demonstration with directly encoding a TO-can pack-
aged VLD at 405 nm up to 26.4 Gbit/s over 0.5 m in free space for optical wireless communication. By controlling 
the VLD at room temperature (25 °C) with self-feedback controlled thermo-electric-cooler/thermistor circuit, 

Figure 3.  Optimization of the pre-leveling slope and transmission performance of the 4.4-GHz filtered 64-
QAM DMT data. (a) BERs and (b) PAPRs of the filtered 64-QAM DMT data applied with different pre-leveling 
slopes. (c) RF spectrum, (d) SNR responses and constellation plots of the filtered 64-QAM DMT data at the 
bandwidths of 4.4 GHz after pre-leveling.
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and matching the impedance of the VLD with adjusting its bias dependent differential resistance, the DC bias 
current of the VLD is optimized to 60 mA for approaching the FEC qualified BER of the 64-QAM DMT data 
covering a bandwidth as wide as 4.4 GHz. Both the broadened bandwidth of the receiver and the spectral filtering 
of the 64-QAM DMT data facilitate such a data capacity enhancement. In particular, the pre-emphasis on the 
QAM data delivered by high-order DMT subcarriers is executed via a digital power pre-leveling process. With 
applying the pre-leveling slope of 0.6 dB/GHz, the 4.4-GHz wide 64-QAM DMT data at 26.4 Gbit/s is guaranteed 
with a FEC-qualified BER of 3.17 × 10−3 with an average EVM of 8.57% in constellation plot and an average SNR 
of 21.34 dB after decoding. By lengthening the distance from 3 to 10 m, the EVM increases from 8.8% to 9.4% and 
the SNR decreases from 21.1 to 20.6 dB, which inevitably causes the degradation of allowable data rate from 25.8 
to 24 Gbit/s with distance expansion. This study experimentally demonstrates the potential application of such a 
VLD based point-to-point FSO link, which fulfills with need on the compact and cost-effective VLLC system to 
enable the ultrahigh speed FSO communication in the near future.

Methods
The package and temperature control of VLD.  Figure 5(a) shows the employed TO-can package VLD, 
which exhibits a threshold current of 30 mA and a lasing wavelength of 405 nm with 3-dB spectral linewidth of 
3 nm. It was sealed with a jacket subminiature version A (SMA) connector and mounted with a designed copper 
heat sink for high-speed modulation and temperature-stabilized operation, as shown in Fig. 5(b,c). Moreover, 
Fig. 5(d) shows the VLD with self-feedback temperature controlling module. To stabilize the dynamic output of 
the VLD at controlled temperature, a thermistor is used to sense the instantaneous temperature variation and 
feedback to the temperature controller (ILX, LDC-3900). Afterwards, the TE cooler installed under the copper 
mount transfers the heat from VLD to the heat sink so that the heat is balanced between copper mount and heat 
sink. An electric fan mounted under the heat sink is optionally applied to avoid the overheating via air-cooling. 

Figure 4.  Transmission performance of the VLD carried pre-leveled 64-QAM DMT data over 3 to 10 m. (a) 
The constellation plot, (b) the SNR spectra and (c) the BERs of 26.4-Gbit/s 64-QAM DMT data transmitting 
over 3 m, 5 m, 7 m and 10 m. (d) The constellation plot, (e) the SNR spectra and (f) the maximal data rate of 64-
QAM DMT data transmitting over 3 m, 5 m, 7 m and 10 m.

Figure 5.  The experimental setup of the 0.5-m point-to-point VLC system.
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During operation, the self-feedback temperature controlling system, and the temperature maintain at 25 °C 
with ± 0.05 °C variation.

Setup of the point-to-point FOC link.  The setup diagram of the ultrahigh-speed point-to-point FOC 
link is illustrated in Fig. 6(a). In order to evaluate the allowable transmission capacity, 64-QAM DMT data with 
a FFT-size of 512 and the programmed band-pass Chebyshev filters set for each subcarrier were employed to 
avoid the interference between data carried by adjacent subcarriers. During off-line analysis, an AWG (Tektronix, 
70001 A) exported the electrical 64-QAM DMT data stream with a peak-to-peak voltage of 500 mV, and a broad-
band amplifier (Tektronix, 5866) with a gain of 25 dB and a noise figure of 5.75 dB was applied to pre-amplify the 
data stream to a Vpp of 2.2 V. Then, a bias-tee (Mini-circuit, ZX85–12G-S+) combined the data stream with a DC 
bias current to directly modulate the SMA jacket connected VLD. A plano-convex lens was used to collimate the 
VLD output from divergent to parallel beam at transmitting end, which exhibits a focal length of 2 mm, a diam-
eter of 2.5 mm and a numerical aperture (NA) of 0.62, as shown in Fig. 6(b). After propagating through 0.5 m in 
free space, a double-convex lens with a longer focal length of 5 cm, a larger diameter of 5 cm and a smaller NA 
of 0.5 is employed at receiving end to fully couple the transmitted optical beam into the ultrafast photodiode, as 
shown in Fig. 6(c). For ultrahigh-speed point-to-point detection, the received signal was detected by an ultrafast 
photodiode (ALPHALAS, UPD-50 SP) with a conversion bandwidth of 7 GHz. Then, the detected small signal 
separated from a bias-tee (Picosecond, 55530B) was enhanced by a post-amplifier (Mini-circuit, ZX60-V63+) 
with a power gain of 20 dB, a bandwidth of 6 GHz and a noise figure of 3.7 dB. Later on, the amplified signal was 
analyzed by a digital serial analyzer (Tektronix, 71604 C) with a resampling rate of 100 GS/s. Finally, by demod-
ulating the signal with the homemade MATLAB decoding program, the EVM, SNR and BER were estimated.

Frequency response analyzes.  For analog frequency response measurement, a microwave frequency 
synthesizer (Agilent, E4433B) exported signals with central frequency scanning from 0 GHz to 4 GHz at output 
power of 0 dBm, and the signal directly modulated on the VLD carrier was transmitting through 0.5 m free-space 
link. Afterwards, the delivered optical signal was detected by the same ultrafast p-i-n photodiode, and analyzed 
by a RF spectrum analyzer (Agilent, 8565E) with a bandwidth of 50 GHz. The necessary calibration was done by 
excluding the impulse response of the testing system and cables.
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